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 2 

Abstract 1 

 The mobilization of chromium and nickel from an industrial soil was investigated using 2 

two biodegradable chelants (citric acid and histidine), compared with a persistent one 3 

(ethylenediaminetetraacetic acid). Successive metal mobilizations were carried out in batch 4 

experiments. The main reactions involved were estimated by modelling the system with MINEQL+. 5 

For a single mobilization, citric acid was the most effective for Cr mobilization and EDTA for Ni. 6 

Their effectiveness could be explained by their ability to solubilize the mineral matrix and by the 7 

competition for the surfaces sites to desorb Cr(VI). Before and after the mobilizations, the 8 

distribution of metals was determined by a sequential extraction procedure. Only slight 9 

modifications were observed due to the low percentage of solubilized metal. A concentration of 10 

0.05 mol.L
-1

 (citric acid and EDTA) allows a good compromise between metal mobilization and 11 

preservation of the soil mineral integrity. 12 

 13 

Keywords: contaminated soil, chromium, nickel, chelant, mobilization 14 

 15 

Capsule: Chelant-induced dissolution of soil mineral matrix which controls metal solubilization  16 
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1. Introduction 1 

 2 

 Metal contaminated soils are a serious environmental problem with implications for human 3 

health. The presence of metals in soil has two main origins: the alteration of the bedrock and human 4 

activities, the latter being the major cause of high levels of metals in soils (metallurgical industries, 5 

surface treatment industries, sewage sludge amendment...). The risks are related to the mobility and 6 

the bioavailability of the metals and consequently to their speciation in soil. Even when 7 

immobilized in the less mobile fractions, metals remain harmful and constitute pollutant stores, 8 

which can be removed if environmental conditions such as pH and Eh change (Stumm and 9 

Sulzberger, 1992; Bourg and Loch, 1995). 10 

 Various remediation methods, in-situ or ex-situ, are available. The conventional methods 11 

are solidification/stabilization, biochemical processes, phytoremediation, soil washing (Mulligan et 12 

al., 2001). Among ex-situ techniques, soil washing using chelating agents is an effective technique 13 

(Peters, 1999). 14 

 Many studies have been carried out on metal extraction with chelants such as 15 

ethylenediaminetetraacetic acid - EDTA, citric acid, nitrilotriacetic acid - NTA, [S,S]-16 

ethylenediaminedisuccinic acid - EDDS (Wasay et al., 2001; Kim et al., 2003; Tandy et al., 2004; 17 

Luo et al., 2005; Di Palma and Ferrantelli, 2005; Leštan and Kos, 2005). These chelants have a high 18 

affinity for many metals. Several parameters must be taken into account, the choice of the ratio of 19 

chelant to metals being important. Consequently, chelant concentration must be higher than trace 20 

metal concentration to obtain maximum extraction. But in the soil, there are also major elements 21 

such as Fe, Al, Mn, Mg and Ca which can be simultaneously solubilized by the chelants (Kim et al., 22 

2003; Tandy et al., 2004). 23 

 Whereas many papers have been published about metal extraction with chelants, only few 24 

studies have been carried out about Ni and especially Cr extraction. Extractions of Cr and/or Ni 25 

using chelants were mainly studied with the purpose of phytoextraction (Turgut et al., 2004; Meers 26 

et al., 2005; do Nascimento et al., 2006). Indeed, chelating agents increase the solubility of heavy 27 

metals for plant uptake during phytoremediation (Brooks, 1998; Salt et al., 1998). It is of course 28 

important to know the degree of biodegradability of the chelants. EDTA is persistent in the 29 

environment (Bucheli-Witschel and Egli, 2001) and its presence in soil can lead to uncontrolled 30 

leaching of metals (Bordas and Bourg, 1998b), thus limiting its use for phytoextraction (Alkorta et 31 

al., 2004). Citric acid and histidine are natural organic molecules that are easily biodegradable, their 32 

half-lives, in a soil suspension, being a few days (Brynhildsen and Rosswald, 1997; Römkens et al., 33 

