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A new method for solving Pareto eigenvalue
complementarity problems

Samir Adly · Hadia Rammal

Abstract In this paper, we introduce a new method, called the Lattice Projection
Method (LPM), for solving eigenvalue complementarity problems. The original prob-
lem is reformulated to find the roots of a nonsmooth function. A semismooth New-
ton type method is then applied to approximate the eigenvalues and eigenvectors
of the complementarity problems. The LPM is compared to SNMmin and SNMFB,
two methods widely discussed in the literature for solving nonlinear complementar-
ity problems, by using the performance profiles as a comparing tool (Dolan, Moré
in Math. Program. 91:201–213, 2002). The performance measures, used to analyze
the three solvers on a set of matrices mostly taken from the Matrix Market (Boisvert
et al. in The quality of numerical software: assessment and enhancement, pp. 125–
137, 1997), are computing time, number of iterations, number of failures and max-
imum number of solutions found by each solver. The numerical experiments high-
light the efficiency of the LPM and show that it is a promising method for solving
eigenvalue complementarity problems. Finally, Pareto bi-eigenvalue complementar-
ity problems were solved numerically as an application to confirm the efficiency of
our method.
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Complementarity functions · Semismooth Newton Method · Lattice Projection
Method · Bi-eigenvalue complementarity problems

Dedicated to Jonathan Borwein in honor of his 60th birthday.

S. Adly (�) · H. Rammal
XLIM UMR-CNRS 7252, Université de Limoges, 87060 Limoges, France
e-mail: samir.adly@unilim.fr

H. Rammal
e-mail: hadia.rammal@xlim.fr

1



1 Introduction

Since the last three decades, the subject of complementarity problems has become
one of the most well-established disciplines within mathematical programming. Due
to its various applications in engineering, economics and sciences, it is not surpris-
ing that many researchers have focused their attention on developing both theoretical
results and efficient numerical methods for solving these problems (see the exhaus-
tive survey [11]). Among these problems, we focus, in our study, on the Eigenvalue
Complementarity Problems (EiCP), also called, cone-constrained eigenvalue prob-
lems [1, 18–20, 32, 33, 36, 38, 39] that are considered as nonlinear optimization
problems. These problems consist to find a scalar (eigenvalue) and a nonzero vector
(eigenvector) satisfying a complementarity relation over a closed convex cone in a
finite-dimensional space. This case recovers the classical eigenvalue problem when
the closed convex cone coincides with the whole space. The Pareto-eigenvalue prob-
lems correspond to the case when the closed convex cone coincides with the positive
orthant R

n+. A wide variety of applications in sciences and engineering require the nu-
merical computation of the solutions of EiCP such as the dynamic analysis of struc-
tural mechanical systems, vibro-acoustic systems, electrical circuit simulation, signal
processing, fluid dynamic, contact problem in mechanics (see for instance [24–28]).
In some applications, the knowledge of eigenvalues can avoid the instability and un-
wanted resonance for a given system. In mechanical structures for example, eigen-
values are closely related to resonance frequency and to the stability analysis of the
corresponding dynamical systems. The computation of eigenvalues becomes crucial
in order to be located and damped eigenvalues corresponding to unstable modes or
involving large vibrations (see [42]).

The theoretical spectral analysis is now well-developed (see [32]), while the con-
struction of robust and efficient algorithms, for solving EiCP, needs further investiga-
tion. Note that the number of Pareto-eigenvalues grows exponentially with the dimen-
sion of the problem, for example, a matrix of order 25 may have more than 3 million
Pareto-eigenvalues. Therefore, finding the whole Pareto-spectrum of a medium or a
large size matrix is not an easy task. Recently, S. Adly and A. Seeger [1] reformu-
lated the EiCP as an equivalent nonsmooth system of equations, by using the Non-
linear Complementarity Functions (NCP-functions) φmin and φFB, and then applied
the corresponding Semismooth Newton Method (SNMmin and SNMFB). The major
contribution of this paper is to introduce a new method, namely the Lattice Projection
Method (LPM for short), for solving EiCP. This method is not based on the comple-
mentarity approach since it does not use any NCP-functions. The LPM is compared
to SNMmin and SNMFB by using the performance profiles as a comparison tool [10]
and the numerical experiments highlight that the LPM solver is efficient and robust.
We have also studied under which conditions all the elements of the Clarke general-
ized Jacobians ∂Φ(z∗) defined in (18) and ∂ΦLPM(z̃∗) defined in (25) at solutions z∗
and z̃∗ of (17) and (24), respectively, are nonsingular.

