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Abstract 

Synthetic waxes produced by standard and registered processes may be used to manufacture Warm Mix Asphalt 

(WMA), which is a modified asphalt concrete produced, applied and compacted at temperatures below those typically 

required. This feature leads to environmental benefits, such as reduced energy consumption, gas and fume emissions, as 

well as to economic/operational advantages, such as lower production costs and greater hauling distances for extended 

construction seasons with tighter schedules. The present article serves to compare the mechanical performance of a 

WMA produced by adding synthetic wax with a traditional Hot Mix Asphalt (HMA) specimen, in terms of shear fatigue 

response and both complex and stiffness moduli. The experimental results and related modeling work demonstrate that 

adding synthetic wax into the WMA composition does not hinder either the destructive or non-destructive performance 

of an HMA, and this finding is corroborated by respectively measuring fatigue life and stiffness. 

1. Introduction 

Environmental considerations, focusing on the preservation and protection of natural and working environments, 

have become critical in several areas of civil engineering. In highway engineering for example, research and 

applications with environmentally-friendly materials and techniques have been expanding, and the development of 

Warm Mix Asphalt (WMA) is to be included in this category. The ability to generate asphalt mixtures that reduce 

production and application temperatures also yields a number of environmental benefits [1, 2], along with economic and 

operational advantages. Lower temperatures during asphalt production inevitably lead to reducing CO2/CO2 equivalent 

and fume emissions [3], which in turn guarantees better working conditions and less energy consumption during the 

production phase. The economic and operational benefits encompass: lower production costs, less fuel required for 

production, greater emissions control, potentially longer hauling distances, and extended construction schedules with 

tighter constraints [4]. 
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WMA production proceeds according to several techniques. At present, two main groups of techniques can be 

distinguished: the first uses additives in order to modify asphalt fluidity, while the second group is based on binder 

foaming. The first group uses synthetic soluble organic substances (i.e. waxes), which are able to modify the rheological 

characteristics of asphalt binder by reducing its viscosity at a fixed temperature. The wax influences a temporary 

reversible change in the physical state, as characterized by melting and crystallization [5]. 

The second group of techniques combines preheated binder at 180°C with small amounts of cold water, which 

induces a binder foaming process. In this case, as the water comes into contact with hot bitumen, it turns to steam and 

thus favors a rapid expansion of bitumen in bubble form. This foam increases the specific surface of bitumen and 

reduces its viscosity, leading to a thorough coating of aggregates while lowering the operating temperatures of asphalt 

mixtures [6]. WMA produced using synthetic zeolite is to be included in this second group [7]. 

The synthetic waxes used to produce WMA can be manufactured by means of a Fisher-Tropsch process (FT), which 

is based on the coal gasification of a fine crystalline whose carbon chain ranges in length from C45 to over C100, with a 

melting point between 90° and 100°C. Synthetic waxes differ from macrocrystalline bituminous paraffin, which are 

naturally included in asphalt binder, featuring a carbon chain length in the C25 to C50 range and a melting point between 

45° and 70°C. The longer carbon chains in the FT wax lead to a higher melting point; in contrast, the smaller structure 

reduces brittleness at low temperatures, as opposed to bitumen paraffin waxes [8]. Hence, synthetic waxes can be 

considered as a "binder flow improver"; as such, at temperatures above 120°-130°C, these waxes tend to lower the 

dynamic viscosity of asphalt binder, which then allows decreasing the mixing temperature while maintaining a 

complete aggregate coating. At temperatures below their melting point, synthetic waxes form a crystalline structure in 

the binder, which improves the asphalt mixture stiffness [9]. A traditional binder may be modified by adding synthetic 

waxes directly in the laboratory or asphalt mixing plant, at a rate ranging from 0.8% to 3% by weight of asphalt binder 

[10]. 

The Università Politecnica delle Marche (Italy), in cooperation with the Université de Limoges (France) and the 

University of Wisconsin-Madison (USA), has been involved in a research project on WMA with synthetic wax 

addition. 