2002). 34 



 4 

 The aim of this study is to compare the ability of two natural and biodegradable chelants 1 

(citric acid and histidine) with a persistent one (EDTA) to solubilise metals from an industrial soil 2 

contaminated mainly by nickel and chromium.  3 

 4 

2. Materials and methods 5 

 6 

 All reagents used to prepare the solutions were with an analytical grade. High purity de-7 

ionized water (Milli-Q system: resistivity 18.2 MΩ.cm, TOC < 10 µg.L
-1

) was used for all 8 

experiments. 9 

 10 

2.1. Soil sampling and characterization 11 

 12 

 The studied soil came from a metallurgical site where special steels, superalloys, 13 

aluminium and titanium alloys are produced. The pollution was due to long time refuse storage on 14 

the bare ground. Before sampling, a superficial layer of soil (0-5 cm) containing refuse and the main 15 

part of the litter was discarded. The 5-10 cm layer of the soil was then sampled manually near the 16 

storage zone. This thickness was selected due to its contamination rate. The soil was air-dried and 17 

sieved (< 2 mm) (AFNOR, 1994). Soil properties: pHH2O (6.3 ± 0.1), pHKCl (5.3 ± 0.1), organic 18 

carbon (2.90 ± 0.08 g.kg
-1

), cation exchange capacity (12.3 ± 0.1 meq/100 g) were determined by 19 

standard methods (AFNOR, 2004). The granulometry  was determined by the standard method, NF 20 

X 31-107 (AFNOR, 2004). Bulk powder X-ray diffraction (XRD) was used for mineralogical 21 

characterization of the soil sample (INEL CPS 120° Curved Position Sensitive Detector, CuKα1). 22 

 The total metal content was determined in the sample after a microwave-assisted digestion 23 

with aqua regia (microwave oven: MARCH 5, CEM). A recent study (Larner et al., 2006) proved 24 

the correctness of this method by comparison with HF digestion. 25 

 The chemical distribution of metals in the soil was quantified by the BCR sequential 26 

extractions procedure (Ure et al., 1993) accelerated by ultrasound (Pérez-Cid et al., 1998) (Table 27 

1). The sonication was done with a 60W probe (Bandelin, model HD 70). After centrifugation 28 

(3000 g), the supernatant was filtered through 0.45 µm cellulose nitrate filter (Sartorius).  29 

The fractionation of Fe was determined by oxalate (Schwertmann, 1964) and pyrophosphate 30 

extraction (McKeague, 1967). Oxalate extracts the poorly crystalline Fe oxides and the organically 31 

bound Fe and pyrophosphate extracts organically bound Fe. 32 

To determine the speciation of Cr, an alkaline digestion was applied (0.5 mol.L
-1

 NaOH + 0.28 33 

mol.L
-1

 Na2CO3) and the quantification of Cr(VI) was carried out using the colorimetric method 34 
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with diphenylcarbazide (Centre d’expertise en analyse environnementale du Québec, 2003). Cr(III) 1 

is calculated by subtracting Cr(VI) from total Cr. 2 

 3 

2.2. Batch mobilization with chelating agent 4 

 5 

 Metal mobilizations were carried out in batch experiments at room temperature (20  2°C). 6 

The solid:solution ratio was 1:10 with 50 mL of EDTA, citric acid or histidine solutions. Na2-7 

EDTA salt, citric acid and L-histidine were used. Three replicates were made. 8 

 An optimum contact time was determined by a preliminary experiment. For this, each 9 

chelating agent was applied at 0.01 mol.L
-1

 and the suspension pH was established with no 10 

adjustment (variation of pH were 3.2-5.2, 4.7-5.7, 7.2-7.9 respectively for citric acid, EDTA and 11 

histidine). The suspensions were shaken on an orbital shaker (IKA Labortechnik KS501 digital 12 

model - 150 rpm). At various time intervals (1, 4, 16, 24, 48, 72, 96, 144 h), sacrificial samples 13 

were analyzed for metal content.  14 

 The effect of chelating agent concentration was studied in the range 10
-3

 to 1 mol.L
-1

 15 

during 140 h. The initial pH of the solutions was adjusted with HNO3 or NaOH to the soil pHH2O 16 

value (6.3). During these experiments, no adjustment of pH was made; the variations were: 6.3-7.7, 17 

