Loading...
Derniers dépôts, tout type de documents
We introduce the Ising Network Opinion Formation (INOF) model and apply it for the analysis of networks of 6 Wikipedia language editions. In the model, Ising spins are placed at network nodes/articles and the steady-state opinion polarization of spins is determined from the Monte Carlo iterations in which a given spin orientation is determined by in-going links from other spins. The main consideration is done for opinion confrontation between {\it capitalism, imperialism} (blue opinion) and {\it socialism, communism} (red opinion). These nodes have fixed spin/opinion orientation while other nodes achieve their steady-state opinions in the process of Monte Carlo iterations. We find that the global network opinion favors {\it socialism, communism} for all 6 editions. The model also determines the opinion preferences for world countries and political leaders, showing good agreement with heuristic expectations. We also present results for opinion competition between {\it Christianity} and {\it Islam}, and USA Democratic and Republican parties. We argue that the INOF approach can find numerous applications for directed complex networks.
Communication complexity quantifies how difficult it is for two distant computers to evaluate a function f(X,Y), where the strings X and Y are distributed to the first and second computer respectively, under the constraint of exchanging as few bits as possible. Surprisingly, some nonlocal boxes, which are resources shared by the two computers, are so powerful that they allow to collapse communication complexity, in the sense that any Boolean function f can be correctly estimated with the exchange of only one bit of communication. The Popescu-Rohrlich (PR) box is an example of such a collapsing resource, but a comprehensive description of the set of collapsing nonlocal boxes remains elusive. In this work, we carry out an algebraic study of the structure of wirings connecting nonlocal boxes, thus defining the notion of the "product of boxes" P⊠Q, and we show related associativity and commutativity results. This gives rise to the notion of the "orbit of a box", unveiling surprising geometrical properties about the alignment and parallelism of distilled boxes. The power of this new framework is that it allows us to prove previously-reported numerical observations concerning the best way to wire consecutive boxes, and to numerically and analytically recover recently-identified noisy PR boxes that collapse communication complexity for different types of noise models.
One of the most fundamental questions in quantum information theory is PPT-entanglement of quantum states, which is an NP-hard problem in general. In this paper, however, we prove that all PPT (π¯¯¯A⊗πB)-invariant quantum states are separable if and only if all extremal unital positive (πB,πA)-covariant maps are decomposable where πA,πB are unitary representations of a compact group and πA is irreducible. Moreover, an extremal unital positive (πB,πA)-covariant map L is decomposable if and only if L is completely positive or completely copositive. We then apply these results to prove that all PPT quantum channels of the form Φ(ρ)=aTr(ρ)dIdd+bρ+cρT+(1−a−b−c)diag(ρ) are entanglement-breaking, and that all A-BC PPT (U⊗U¯¯¯¯⊗U)-invariant tripartite quantum states are A-BC separable. The former strengthens some conclusions in [VW01,KMS20], and the latter provides a strong contrast to the fact that there exist PPT-entangled (U⊗U⊗U)-invariant tripartite Werner states [EW01] and resolves some open questions raised in [COS18].
We study the random transverse field Ising model on a finite Cayley tree. This enables us to probe key questions arising in other important disordered quantum systems, in particular the Anderson transition and the problem of dirty bosons on the Cayley tree, or the emergence of non-ergodic properties in such systems. We numerically investigate this problem building on the cavity mean-field method complemented by state-of-the art finite-size scaling analysis. Our numerics agree very well with analytical results based on an analogy with the traveling wave problem of a branching random walk in the presence of an absorbing wall. Critical properties and finite-size corrections for the zero-temperature paramagnetic-ferromagnetic transition are studied both for constant and algebraically vanishing boundary conditions. In the later case, we reveal a regime which is reminiscent of the non-ergodic delocalized phase observed in other systems, thus shedding some light on critical issues in the context of disordered quantum systems, such as Anderson transitions, the many-body localization or disordered bosons in infinite dimensions.
We study the entanglement entropy of a random tensor network (RTN) using tools from free probability theory. Random tensor networks are simple toy models that help the understanding of the entanglement behavior of a boundary region in the ADS/CFT context. One can think of random tensor networks are specific probabilistic models for tensors having some particular geometry dictated by a graph (or network) structure. We first introduce our model of RTN, obtained by contracting maximally entangled states (corresponding to the edges of the graph) on the tensor product of Gaussian tensors (corresponding to the vertices of the graph). We study the entanglement spectrum of the resulting random spectrum along a given bipartition of the local Hilbert spaces. We provide the limiting eigenvalue distribution of the reduced density operator of the RTN state, in the limit of large local dimension. The limit value is described via a maximum flow optimization problem in a new graph corresponding to the geometry of the RTN and the given bipartition. In the case of series-parallel graphs, we provide an explicit formula for the limiting eigenvalue distribution using classical and free multiplicative convolutions. We discuss the physical implications of our results, allowing us to go beyond the semiclassical regime without any cut assumption, specifically in terms of finite corrections to the average entanglement entropy of the RTN.
Sujets
Dark matter
Entropy
Markov chains
Social networks
Correlation
Quantum chaos
Chaotic systems
Numerical calculations
Semi-classique
Adaptative denoiser
Duality
2DEAG
Random
Google matrix
Ordinateur quantique
Atom laser
2DRank algorithm
CheiRank
Unfolding
Solar System
Husimi function
Adaptive signal and image representation
Complex networks
6470qj
7215Rn
Covariance
PageRank algorithm
ANDREAS BLUHM
International trade
Quantum information
Calcul quantique
Semiclassical
Decoherence
0375-b
Chaos
2DEG
Quantum many-body interaction
Plug-and-Play
Spin
Model
Critical phenomena
Poincare recurrences
Deep learning
Wikipedia networks
Quantum denoiser
Random matrix theory
Opinion formation
Matrix model
Structure
ADMM
PageRank
Clonage
Chaotic dynamics
Harper model
Unitarity
Wikipedia
Toy model
Qubit
Interférence
Super-Resolution
Information quantique
Hilbert space
Information theory
Quantum computation
Quantum mechanics
Wikipedia network
Entanglement
Algebra
Quantum image processing
Dynamical chaos
Nonlinearity
Community structure
Random graphs
Quantum Physics quant-ph
Statistical description
World trade
World trade network
Disordered Systems and Neural Networks cond-matdis-nn
Localization
FOS Physical sciences
2DRank
Mécanique quantique
Many-body problem
Aubry transition
Fidelity
Chaos quantique
Asymmetry
Networks
Denoising
Amplification
Anderson localization
Quantum denoising
Directed networks
Wigner crystal
CheiRank algorithm
Adaptive transform
Adaptive transformation
0545Mt
Adaptive filters
Cloning