Pavements are subjected to fatigue while the surface layers (particularly overlays) undergo cyclic loading due to 

traffic (with shearing as the main source) [11-13]. This study focuses on the primary behavior of WMA used in surface 

layers, in comparison with HMA. The relevant research is also part of the aforementioned project and entails an 

experimental investigation of both destructive and non-destructive mechanical performance, including fatigue resistance 

in a shear configuration and both complex and stiffness moduli, for the purpose of drawing a WMA-HMA mechanical 
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comparison. 

2. Primary goals 

The present study has been undertaken to compare the performance, in terms of shear fatigue behavior, compression 

complex modulus and indirect tensile stiffness modulus, of a WMA containing synthetic wax with a traditional HMA. 

The fatigue tests were conducted on parallelepiped asphalt concrete samples at two temperatures and one frequency, 

while the modulus tests were carried out on conventional cylindrical samples at three temperatures and several loading 

frequencies. The experimental fatigue results were then analyzed by considering two distinct failure criteria, so as to 

derive additional information on possible differences in fatigue response; the first criterion is simply based on a 

reduction in shear modulus, and the second is a mathematical model based on the damage growth trend, according to 

which the inflection point on the damage vs. number of fatigue cycles curve is assumed to be the failure point. 

3. Laboratory experimental program: Materials and testing 

3.1 Materials and sample preparation 

Two types of asphalt concretes, WMA and HMA, were studied by use of a typical gradation curve (see Table 1) for 

binder course hot-mix asphalt concrete, classified as AC 16 bin 70/100, in accordance with the UNI EN 13108-1 

Standard. 

Table 1: HMA and WMA aggregate gradation 

Sieve [mm]  32 16 10 4 2 0.5 0.25 0.063 

% passing by weight  100 95 79 50 33 20 14 6 

 

Limestone aggregates and two asphalt binders, with a binder content equal to 5.2% of the mix, were supplied to 

produce all of the asphalt mixture specimens tested. The HMA mixtures were prepared with a plain 70/100 pen binder; 

the WMA preparation introduced a 70/100 pen binder modified by adding synthetic wax of the Sasobit® type (FT) at a 

rate of 3% by mass of binder. This amount was chosen in order to assess the mechanical effects of adding the highest 

rate suggested by the manufacturer. The asphalt modification step was completed directly in the laboratory by adding 

the wax into the hot binder (at 150°C) and then mixing by means of a portable mixer for 30 minutes. 

Concerning the mixing and compaction temperatures, the HMA samples were mixed at 160°C and compacted at 

150°C, while WMA samples underwent mixing at 120°C and compaction at 110°C. The samples subjected to fatigue 

testing measured 50 mm x 70 mm x 125 mm and were obtained by cutting full asphalt concrete slabs (measuring 305 



 

4 
 

mm × 305 mm × 60 mm) that had been compacted by a roller compactor apparatus run at a preset pressure and number 

of passes. The samples undergoing stiffness characterization were cylindrical (Φ = 100 mm) with heights of 150 mm for 

the compression complex modulus and 60 mm for the indirect tensile stiffness modulus; they were obtained by using a 

Shear Gyratory Compactor (SGC), in accordance with UNI EN 12697-31. All HMA and WMA samples tested were 

measured at an (5 ± 0.7)% air void content to allow for a reliable comparison of mechanical performance. 

3.2 Testing program and instrumentation 

The complex modulus characterization steps were carried out in a compression state using a Dynamic Creep 

Apparatus, in accordance with the NCHRP 9-29: PT 01 procedure. The 150-mm high cylindrical samples were tested 

by setting a sinusoidal load shape under sweep frequency conditions ranging from 0.5 to 20 Hz. All tests were 

performed in a load control mode and three temperatures (0°, 10° and 20°C) were applied. Lastly, the stiffness modulus 

test was conducted in an indirect tensile configuration by introducing a Nottingham Asphalt Tester (NAT) apparatus, in 

accordance with UNI EN 12697-26. The 60-mm high cylindrical samples were tested with a rise time of 1.25 µsec (≈ 2 

Hz) at 0°, 10° and 20°C under a strain control mode capped at 5 µm. For both test samples, a conditioning step ran for 

at least 6 hours before testing, and 5 replicates were tested for each considered mix. 