The structure of this paper is as follows. In the next section, some theoretical re-
sults related to EiCP are briefly discussed. In Sect. 3, we establish a short description
of the Semismooth Newton Method by presenting the algorithm and its convergence
theorem. Moreover, we reformulate the EiCP as an equivalent nonsmooth system
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of equations, by using the Nonlinear Complementarity Functions (NCP-functions)
φmin and φFB. The new method, called Lattice Projection Method (LPM), for solving
EiCP is discussed in Sect. 4. In Sect. 5, we study the nonsingularity conditions of
the Clarke generalized Jacobians ∂Φ(z∗) and ∂ΦLPM(z̃∗) defined in (18) and (25),
respectively. Some examples are discussed to illustrate this regularity concept. We
provide, in Sect. 6, some numerical results related to some matrices of order 3, 4
and 5 (known to have the maximum number of Pareto-eigenvalues). In Sect. 7, we
give some extensive numerical tests showing that the LPM is extremely robust and
very effective. Performance profiles and data, mostly taken from the Matrix Mar-
ket [3], are used to analyze the performance of the three algorithms: LPM, SNMmin
and SNMFB. Computing time, number of iterations, number of failures and maxi-
mum number of eigenvalues found by each solver are used as performance measures
to compare these algorithms. In Sect. 8, we show that the LPM can be generalized to
solve the bivariate Eigenvalue Complementarity problems (bi-EiCP) [38]. Numeri-
cal results are then reported to confirm the efficiency and the robustness of the LPM.
Finally, in Sect. 9, we close up the paper with a conclusion.

2 Pareto eigenvalue complementarity problems

For a real matrix A ∈ Mn(R) of order n, the eigenvalue complementarity problem
EiCP associated to the Pareto cone R

n+ is defined as follows:
{

find λ ∈ R and x ∈ R
n \ {0}, such that

x ≥ 0, λx − Ax ≥ 0, 〈x,λx − Ax〉 = 0.
(1)

The scalar λ and the vector x satisfying system (1) are respectively called a Pareto-
eigenvalue of A and an associated Pareto-eigenvector. The set of all eigenvalues is
called the Pareto-spectrum of A, and it is defined by

σ(A) = {
λ ∈ R : ∃x ∈ R

n \ {0}, 0 ≤ x ⊥ (λx − Ax) ≥ 0
}
.

The following result, due to A. Seeger in [38], fully characterized the Pareto-spectrum
of (1).

Lemma 1 [38] The scalar λ is a Pareto-eigenvalue of A if and only if there exist a
nonempty index set I ⊆ N = {1, . . . , n}, and a vector η ∈ R

|I | such that

AIη = λη, η ∈ int
(
R

|I |
+
)
, (2)∑

j∈I

aij ηj ≤ 0, ∀i ∈ N \ I, (3)

where AI ∈ M|I |(R) denotes the principal submatrix of A which is obtained by delet-
ing the ith row and the ith column of A, whenever i /∈ I . In this case, the vector
x ∈ R

n given by

xi =
{

ηi if i ∈ I,

0 if i ∈ N \ I.

is a Pareto-eigenvector of A associated to the eigenvalue λ.
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Remark 1 This lemma shows that solving the EiCP is equivalent to solve 2n −1 clas-
sical eigenvalue subproblems involving the sub-matrices AI and select only the solu-
tions satisfying the condition (3). This result can be used to find all Pareto-eigenvalues
of a matrix A of small order n.

