Branching random walks and Minkowski sum of random walks - Institut de Mathématiques de Marseille 2014-
Pré-Publication, Document De Travail Année : 2023

Branching random walks and Minkowski sum of random walks

Résumé

We show that the range of a critical branching random walk conditioned to survive forever and the Minkowski sum of two independent simple random walk ranges are intersectionequivalent in any dimension d ≥ 5, in the sense that they hit any finite set with comparable probability, as their common starting point is sufficiently far away from the set to be hit. Furthermore, we extend a discrete version of Kesten, Spitzer and Whitman's result on the law of large numbers for the volume of a Wiener sausage. Here, the sausage is made of the Minkowski sum of N independent simple random walk ranges in Z d , with d > 2N , and of a finite set A ⊂ Z d. When properly normalised the volume of the sausage converges to a quantity equivalent to the capacity of A with respect to the kernel K(x, y) = (1 + x − y) 2N −d. As a consequence, we establish a new relation between capacity and branching capacity.
Fichier principal
Vignette du fichier
spitzer-final (1).pdf (390.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04196071 , version 1 (05-09-2023)
hal-04196071 , version 2 (27-11-2024)

Identifiants

  • HAL Id : hal-04196071 , version 2

Citer

Amine Asselah, Izumi Okada, Bruno Schapira, Perla Sousi. Branching random walks and Minkowski sum of random walks. 2023. ⟨hal-04196071v2⟩

Partager

More