The fatigue test was carried out using Mechanical Testing System (MTS). A new shear testing apparatus [14] was 

designed and applied within the framework of a joint research project sponsored by the GEMH Laboratory and France's 

Eurovia Research Center located in Mérignac. The Double Shear Test (DST) (i.e. double shear symmetric fatigue test), 

run in shear mode, has been designed to provide reliable tack coat or bituminous concrete material parameters relative 

to localized damage. The test set-up, which was integrated with a closed-loop servo hydraulic feedback system, uses a 

displacement or loading control mode. 

This device is able to perform direct shear tests on asphalt concrete slabs with standard dimensions of 50 mm x 70 mm 

x 125 mm, into which four 10-mm high notches have been cut near the loaded central part (60-mm width), in order to 

generate and guide shear band localization (as shown in Figs. 1 and 2). A scale effect is witnessed for large-sized 

aggregates, and a Bazant Law is assumed to be available for such tests. Larger samples are complicated due to the high 

loading level; in the future therefore, it would be convenient to identify the Bazant Law for this device. A sinusoidal 

load shape at a 10-Hz frequency in a load control mode was introduced and two temperatures, 10° and 20°C, were 

investigated. These loading and temperature parameters are commonly used to simulate loading conditions in pavement 

base layers. In the present study, the stiffness is decreasing due to heating and fatigue, as is the case in standard fatigue 

studies on asphalt materials. For each mixture, a total of six samples were tested at 10°C and four at 20°C. Data 

measured on the evolution of shear modulus, phase angle and relative displacement vs. number of cycles/time were 
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collected and then analyzed. 
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Figure 1: Double Shear Test Device 

 

Figure 2:  Representation of the shear band (in red) between both notches 
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4. Data generation: Modeling of measurement data 

The fatigue response of asphalt mixes may be interpreted by considering various failure criteria [15-17]. In this 

work, fatigue test results have been derived by examining two failure criteria, called here the "50% reduction in 

modulus" and the "flex point model". The first criterion assumes that failure during the fatigue life occurs when the 

initial stiffness has decreased by 50%. In contrast, the flex point model is based on a mathematical analysis that 

considers fatigue as a gradual and continuous evolution of damage inside the asphalt concrete specimen. The beginning 

of a fatigue test is characterized by a decreasing rate of evolution in a selected fatigue parameter followed by a gradual 

increase up until failure. The evolution rate is ascribed a zero value at the flex (or inflection) point, which can thus be 

assumed as the point of failure. 

This model, initially introduced by Virgili et al. [18], has been further developed using the Matlab software for 

application to DST fatigue results. This model is mainly based on the assumption that damage grows everywhere within 

the shear band (see Fig. 2). Damage can thus be described through a dimensionless scalar variable D, whose value 

ranges from 0 (undamaged material) to 1 (complete failure). In this study, it is assumed [13] that microdamage is 

localized within a band between opposite notches. The band length is denoted c and remains unchanged during the 

damage phase; moreover, c is decreasing as macrocracks are growing at the end of the test. According to such an 

approach, a band model with surface damage dissipation (instead of volumetric dissipation) has been considered. 

Consequently, a relatively uniform distribution of shear stress in the band may be assumed. The behavior of the joint is 

given by (1): 

 uKs ⋅= *
0τ  (1) 

where τ is the peak of mean shear stress in the band, and u is the peak of relative band displacement,  *
0sK  is the 

undamaged complex shear stiffness. Then during the test, the complex shear stiffness is decreasing in the same time 

damage is increasing and displacement is increasing; only shear stresses stay constant. 