The Pareto capacity of the space Mn(R), is defined by

πn = max
A∈Mn(R)

card
[
σ(A)

]
,

where card[σ(A)] is the cardinality of the Pareto-spectrum of A. As proved in
[32, 40], one has

3
(
2n−1 − 1

)≤ πn ≤ n2n−1 − (n − 1), (4)

which shows that the number of eigenvalues grows exponentially with respect to
the dimension n. We have π1 = 1, π2 = 3 while π3 is either 9 or 10. We note also
for example that π20 ≥ 1 572 861 and that obtaining an explicit formula for πn or
improving the lower and the upper bounds in (4) are open questions. The lower bound
in (4) is not sharp. In fact, the matrix A2 of order 4 (given in Sect. 6) has 23 Pareto-
eigenvalues, which means that π4 ≥ 23, while the lower bound in (4) gives π4 ≥ 21.

In many applications, the Pareto-eigenvalue λ is assumed to be > 0 (see for ex-
ample [18–20]). In the rest of the paper, we will assume that λ > 0. By shifting the
matrix A, it is possible to find nonpositive Pareto-eigenvalues.

3 The Semismooth Newton Method SNM

We start this section by reminding the reader some basic tools from nonsmooth anal-
ysis, and some basic properties of the Semismooth Newton Method (SNM). For more
details, we refer to [34, 37, 43] and references therein.

Consider a mapping Φ : R
n → R

n supposed to be locally Lipschitz. The
B-subdifferential of Φ at a point z ∈ R

n is defined by

∂BΦ(z) =
{
M ∈ Mn(R) : ∃(zk) ⊂ DΦ : zk → z and lim

k→+∞∇Φ(zk) = M
}
,

where DΦ is the set of differentiability points of Φ . The Clarke generalized Jacobian
[5] of Φ is given by

∂Φ(z) = co ∂BΦ(z), (5)

where “co” stands for the convex hull of the set ∂BΦ(z).
The function Φ is said to be semismooth [29, 37] at z ∈ R

n if it is locally Lipschitz
around z, directionally differentiable at z and satisfies the following condition

sup
M∈∂Φ(z+h)

∥∥Φ(z + h) − Φ(z) − Mz
∥∥= o

(‖h‖). (6)

If we replace o(‖h‖) by O(‖h‖2) in (6), then Φ is said to be strongly semismooth
at z.
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We note that semismooth functions are between Lipschitz continuous func-
tions and continuously differentiable functions. For example, the Euclidean norm
and piecewise differentiable functions are semismooth. Therefore, the functions
φ : R

2 → R, (x1, x2) �→ φmax(x1, x2) = max(x1, x2), φmin(x1, x2) = min(x1, x2) and

φFB(x1, x2) = x1 + x2 −
√

x2
1 + x2

2 are semismooth.
Given a locally Lipschitz function Φ : R

n → R
n, we consider the following non-

linear system of equations

Φ(x) = 0Rn . (7)

We note that many problems in engineering and sciences can be formulated as (7).
Next, we present the standard algorithm of the Semismooth Newton Method SNM,

which will be used later.

Algorithm SNM
Initialization. Choose an initial point z0 and set k = 0.
Iteration.1 One has a current point zk . Choose Mk ∈ ∂Φ(zk) and compute hk

by solving the linear system

Mkhk = −Φ
(
zk
)
. (8)

Then, set zk+1 = zk + hk and k = k + 1.
To ensure that the linear system (8) admits a unique solution, the matrix Mk must

be nonsingular. Furthermore, the following theorem gives some conditions to ensure
the convergence of the above algorithm [37].

Theorem 1 Let z̄ be a zero of the function Φ . Suppose the following

(i) Φ is semismooth (resp. strongly semismooth) at z̄;
(ii) all matrices in ∂Φ(z̄) are nonsingular.

