Hdr Année : 2018

Contributions to local and non-local surface analysis

Contributions à l'analyse locale et non-locale de surfaces

Résumé

Following the recent progress of surface acquisition systems, geometry processing algorithms quickly evolve to deal with the variety of data types and acquisition quality. This habilitation manuscript details some recent approaches to tackle this challenge. First, for low-quality data, it is necessary to improve the measure by denoising or super-resolution algorithms. Self-similarity analysis yields efficient methods for improving the acquisition quality either for real object surfaces, or generalized shapes (shapes whose intrinsic dimension is not constant). Beyond low-resolution acquisition, taking this similarity into account also permits to compress point set surfaces, that can then be resampled during decompression. While geometric data are \emph{per se} a research topic, additional image data or other type of measures can be acquired simultaneously, which allows to complete or augment the geometric information through a joint analysis. This manuscript addresses this multi-captor data problem to augment urban scenes point sets by using a collection of pictures, which permits to colorize point clouds, once images are accurately registered. Finally, for specific purposes, it is interesting to represent surfaces as polygonal meshes potentially replacing several points by a single planar facet. To do so, this manuscript describes an Optimal Transportation metric between the initial point cloud and a mesh. The reconstruction and optimization of the mesh can then be driven by the minimization of this distance.
Face à l'explosion des systèmes d'acquisition de surfaces, les algorithmes de traitement numérique de la géométrie évoluent rapidement pour s'adapter à la diversité des types de données et des qualités d'acquisition. Tout d'abord, pour des données de qualité moindre, il est nécessaire d'améliorer la mesure par des processus de débruitage et de super-résolution. L'analyse de l'auto-similarité des surfaces permet de développer des approches d'amélioration de la mesure que ce soit pour des surfaces d'objet réel ou des formes généralisées (des formes dont la dimension intrinsèque peut varier). Au delà des données basse-résolution, la prise en compte de cette similarité permet également de compresser efficacement des données de surfaces, que l'on peut ensuite rééchantillonner pendant la décompression. De plus, si les données géométriques sont en elles-mêmes un sujet d'étude, elles peuvent être accompagnées de données d'image ou d'autres mesures, qui permettent de compléter ou d'augmenter les données géométriques par une analyse jointe. Cette habilitation aborde ce problème de la fusion de données multi-capteur pour enrichir des nuages de points représentant des scènes urbaines par une collection de photos, qui, une fois correctement recalées permettent par exemple de coloriser le nuage de points. Enfin, la dernière partie de cette habilitation s'intéresse à la reconstruction de maillages surfaciques. Pour certaines applications il est en effet intéressant de représenter une surface sous forme de maillage, et de remplacer ainsi localement plusieurs points par une unique facette plane. Pour cela, il est possible de quantifier la distance de transport optimal entre le nuage de points initial et un maillage. La reconstruction et l'optimisation du maillage peuvent être ainsi guidées par la minimisation de cette métrique.
Fichier principal
Vignette du fichier
HDR.pdf (182.53 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

tel-01884583 , version 1 (01-10-2018)

Identifiants

  • HAL Id : tel-01884583 , version 1

Citer

Julie Digne. Contributions to local and non-local surface analysis. Computational Geometry [cs.CG]. Université Claude Bernard Lyon 1, 2018. ⟨tel-01884583⟩
490 Consultations
56 Téléchargements

Partager

More