With this approach, the effective shear modulus of a damaged material can be defined according to (2) as: 

 )1(*
0

* DKK ss −⋅=  (2) 

where *
0sK  is the complex shear stiffness of undamaged material, as measured during the fatigue test in a shear 

configuration. 

Damage evolution  
t

D
D

∂
∂=& can now be described by a power law, as written in Equation (3): 



 

7 
 

 βα DD ⋅=&  (3) 

where α and β are variable material parameters. 

Starting with this equation, it is possible to obtain a relationship between the damage factor D and number of fatigue 

cycles N, as represented in Equations (4) and (5), where Rk is a parameter that takes non-equidistant acquisition data 

into account: 

 ( ) ( ) ( )[ ] βββ −−
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Parameter  β  influences the damage law through material behavior. All values potentially assumed by parameter β may 

be divided into four main cases, but the only important case for the fatigue failure criterion is when β equals zero. In 

fact, β = 0 identifies the flex point where the damage evolution rate as a function of number of cycles reverses its trend 

[18, 19]. This unanimously determined point has been adopted as the failure criterion. 

The proposed model applied to the fatigue test considers that β is a progressive function of the number of fatigue cycles 

N, as reported in (6): 

 2
7 8 9k k kN Nβ χ χ χ= + ⋅ + ⋅  (6) 

where βk is the kth value of parameter β, corresponding to the kth fatigue cycle nk, while χ7, χ8 and χ9 are regression 

parameters. 

Regarding *
sK , the following well-known sigmoidal function [20] was selected to describe shear modulus evolution 

from one fatigue cycle to the next: 

 
( )[ ]T

s af
K

loglogexp1
log *

+⋅−+
+=

γψ
ζδ  (7) 

Where  δ the logarithm of the minimum modulus value, ζ the difference between logarithms of maximum and minimum 

modulus values, and ψ and γ are shape parameters. The correlation between the load frequencies and shift factor is 

described in (8): 

 
Tfict aff logloglog =−  (8) 
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where f is the measured load frequency, ffict the reduced frequency value and aT the shift factor, which has been 

determined herein by considering the classical Williams-Landel-Ferry (WLF) Equation [21]. 

The final equation applied can then be written as follows (9): 
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Equation (9) corresponds to equation (2) written for the k-th load cycle. Varying the value of the k index, equation (9) 

allows the construction of the effective shear modulus curve for the damaged material, corresponding to the damage D 

given by equation (4) for the same load cycle. Details related to the theoretical formulation of the analytical model 

introduced in equation (9) have been presented in a previous work [18]. 

In order to solve this equation, an additional parameter denoted Din+1 was introduced. In imposing a damage value at the 

beginning of the test equal to 0, the damage factor value of Din+1 is assumed to be an iterative parameter. Moreover, the 

model regression parameters (i.e. δ, ζ, ψ, γ, C1, C2, χ7, χ8, χ9 and Din+1) can now be iteratively obtained by minimizing 

the sum of squared errors between experimental data and model values. 

Experimental results for the complex modulus derived by use of the Dynamic Creep Apparatus were evaluated with 

the well-known master curve criterion. The sigmoidal model depicted in (7) was chosen to model the measurement data. 

5. Results and comments 

5.1 Fatigue behavior 

Experimental fatigue data can be represented in terms of relative displacement peak (v) and dissipated energy (DE) 

vs. the number of cycles to failure. 