Then, there exists a neighborhood V of z̄ such that the SNM initialized at any z0 ∈ V

generates a sequence (zk)k∈N that converges superlinearly (resp. quadratically) to z̄.

Remark 2 Theoretical convergence results of the semismooth Newton method are
ensured under the crucial assumption (ii) that all generalized Jacobian are nonsingular
at the solution z̄. From a computational point of view, the rate of convergence of the
SNM will also depend on the conditioning number of the matrices in ∂Φ(z) when z

is around z̄.

As a first step towards a reformulation of the EiCP defined in (1), as a system of
equations, we write

x ≥ 0, y ≥ 0, 〈x, y〉 = 0, λx − Ax − y = 0, 〈1n, x〉 − 1 = 0,

(9)

1As stopping criteria, we use ‖Φ(zk)‖ < 10−8.
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where 1n is a vector of ones. The last condition in (9) is used to ensure that x is a
nonzero vector. One can also use some other normalization conditions as ‖x‖2

2 = 1.
Using the NCP-functions, it is possible to write the first three conditions in (9) in

the form Uφ(x, y) = 0Rn where Uφ : R
n × R

n → R
n is the vector function defined

by

Uφ(x, y) =
⎡
⎢⎣

φ(x1, y1)
...

φ(xn, yn)

⎤
⎥⎦ ,

and φ : R
2 → R is a NCP-function, i.e.

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (10)

More precisely, we are led to solve the following system of 2n + 1 equations

Uφ(x, y) = 0Rn , (11)

λx − Ax − y = 0Rn , (12)

〈1n, x〉 − 1 = 0. (13)

In this paper, we focus on the NCP-functions, the most widely used in the literature,
namely the Fischer-Burmeister (FB) function [12] and the natural residual function
[14, 31], also called the min function, defined respectively by

φFB(a, b) = a + b −
√

a2 + b2, (14)

φmin(a, b) = min(a, b). (15)

We note that other NCP-functions [7, 22, 35] can be treated in the same way.
Consider the vector function Φ : R

n × R
n × R → R

2n+1, z = (x, y,λ) �−→
Φ(x,y,λ) defined by

Φ(z) = Φ(x,y,λ) =
⎡
⎣ Uφ(x, y)

λx − Ax − y

〈1n, x〉 − 1

⎤
⎦ . (16)

Therefore, the EiCP can be reformulated as a system of nonlinear and nonsmooth
equations, i.e. (x, y,λ) is a solution of problem (1) if and only if

Φ(x,y,λ) = 0R2n+1 . (17)

Lemma 2 The function Φ defined in (16) is semismooth with φ being one of the NCP-
functions φmin or φFB. Moreover, its Clarke generalized Jacobian at z = (x, y,λ) is
given by

∂Φ(z) =
⎧⎨
⎩
⎡
⎣ E F 0

λIn − A −In x

1T
n 0 0

⎤
⎦ : [E,F ] ∈ ∂Uφ(x, y)

⎫⎬
⎭ , (18)

with In representing the identity matrix of order n.
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E = diag(a1, . . . , an), F = diag(b1, . . . , bn) ∈ Mn(R) are diagonal matrices
whose ith diagonal element is given by the following two cases:

case 1: if φ = φFB, then, for i = 1, . . . , n,
⎧⎪⎪⎨
⎪⎪⎩

ai = 1 − xi

‖(xi, yi)‖
bi = 1 − yi

‖(xi, yi)‖
if (xi, yi) �= (0,0), (19)

and {
ai = 1 − ξi

bi = 1 − ρi

if (xi, yi) = (0,0), (20)

for every (ξi, ρi) ∈ R
2 such that ‖(ξi, ρi)‖ ≤ 1.

case 2: if φ = φmin, then, for i = 1, . . . , n,
⎧⎪⎨
⎪⎩

ai = 0, bi = 1 if xi > yi,

ai = 1, bi = 0 if xi < yi,

ai = αi, bi = 1 − αi, if xi = yi such that αi ∈ [0,1].
(21)