6.3-6.3, 6.3-7.3 respectively for citric acid, EDTA and histidine. At the end of the experiment, after 18 

centrifugation and filtration, the soil was recovered, rinsed with 50 mL of de-ionized water and then 19 

air-dried at room temperature. This technique limits modifications in the metals’ distribution 20 

(Bordas and Bourg, 1998a). The distribution of residual metals was determined by the sequential 21 

extractions procedure. 22 

 23 

2.3. Respirometric tests 24 

 25 

 A respirometric BOD OxiTop® (WTW, Germany) method was used to monitor the 26 

biodegradation of citric acid. Respirometric tests were carried out in the designated measuring 27 

bottles: four replicates with citric acid solution at 0.05 mol.L
-1

 and two controls with de-ionized 28 

water. A ratio of 9.7 g of soil in 97 mL of solution was used. No inoculums or inhibitors were 29 

added. The suspensions of soil were stirred at 20 ± 1°C, in a thermostated room (WTW, Germany), 30 

in the dark for 15 days. 31 

 32 

2.4. Chemical analysis and modeling 33 

 34 
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 For all experiments, the metals were analyzed after sample centrifugation (3000 g - 1 

Bioblock Scientific, Sigma 2-15) and filtration (0.45 µm cellulose nitrate filter-Sartorius). 2 

Depending on the concentration, flame atomic absorption spectrometer (Varian SpectrAA 220) or 3 

graphite furnace atomic absorption spectrometer (Varian SpectrAA 800) was used. 4 

 5 

To estimate the main reactions involved in the extracting solutions, the system was modelled with 6 

MINEQL+, considering:  7 

• the main solubilized elements: Al, Fe, Mg, Ca, Mn, Zn, Cu, Pb, Co, Cr(III) and Ni; 8 

• the constants used come from MINEQL and other databases: Schecher and McAvoy (2001), Pettit 9 

and Powell (2001);  10 

• the calculation was done at 20°C, the ionic strength and the pH were calculated by MINEQL+. 11 

 12 

3. Results and discussion 13 

 14 

3.1. Metals speciation in the soil  15 

 16 

 The studied soil was a sandy, acid soil, with a low organic carbon content and with 17 

moderate levels in Cu, Co, Pb (Table 2). In this study, we focused mainly on Cr and Ni because 18 

they were present in relatively large proportions, have an environmental impact and are rarely 19 

studied (especially Cr) under such conditions. Table 3 shows the distribution of Cr and Ni in 20 

different soil fractions ("control"): 105 ± 34% of total Cr and 87 ± 12% of total Ni were recovered. 21 

Cr and Ni were present mainly in the "residual" fraction, 101 ± 34% for Cr and 75 ± 5% for Ni. 22 

Only minor amounts of Cr and Ni were found in the "acid extractable" fraction. Although such a 23 

distribution and recovery have been observed in industrial soils (McGrath, 1996; Davidson et al., 24 

1998), it is possible that the R2 fraction ("reducible" fraction) was under-estimated. In our studied 25 

soil, crystalline Fe (FeT - Foxa) is 81 ± 2 %; XRD diagrams (data not shown) showed the presence of 26 

maghémite (-Fe2O3). According to the literature, crystalline Fe is known to be only slightly 27 

solubilised by hydroxylammonium chloride (Xiao-Quan and Bin, 1993; La Force and Fendorf, 28 

2000; Davidson et al., 2004; Neaman et al., 2004). 29 

 In the environment, chromium is present in two stable forms Cr(VI) and Cr(III). The 30 

chromium speciation experiment allows to estimate the content in Cr(VI) (28  3 mg.kg
-1