Moreover, classical linear laws in bi-log scale, of the type v = a(Nf)
b and DE = c(Nf)

d, have been selected as fatigue 

laws, in which Nf is the number of cycles to failure, as defined by a 50% reduction in modulus and the flex point model, 

where a, b, c and d are material parameters. The fatigue line and related parameters are therefore able to describe the 

fatigue life behavior of a predefined asphalt mixture. Differences in initial shear modulus were verified at both test 

temperatures, with WMA samples always showing a slightly higher stiffness than the verified HMA samples. Such 

differences might depend on the crystallization of synthetic wax at temperatures below the melting point, a supposition 

that would ascribe an added stiffness to the asphalt mixture (as also verified in previous studies on WMAs [7, 9]). 
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The dissipated energy criterion is well known to interpretations conducted in asphalt concrete mechanics [22]; for 

this study, the proposed formula is introduced in Equation (10): 

 θτπ sin⋅⋅⋅= uDEn  (10) 

where DEn is the dissipated energy [in J/mm²] within the band corresponding to the nth cycle, τ the peak of shear stress , 

v the peak of relative displacement, and θ the phase angle.  

An attempt to omit the direct dependence of fatigue response on temperature has been based on combining the 

experimental data collected at both test temperatures with measured results fit at 10° and 20°C by means of a 

conventional power law. The first fatigue dataset was generated by considering a 50% reduction in modulus value as the 

failure criterion; Figures 3 and 4 show the final results obtained in terms of peak of relative displacement and dissipated 

energy of the undamaged material (25th cycle) vs. number of cycles to failure. 

In examining Figure 3, several conclusions can be drawn. A linear law seems to be reliable for interpreting the 

measurement data collected at various test temperatures. The R2 correlation parameters are high enough for both 

mixtures tested, as reported in Table 2. As for the HMA-WMA comparison, slight differences in fatigue responses can 

be observed. It thus seems that HMA and WMA fatigue responses depend on the initial deformation level applied, 

hence on the initial stiffness properties (as has been corroborated by a previous study [9]). This trend can also be 

remarked when simply considering the measured experimental data in Figure 3. By focusing on Table 2 however, it can 

be seen that fatigue law parameters "a" and "b" are very similar. In contrast, Figure 4 and Table 2 indicate that a linear 

law is able to fit fatigue results, in terms of dissipated energy vs. fatigue cycles to failure, at various temperatures with 

better reliability. In fact, correlation values in this case exceed 0.9 for both mixtures considered. HMA-WMA 

differences are more pronounced, especially when considering fatigue responses at low levels of dissipated energy, at 

which point WMA appear to behave better than HMA. For high dissipated energy levels, WMA and HMA fatigue laws 

are very similar. These slight differences in fatigue laws are more noticeable in Table 2, where the gaps in parameters 

"c" and "d" between mixes are greater than those verified with the shear relative displacement; these findings also 

depend on the different value ranges considered for DE. This initial data presentation reveals the possibility of 

representing fatigue laws for asphalt mixtures in two distinct ways when considering measurement data generated from 

different test temperatures. Lastly, in light of these initial results, it would seem that adding synthetic wax to produce 

WMA and the corresponding lower working temperatures do not undermine the shear fatigue response of a traditional 

HMA. 
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Figure 3: Fatigue responses, as measured by relative displacement vs. cycles to failure with a 50% reduction in modulus 

 

Figure 4: Fatigue responses, as measured by dissipated energy vs. cycles to failure with a 50% reduction in modulus 
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Table 2: Fitting parameters for power fatigue laws (failure with a 50% reduction in modulus) 

Mixture  R2 a b y-axis 

HMA  0.8974 0.0285 -0.161 relative 

displacement WMA  0.9189 0.0265 -0.153 

Mixture  R2 c d y-axis 

HMA  0.9681 0.1106 -0.330 
dissipated 

energy WMA  0.9648 0.1052 -0.322 

 

Measurement data were then analyzed by applying the flex point model in order to define new fatigue failure points 

and compare the corresponding fatigue responses with those found above. As previously mentioned, the model was 

implemented using the Matlab software; Figures 5 through 7 offer an example of typical analytical results plotted for an 

individual fatigue test. 

