Optimization of ZnO/Ag/ZnO multilayer electrodes obtained by Ion Beam Sputtering for optoelectronic devices
Résumé
We investigated the electrical and optical properties of ZnO/Ag/ZnO multi-layer electrodes obtained by ion beam sputtering for flexible optoelectronic devices. This multi-layer structure has the advantage of adjusting the layer thickness to favor antireflection and the surface plasmon resonance of the metallic layer. Inserting a thin (Ag) metallic layer between two (ZnO) oxide layers decreases the sheet resistance while widening the optical transmittance window in the visible. We found that the optimal electrode is made up of a 10 nm thin Ag layer between two 35 nm and 20 nm thick ZnO layers, which resulted in a low sheet resistance (Rsq = 6 Ω/square), a high transmittance (T ≥ 80% in the visible) and the highest figure of merit of 1.65 × 10-2 square/Ω.