) 31 

representing 25  3% of the total Cr.  32 

 33 

3.2. Kinetics of metal mobilization in the presence of chelants 34 



 7 

 1 

 Figure 1 indicates two steps in metal mobilization: a fast step (<1 h) followed by a slower 2 

one. This has already been observed by many authors (Bordas and Bourg, 1998b; Bermond et al., 3 

2005). The fast step corresponds to the solubilization of accessible metals (exchangeable and 4 

slightly adsorbed). During this fast step, the mobilization is greater for Ni than for Cr. This result is 5 

consistent with the fractionation of the metals in the soil (Table 3) which showed more Ni in the R1 6 

fraction (acid extractable) than Cr. The slower step may correspond to the solubilization of less 7 

mobile and less accessible metals, those bound to oxides, which requires a partial dissolution of the 8 

matrix. This step is important for the Ni extraction with EDTA, which can be explained by the 9 

amount of Ni in the "reducible fraction" fraction compared to Cr (Table 3) (Nowack, 2002; Dubbin, 10 

2004). 11 

 As over a contact time of 140 h, the major part of the mobilizable metals is extracted; this 12 

was considered to be appropriate for the present study. "True equilibrium" would be reached after 13 

longer extraction times; it depends on the chelants and the mineral matrix considered (Bordas and 14 

Bourg, 1998b; Fangueiro et al., 2002).  15 

The respirometric test (BOD OxiTop® method), showed an increase in microbial activity in the 16 

presence of citric acid after 168 h (data not shown), thus only a slight degradation of citric acid by 17 

microbial activity would be expected for a contact time of 140 h. A limited and slow biodegradation 18 

of the nickel-citrate complex in the presence of a selected citrate-metabolizing bacterium has indeed 19 

been evidenced by Francis et al. (1992).  20 

 21 

3.3. Effect of the chelating agents on metals mobilization  22 

 23 

 For these experiments, the initial pH of the chelating agent solutions was adjusted to the 24 

soil pH and monitored throughout the experiment. At the end of the experiments the pHs were 25 

respectively 7.7, 6.3 and 7.3 with citric acid, EDTA and histidine. The percentage of Cr extracted 26 

was calculated from total Cr content. The main reactions involved in the metals’ complexation by 27 

chelants were estimated by modelling the system for the pH range 5-8 using MINEQL+ (Schecher 28 

and McAvoy, 2001). 29 

 The percentage of Cr and Ni extracted increased with the chelating agent concentration up to 30 

a maximal value (Figure 2). Effectiveness of the reagents for Cr mobilization can be classified as: 31 

citric acid > EDTA >> histidine. For 0.1 mol.L
-1

 citric acid, 7.7  0.1% of Cr was extracted, beyond 32 

0.1 mol.L
-1

 the effectiveness of citric acid was similar. Within pH range of the experiments, Cr was 33 



 8 

totally complexed with EDTA and citrate, as Cr(EDTA)
-
 and Cr(citrate)

0
 respectively. Quiros et al. 1 

(1992) and Hamada et al. (2003) described only discrete Cr(citrate)2
3-

 units; these authors did not 2 

quote formation constants. Thus, in the absence of data, the Cr(citrate)2
3-

 complex was not taken 3 

into account. In the absence of data on complexation constants, the Cr(histidine)
2+

 complexes were 4 

not taken into account. For Ni, a maximum of 12.8  0.8 % was extracted with 0.1 mol.L
-1

 EDTA. 5 

The effectiveness of the reagents for Ni mobilization can be classified as: EDTA > citric acid > 6 

histidine. Within pH range of our experiments, Ni was totally complexed with chelants. Ni(EDTA)
2-

 7 

and Ni(histidine)
+
 were the only complexes formed with these two chelants whereas for citrate, 8 

there was a mixture of three Ni complexes: Ni(citrate)
-
 (10 %), NiH(citrate)2

3-
 (35 %) and 9 

Ni(citrate)2
4-

 (55 %). 10 

 The effectiveness of the chelants ability to solubilize Cr and Ni, observed during our 11 

experiments, is not directly related to their complexation constants (Table 4). For example, Cr was 12 

better solubilized by citrate than by EDTA whereas logK(Cr(EDTA
-
)) is greater than log 13 