 

   K* 

N  
Nf 

s

 

Figure 5: Evolution in shear modulus (Ks*) vs. number of cycles (N), with experimental data fitted by the model 
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N  

D 
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Figure 6: Typical evolution of parameter D vs. number of cycles (N) 
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Figure 7: Typical evolution of parameter β  vs. number of cycles (N) 

Figure 7 displays a classical evolution in parameter β, which in the proposed model proves fundamental to 

determining the actual flex point, which has been proposed here as the fatigue failure point. When β equals 0, the 

corresponding related number of cycles is considered as the number to failure. 

Figures 8 and 9 depict fatigue laws that consider the flex point model criterion. 

 

Figure 8: Fatigue responses, viewed as relative displacement vs. cycles to failure with the flex point model 
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Figure 9: Fatigue responses, viewed as dissipated energy vs. cycles to failure with the flex point model 

 

Table 3: Fitting parameters for power fatigue laws (failure with the flex point model) 

Mixture  R2 a b y-axis 

HMA  0.9752 0.0371 -0.183 relative 

displacement WMA  0.9898 0.0311 -0.166 

Mixture  R2 c d y-axis 

HMA  0.9921 0.1664 -0.365 
dissipated 

energy WMA  0.9908 0.1333 -0.341 

 

In evaluating Figure 8, it can readily be observed that a power law applied with the flex point model offers great 

reliability when interpreting measured data collected at various test temperatures. Correlation parameters R2 are greater 

than 0.9, which indicates a very good correlation between measured data and the classical linear fatigue law. Moreover, 

in comparing Tables 2 and 3 for the purpose of plotting in relative displacements, a good similarity in material 

parameters yet with different correlation values can be seen. This finding allows stating that a fatigue life representation 

is more reliable when applying the flex point model, even though parameters "a" and "b" are very similar for both 

failure criteria and both mixtures. By plotting results in terms of relative displacement and then changing the failure 

criterion, the material parameters of both mixtures therefore maintain very similar and comparable values. As displayed 

in Figures 3, 4, 8 and 9 differences in response can be detected for low initial loading levels. In comparing HMA and 

WMA responses, parameters "c" and "d" slightly differ; in particular, the gap in parameter "c" is characterized by a 

factor of roughly 1.25. Hence, the differences in material responses are distinct and seem to depend on the level of 

dissipated energy. As can be verified in figure 3, 4, 8 and 9, WMA appears to perform better at low energy levels, while 

a similar performance can be observed for HMA at higher energy levels. 

Lastly, Tables 4 and 5 below list detailed results of the flex point model application, along with a number of 

comparisons between the two failure criteria proposed herein. 
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Table 4: Detailed modeling results for samples tested at 10°C 

Sample code  
Test temp. 

[°C] 
R2 Nf(50%) Nf(flexmode) % *

0sK [flexmod] 

HMA 2-7  10 0.984 14,235 12,914 54.6 

HMA 2-5  10 0.973 38,744 31,203 58.5 

HMA 1-2  10 0.960 66,153 54,692 59.0 

HMA 2-3 

HMA 1-5 

 10 

10 

0.956 

0.972 

127,752 

579,821 

113,799 

409,743 

54.8 

63.5 

HMA 1-4  10 0.921 2,413,967 1,704,769 61.6 

WMA 2-5  10 0.965 12,245 13,371 46.8 

WMA 1-5 

WMA 2-6 

WMA 1-1 

 

10 

10 

10 

0.970 

0.955 

0.980 

30,565 

82,078 

174,355 

24,337 

69,473 

142,733 

57.9 

56.7 

58.5 

WMA 3-8  10 0.983 895,815 665,587 58.4 

WMA 1-2  10 0.978 2,568,015 1,555,693 65.5 
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Table 5: Detailed modeling results for samples tested at 20°C 

Sample code  
Test temp. 

