Hermitian hull of constacyclic codes over a class of non-chain rings and new quantum codes - Institut de Mathématiques de Marseille 2014-
Article Dans Une Revue Computational & Applied Mathematics Année : 2024

Hermitian hull of constacyclic codes over a class of non-chain rings and new quantum codes

Résumé

Let p be a prime number and q = p m for some positive integer m. In this paper, we find the possible Hermitian hull dimensions of λ-constacyclic codes over Re = F q 2 + uF q 2 + u 2 F q 2 + • • • + u e-1 F q 2 , u e = 1 where F q 2 is the finite field of q 2 elements, e|(q + 1) and λ = η1α1 + η2α2 + • • • + ηeαe for αl ∈ F * q 2 of order rl such that rl | q + 1 (for each 1 ≤ l ≤ e). Further, we obtain some conditions for these codes to be Hermitian LCD. Also, under certain conditions, we establish a strong result that converts every constacyclic code to a Hermitian LCD code (Corollaries 3.2 and 3.3). Moreover, we study the structure of generator polynomials for Hermitian dual-containing constacyclic codes and obtain parameters of quantum codes using the Hermitian construction. The approach that we used to derive Hermitian dual-containing conditions via the hull has not been used earlier. As an application, we obtain several optimal and near-to-optimal LCD codes, constacyclic codes having small hull dimensions, and quantum codes.

Fichier principal
Vignette du fichier
Hermitian hull of constacyclic codes and quantum Codes.pdf (516.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04825601 , version 1 (08-12-2024)

Identifiants

Citer

Shikha Yadav, Ashutosh Singh, Habibul Islam, Om Prakash, Patrick Solé. Hermitian hull of constacyclic codes over a class of non-chain rings and new quantum codes. Computational & Applied Mathematics, 2024, ⟨10.1007/s40314-024-02789-1⟩. ⟨hal-04825601⟩

Altmetric

Partager

More