K(Cr(citrate)
0
). This order cannot be justified by the differences in pH conditions. For all 14 

experiments, chelants were in large excess compared to total Cr and Ni. Ca, Fe, Mn, Al, and Mg, 15 

were simultaneously solubilized by chelants (Table 5) corresponding to a partial dissolution of the 16 

mineral matrix. According to our modeling, the totality of the solubilized metals was complexed 17 

with chelants; however because of their excess, 70 to 80% of the chelants were always present as 18 

uncomplexed species. Consequently, the differences in the order of efficiency can not be explained 19 

totally by the chelant speciation.  20 

 For a chelant concentration of 0.05 mol.L
-1

, the amounts of Cr(III) and Cr(VI), present in 21 

the extraction solution after 140 h, were determined (Table 6). Cr(VI) is more mobilized in 22 

presence of citric acid (1.6  0.3 %) than with EDTA (0.6  0.1 %) or histidine (0.1  0.3 %). The 23 

chelating agents do not bind Cr(VI) but could desorb it by competition for surface sites as well 24 

known for phosphates with ascorbate, citrate and EDTA (Nowack and Sigg, 1996; Geelhoed et al., 25 
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1998; Hu et al., 2001). Then, citric acid could be more potent in desorbing Cr(VI) than EDTA or 1 

histidine, in complement of the mobilization of Cr(III) by complexation. 2 

Moreover, the mineral fraction of the soil was more solubilized with citric acid than with EDTA or 3 

histidine (Table 5) which could explain also the greater mobilization of Cr. Then, it is possible that 4 

Ni is included in different minerals that citric acid does not solubilize, or only slightly. The 5 

effectiveness of chelants in mobilizing Cr and Ni could result of these two phenomena. 6 

 7 

3.4. Successive extractions with the selected concentration 8 

 9 

 For the two most effective chelants (citric acid and EDTA), a concentration of 0.05 mol.L
-1

 10 

seems to be a good compromise between the mobilization of Cr and Ni and the solubilization of the 11 

mineral matrix of the soil. Different authors have shown the importance of the mineral matrix. 12 

Papassiopi et al. (1999) worked on a calcareous contaminated soil (Pb, Zn and Cd) from past 13 

mining and smelting activities. They showed that a limited percentage (less than 10%) of the 14 

available EDTA was used for the removal of metals while 90% was consumed by the dissolution of 15 

calcite. This was also noted by Lim et al. (2005) who examined EDTA in the removal of metals 16 

from a laboratory-contaminated soil (Pb, Cd, Ni). As suggested by these authors, a low 17 

concentration of chelants was favourable to the mobilization of metal while preserving the original 18 

soil mineral composition. 19 

A concentration of citric acid 0.05 mol.L
-1

, extracted, respectively, 20.9  0.3 % Co, 2.0  0.1 % 20 

Cu, 7.7  0.2 % Zn, 2.4  0.1 % Pb. At the same concentration EDTA extracted 22.0  0.4 %, 30  21 

3 %, 6.20  0.02 %, 27.9  0.2 % of these metals. Only Zn is in the same proportion as Cr and Ni. 22 

Zn was better extracted than Cr, by citric acid and EDTA, and was solubilized in the same 23 

proportion as Ni. Taking into account their amounts in the soil, Co was better extracted than Cu, Pb 24 

with citric acid; and with EDTA, they were mobilized in the same proportion. 25 



 10 

 Successive mobilizations were carried out, during 140 h, to check if the metals potentially 1 

mobilizable could be solubilized, under our experimental conditions (Figure 3). Whatever the 2 

chelant considered, the percentage of Cr extracted during the first and the second mobilization was 3 

similar and decreased for the third. For Ni, the decrease was observed from the second mobilization 4 

on. EDTA and citrate mobilized a large amount of the major elements, hence the great mobilization 5 

of Cr and Ni in the first mobilization (Table 5). In the second and the third mobilization, major 6 

elements were mobilized at low concentrations (data not shown), which led to the decrease after 7 

these mobilizations. In the presence of chelants, the metals were extracted from a store of 8 

mobilizable metals operationally defined by the experimental conditions used. For Cr, this store is 9 

exhausted after the second extraction and for Ni it was exhausted after the first one. 10 