[°C] 
R2 Nf(50%) Nf(flexmode) % *

0sK flexmode] 

HMA 1-1  20 0.988 26,930 47,264 37.9 

HMA 1-3  20 0.991 70,444 128,681 39.6 

HMA 2-6  20 0.982 125,991 191,919 40.5 

HMA 1-7  20 0.996 1,235,019 1,008,732 43.1 

WMA 3-4 

WMA 3-5 

WMA 3-1 

 

20 

20 

20 

0.987 

0.989 

0.977 

97,651 

132,674 

306,786 

147,451 

228,553 

577,281 

40.8 

39.9 

35.6 

 

From these two tables, several findings can be drawn. The correlations between the model proposed in this work and 

experimental results are very strong across all individual test data processed, as seen by the R2 values (in excess of 0.9). 

This outcome allows concluding that the proposed model seems to be characterized by a great reliability when 

interpreting the shear fatigue results of asphalt concretes at different test temperatures. The values labeled as Nf(50%) 

and Nf(flexmode) are the number of cycles to failure determined, respectively, by a 50% reduction in modulus and by 

the flex point model, while % *
0sK  [flexmode] is the ratio in percent between the modulus referred to in Nf, flex point, 

and the initial modulus value. A comparison between the two failure criteria employed now becomes possible. The 

temperature effects on the mixture can be evaluated by comparing the number of fatigue cycles to failure with the 

corresponding reduction in modulus value. Let's remark that the flex point model identifies various failure points 

besides those determined by a 50% reduction in modulus. At 10°C, the proposed model identifies fatigue failure before 

that identified by the 50% modulus reduction, with the direct consequence being that failure occurs whenever the 

reduction in stiffness is less than 50%, except in one case (WMA 2-5). The opposite arises for data recorded at 20°C, 

for which the modeled failure points are located after that expected by the 50% modulus reduction, with the direct 

consequence of failure occurring for a stiffness reduction of more than 50%. The results listed in Tables 4 and 5 thus 

highlight in detail the differences in fatigue failure between the two adopted criteria. Given that the 50% modulus 

reduction is a failure criterion based solely on a pre-established reduction, hence on a conventional test point, the 

proposed model reveals itself to be more highly correlated with the entire material response during testing. 
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5.2 Stiffness characterization 

Stiffness characterization involves both the compression complex modulus (E*), as evaluated with respect to the 

master curve by the sigmoidal model introduced above, and the indirect tensile stiffness modulus (ITSM). 

Figure 10 shows the various mixture responses through the measurement data and related master curves. 
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1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03
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Figure 10: Complex modulus: HMA-WMA measurement data and master curves 

As seen in Figure 10, the complex modulus responses of both asphalt mixtures are correlated with the reduced 

frequency and hence to the test temperatures being considered. This dependence is noticeable for both the measurement 

data and the final master curves derived using 10°C as the reference temperature. The master curves describe how an 

asphalt mixture behaves in terms of complex modulus vs. frequency, in omitting the direct dependence on temperature. 

The extra stiffness of WMA over a wide range of reduced frequencies above 1 Hz can be observed, thus indicating a 

mechanical response very similar to what was identified during other experimental studies [23]. However, WMA seems 

to lose stiffness at frequencies lower than 1 Hz, i.e. where WMA values lie closer to HMA. Around 0.1 Hz, an 

intersection is found between master curves, all of which exhibit practically the same response; moreover, a trend 

towards stiffness gap reduction is noticed for reduced frequency values above 100 Hz. The temperature sensitivity of 

mixtures is apparent when examining individual measurement data: at frequencies of less than 1 Hz, HMA shows 

higher modulus values than WMA, whose behavior can be recorded for an individual experimental dataset at 20°C. 

Table 6 lists all sigmoidal model parameters, whose values (except for δ) of the mixtures tested remain quite similar. 

In addition, R2 values are high, and this finding exhibits a strong model results - experimental data correlation. 