 11 

3.5. Distribution of metals in soil after treatment with chelating agents 12 

 13 

 Table 3 shows the distribution of chromium and nickel in the soil fractions before and 14 

after the mobilization with 0.05 mol.L
-1

 of chelants. After the first treatment, Cr and Ni remained 15 

mainly in the "residual" fraction (R4). The amount of Ni in the first three fractions (R1 + R2 + R3) 16 

decreased from 10 ± 1% (before treatment) to 5.1 ± 0.8%, whatever the chelant. Ni was extracted 17 

mainly from the "acid extractable" fraction (R1), as it is easily accessible to the chelating agents, 18 

but it was also extracted from the fractions R2 and R3.  19 

 In the case of Cr, the results show that the sum of metal contained in the first three fractions 20 

(R1 + R2 + R3) decreased slightly from 3.7 ± 0.1% (before treatment) to 3.2 ± 0.3%, whatever the 21 

chelant. The amount of Cr decreased in the fraction R3, but increased in the fractions R1 and R2 22 

after the treatment. It seems that Cr was extracted from the fractions R3 and R4 and was 23 

redistributed in both fractions, R1 and R2. In sequential extractions, the reagents used are rarely 24 

totally phase-specific. Even if the use of hydroxylammonium chloride is more generally applicable, 25 

this reagent does not bring about a complete dissolution of the iron-oxides (Xiao-Quan and Bin, 26 

1993; La Force and Fendorf, 2000; Davidson et al., 2004; Neaman et al., 2004). During the 27 

sequential extractions, Cr bound to the iron oxides might not be extracted effectively from the 28 



 11 

fraction R2, and thus it can be extracted with the last fraction R4, but also in fraction R3. This part 1 

of Cr can thus be redistributed in the fractions R1 and R2, during the mobilization with chelants. 2 

 In the studied case, the modifications in metal speciation from the second and the third 3 

extraction could not be evaluated because of: (i) the low quantities of extracted metals, (ii) the 4 

changes in soil composition during the extractions in presence of chelants (partial dissolution of the 5 

mineral phases), (iii) the lack of selectivity of reagents used in the sequential extractions procedure 6 

and (iv) the possible of readsorption during the protocol. 7 

 8 

4. Conclusions 9 

 10 

 The results of this study, as regards the comparison between the ability of two natural and 11 

biodegradable chelants with a persistent one to solubilize chromium and nickel from a contaminated 12 

soil, can be summarized as follows:  13 

• EDTA and citric acid appear to offer the greatest potential as chelating agents, histidine was 14 

ineffective in mobilizing Cr and Ni from the soil.  15 

• Effectiveness of the chelants for Cr extraction can be classified as: citric acid > EDTA >> 16 

histidine. 17 

• For Ni, the effectiveness order was: EDTA > citric acid > histidine.  18 

• The effectiveness of the chelants, to solubilize Cr and Ni, observed during our experiments is not 19 

directly related to their complexation constants. It could be explained by: (i) their ability to 20 

solubilize the mineral matrix containing the metals (Al, Ca, Mn, Mg and Fe were removed 21 

simultaneously with Cr and Ni by the chelants); (ii) by the competition of the chelating agents with 22 

Cr(VI) on the surface sites. 23 

• In the studied case, a concentration of 0.05 mol.L
-1

 allows having a good compromise between 24 

metals mobilization and preservation the soil mineral integrity.  25 

• After a single extraction with 0.05 mol.L
-1

 of chelant, a potentially remobilizable store of metals 26 

could remain available. The percentage of Cr extracted during the first and the second mobilizations 27 

was similar but decreased for the third. For Ni, the decrease was observed from the second 28 

mobilization on. 29 

• A sequential extraction procedure, carried out before and after the metal extractions showed only 30 

slight modifications due to the low percentage of solubilized metals. 31 

 32 
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Table captions 1 

 2 

Table1: Sequential extractions procedure for 0.5 g of air-dried soil  3 

 4 

Table2: Main physical and chemical properties of the soil  5 

 6 

Table 3: Cr in the soil fractions before and after treatments with chelants 7 

 8 

Table 4: Ni in the soil fractions before and after treatments with chelants 9 

 10 

Table 5: Chelant acidity constants (pKa) and complexation constants (LogKML) with Cr
3+

 and Ni
2+

  11 

 12 

Table 6: Speciation of solubilized Cr after a single extraction (140 h) by the chelants (chelant 13 

concentration 0.05 mol.L
-1

); % Cr was based on total Cr content in soil 14 

 15 

Figure captions 16 

 17 

Figure 1: Extraction of Cr (a) and Ni (b) vs. contact time (chelant concentration 0.01 mol.L
-1

; 5 g 18 

of soil in 50 mL); % Cr was based on total Cr content. Error bars represent the standard deviation of 19 

three samples. 20 

 21 

Figure 2: Cr and Ni extracted vs. chelating agent concentration after a single extraction (% Cr was 22 

based on total Cr content). Error bars represent the standard deviation of three samples. 23 

 24 

Figure 3: Successive extractions of Cr and Ni (E1: first extraction, E2: second extraction, E3: third 25 

extraction); % Cr was based on total Cr content; chelant concentrations 0.05 mol.L
-1

. Error bars 26 

represent the standard deviation of three samples. 27 
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Table 1 1 

Sequential extractions procedure for 0.5 g of air-dried soil 2 

 
Operationally defined 

fractions 
Reagents 

Time and 

sonication power 

R1 "acid extractable" 20 mL AcOH 0.11 mol.L
-1 

7 min-20W 

R2 "reducible" 20 mL NH2OH-HCl 

0.1mol.L
-1

,  

reagent adjusted to pH=2 

with HNO3 

7 min-20W 

R3 "oxidizable" 10 mL H2O2 30% 

25 mL AcONH4 1 mol.L
-1

, 

reagent adjusted to pH=2 

with HNO3 

2 min-20W 

6 min-20W 

R4 "residual" 7.5 mL HNO3 69% +  

2.5 mL HCl 37% 

microwave-

assisted digestion 

 3 
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Table 2 1 

Main physical and chemical properties of the soil 2 

Parameters Values  

Clay (< 2 µm) 

Fine silt (2/20 µm) 

Coarse silt (20/50 µm) 

Fine sand (50/200µm) 

Coarse sand (200/2000 µm) 

Al 

Fe 

Mg 

Ca 

g.kg
-1 

177 

161 

63 

119 

480 

43.1 ± 0.9 

33.6 ± 0.8 

2.6 ± 0.1 

2.2 ± 0.1 

Mn 

Zn 

Cu 

Pb 

Co 

Cr 

Ni 

mg.kg
-1 

921 ± 36 

138 ± 4 

29 ± 2 

87 ± 3 

40 ± 2 

113 ± 10 

280 ± 20 

 3 



 21 

Table 3 1 

Cr and Ni in the soil fractions (mg.kg
-1

) before and after treatments with chelants 2 

 3 

 Treatment extraction 
Fractions  

R1 R2 R3 R4 

Cr 

 
Control 0.081 ± 0.003 0.68 ± 0.02 3.44 ± 0.09 114 ± 39 

EDTA 0.12 ± 0.02 1.33 ± 0.09 2.01 ± 0.32 88.13 ± 0.01 

Citric acid 0.15 ± 0.01 1.13 ± 0.04 2.04 ± 0.33 106 ± 12 

Histidine 0.18 ± 0.02 1.24 ± 0.10 2.5 ± 0.2 96 ± 2 

Ni Control 4.1 ± 0.3 12.6 ± 0.4 12 ± 2 201 ± 20 

EDTA 0.8 ± 0.2 6.6 ± 0.5 8 ± 1 177 ± 12 

Citric acid 0.78 ± 0.01 5.4 ± 0.7 5.8 ± 0.1 148 ± 51 

Histidine 0.58 ± 0.07 4.1 ± 0.7 9 ± 4 155 ± 64 
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Table 4 1 