Master curve WMAMaster curve HMA
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Table 6: Sigmoidal model parameters for master curves (Tref. = 10°C) 

Mixture code  δ ζ
 

Ψ γ R2 

HMA  0.0937 4.577 -1.858 0.420 0.985 

WMA  0.3939 4.187 -2.033 0.530 0.978 

 

Table 7: ITSM: HMA-WMA measurement data 

Mixture   HMA   WMA  

Temperature [°C]  0 10 20 0 10 20 

ITSM [MPa]  17571 11215 5694 18947 10766 4753 

Std. dev. [MPa]  1346 1053 680 1566 469 318 
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Figure 11: ITSM: HMA-WMA measurement data 

Figure 11 and table 7 present the experimental stiffness data recorded using an indirect tensile configuration. The 

experimental data displayed in Figure 11 suggest that HMA and WMA stiffnesses are strictly correlated with test 

temperature. A decrease in stiffness occurs in both mixtures as temperature increases. When comparing Figures 10 and 

11 and under similar test conditions, it is obvious that the applied load configuration plays a remarkable role in the 

stiffness response of both mixtures, as revealed in the mechanical performance of an asphalt mixture being higher in 

compression than in indirect tension. The additional WMA stiffness only appears at 0°C, as the warm samples tend to 
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increase in stiffness around the 10% level. The opposite occurs at other temperatures, where WMA exhibits a decrease 

in modulus around 4% at 10°C, and then around 15% at 20°C. As also observed in the compression configuration at low 

frequencies, WMA stiffness properties show visible temperature sensitivity. Because all samples tested, whether HMA 

or WMA, were very close to 5% air void content, the measured additional WMA stiffness at low temperatures can only 

be correlated with the presence of synthetic wax. Once crystallized, the wax serves to add stiffness to any asphalt binder 

or mixture, and this finding can be verified during testing at predefined loading frequencies and temperatures. 

6. Conclusion 

This research program has studied the mechanical properties, in terms of shear fatigue and stiffness, of both WMA 

by adding synthetic wax and HMA for the purpose of drawing comparisons with one another. Samples of both mixes, 

with the same gradation and asphalt content, a different shape and a very similar air void content, were tested under 

various test conditions regarding test configuration, loading frequency and test temperature. Fatigue results were 

analyzed using two failure criteria: a 50% reduction in modulus, and the flex point model. The final responses were 

depicted relative to shear relative displacement and dissipated energy vs. number of cycles to failure. Moreover, 

stiffness properties were assessed with respect to compression complex modulus master curves and indirect tensile 

stiffness modulus values. 

In light of the range of results obtained and reported above, the following conclusions can be drawn: 

- Good overall reliability from the use of various failure criteria, as well as different representations and the 

classical power fatigue laws have all been verified by analyzing fatigue data obtained with two test 

temperatures. The proposed model, defined as the "flex point model", has proven to be an effective 

mathematical tool for interpreting shear fatigue data. An array of result representations, including relative 

displacement and dissipated energy vs. number of cycles to failure, can yield different model-experimental 

result correlations, thus leading to differing reliable responses for the given failure criterion; however, both 

failure criteria may be utilized to interpret fatigue results at various test temperatures; 

- The proposed fatigue representations, shown as WMA fatigue responses relative to both experimental data 

points and fatigue regression parameters, are very similar to those identified for traditional HMA, with 

differences depending on the criterion used and, more generally, on the relative displacement or dissipated 

energy level considered. Some noteworthy WMA-HMA differences have been found for the dissipated energy 

vs. cycles to failure parameter by applying the flex point model, for which the WMA seems to behave better. 

Moreover, the change in fatigue criteria implies a change in fatigue law parameters. The addition of synthetic 

wax does not therefore seem to degrade the fatigue behavior of an asphalt mixture; 
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- Stiffness characterization revealed differences relative to both loading frequency and temperature. WMA 

exhibited an added stiffness compared to HMA, especially at higher reduced frequencies and/or lower 

temperatures, as also verified in subsequent studies. This additional stiffness stems from the synthetic wax, 

which adds "stability" to an asphalt binder and consequently to the asphalt mixture due to its crystallized form. 
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