Chelant acidity constants (pKa) and complexation constants (LogKML
 a

) with Cr
3+

 and Ni
2+ 

2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

nd: no data 15 

a
 KML = [ML]/[M].[L] with L = fully deprotonated ligand and M = metal cation (charges omitted for 16 

simplification) 17 

b
 from Smith and Martell, 1974, 1982; 18 

c
 from Pettit and Powell, 2001; 19 

d
 from Schecher and McAvoy, 2001 20 

Chelant 
pKa

 b 

(T=25°C, I=0.1 M) 

LogKML 

(T = 25°C, I = 0.1 M) 

Cr
3+ 

Ni
2+ 

EDTA 10.17, 6.11, 2.68, 1.5 23.4
 c 

20.1
 c 

Citric acid 5.66, 4.34, 2.90 8.7
 c,d 

6.6
 c 

Histidine 9.08, 6.02, 1.7 nd 16.6
 c 
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Table 5 1 

Elements solubilized by the chelants after a single mobilization (140h) (chelant concentration 0.05 2 

mol.L
-1

) 3 

Soluble metals 
Concentration (µmol.L

-1
) 

EDTA Citric acid Histidine 

Al 

Fe 

Mg 

Ca 

Mn 

7360 ± 82 

4570 ± 76 

564 ± 7 

4360 ± 150 

877 ± 17 

10579 ± 39 

5850 ± 44 

1150 ± 13 

3550 ± 79 

909 ± 12 

82 ± 4 

29 ± 2 

218 ± 2 

788 ± 4 

49 ± 2 

Co 

Cu 

Zn 

Pb 

14.8 ± 0.3 

14 ± 1 

13.09 ± 0.05 

11.8 ± 0.1 

14.1 ± 0.2 

0.94 ± 0.06 

16.8 ± 0.8 

1.01 ± 0.05 

4.7 ± 0.2 

4.9 ± 0.9 

3.6 ± 0.2 

ND 

Cr 

Ni 

8.5 ± 0.3 

26 ± 6 

14 ± 1 

40 ± 5 

1.35 ± 0.02 

17.8 ± 0.8 

ND: not detected 4 
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Table 6 1 

Speciation of solubilized Cr after a single extraction (140 h) by the chelants (chelant concentration 2 

0.05 mol.L
-1

)  3 

Chelant 
CrT after 140 h 

(µg.L
-1

) 

Cr(VI) after 140 h 

(µg.L
-1

) 
%/Cr

a Cr(III) 

(µg.L
-1

) 
%/Cr

a 

Citric acid 

EDTA 

Histidine 

Water 

738 ± 67 

442 ± 16 

70.4± 0,9 

17 ± 1 

186 ± 40 

64 ± 10 

15 ± 3 

ND
b 

1.6 ± 0.3 

0.56 ± 0.09 

0.1 ± 0.03 

- 

552 

378 

55 

- 

4.9 ± 0.3 

3.34 ± 0.09 

0.49 ± 0.03 

- 

a: % Cr was based on total Cr content in soil 4 

b: not detected 5 

 6 
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 27 

Fig. 1. Extraction of Cr (a) and Ni (b) vs. contact time (chelant concentration 0.01 mol.L
-1

; 5 g of 28 

soil in 50 mL); % Cr was based on total Cr content. Error bars represent the standard deviation of 29 

three samples. 30 
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 27 

Fig. 2. Cr (a) and Ni (b) extracted vs. chelating agent concentration after a single extraction (% Cr 28 

was based on total Cr content). Error bars represent the standard deviation of three samples. 29 
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 25 

Fig. 3. Successive extractions of Cr and Ni (E1: first extraction, E2: second extraction, E3: 26 

third extraction); % Cr was based on total Cr content; chelant concentrations 0.05 mol.L
-1

. 27 

Error bars represent the standard deviation of three samples. 28 
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