Proof The proof of (18) is given in [1] while the proofs of (19), (20) and (21) can be
found in [30]. �

4 The Lattice Projection Method (LPM)

In this section, we introduce a new formulation of the EiCP which leads us to solve
a nonlinear and nonsmooth system of (2n + 1) equations involving the same num-
ber of variables. The originality of this formulation, in comparison with the existing
literature, is that it is not based on the complementarity approach, i.e. we do not use
any NCP-functions. We transform the EiCP to find the eigenvalues of a nonlinear
problem. The following lemma is in this sense. Without loss of generality, we will
assume in the sequel that λ > 0. If the matrix A has a nonpositive eigenvalue λ < 0,
we set Ã = A + μIn with μ > 0 and large enough. It is easy to see, in this case that
the spectrum σ(Ã) ⊂ R

∗+.

Lemma 3 The EiCP defined in (1) with λ > 0 is equivalent to find the roots of the
following nonlinear and nonsmooth function f : R

n × R
∗+ → R

n defined by

(x,λ) �−→ f (x,λ) = (Ax)+ − λx, (22)

where (Ax)+ = max(Ax,0) is the positive componentwise.

Proof Suppose λ > 0 and x ∈ R
n \ {0}. EiCP defined in (1)

0 ≤ x ⊥ (λx − Ax) ≥ 0
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is equivalent to the following problem

min(x,λx − Ax) = 0,

where the min is taken componentwise. Since λ > 0, we have the following

min(x,λx − Ax) = 0 ⇐⇒ min(λx,λx − Ax) = 0

⇐⇒ max(−λx,Ax − λx) = 0

⇐⇒ max(Ax,0) = λx,

which completes the proof. �

Remark 3 Lemma 3 showed that

0 ≤ x ⊥ (λx − Ax) ≥ 0 ⇐⇒ (Ax)+ = λx,

which means that the EiCP is equivalent to solve the nonlinear eigenvalue problem

(PR
n+ ◦ A)(x) = λx,

where PR
n+ is the projection operator over R

n+.

In the rest of this section, we are led to solve the following system of 2n + 1
equations ⎧⎪⎨

⎪⎩
ỹ+ − λx = 0Rn ,

Ax − ỹ = 0Rn ,

〈1n, x〉 − 1 = 0.

We use the normalization condition 〈1n, x〉 = 1 to ensure that x is a nonzero eigen-
vector.

Let us consider the following function ΦLPM : R
n × R

n × R → R
2n+1 defined by

ΦLPM(x, ỹ, λ) =
⎡
⎣ ỹ+ − λx

Ax − ỹ

〈1n, x〉 − 1

⎤
⎦ . (23)

It is clear that solving EiCP is equivalent to solving the nonlinear system

ΦLPM(x, ỹ, λ) = 0R2n+1 . (24)

We will use the SNM Algorithm presented in Sect. 3 to solve the generalized equation
(24). This method will be called Lattice Projection Method (LPM). In Sects. 6 and 7,
the LPM will be compared to SNMFB and SNMmin.

The following lemma gives a brief description of the representation of the Clarke
generalized Jacobian of ΦLPM.
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Lemma 4 The function ΦLPM, defined in (23), is semismooth. Moreover, its Clarke
generalized Jacobian at z̃ = (x, ỹ, λ) is given by the following block representation

∂ΦLPM(z̃) =
⎧⎨
⎩
⎡
⎣−λIn F̃ −x

A −In 0
1T
n 0 0

⎤
⎦ : F̃ ∈ ∂ (·)+(ỹ)

⎫⎬
⎭ , (25)

where F̃ = diag(u1, . . . , un) ∈ R
n×n is a diagonal matrix whose ith diagonal element

is given by

ui = 1 + Sign(ỹi)

2
=

⎧⎪⎨
⎪⎩

1 if ỹi > 0,

[0,1] if ỹi = 0,

0 if ỹi < 0.

(26)

Proof Follows immediately by using Theorem (Chain Rule II) in [5]. �

5 Nonsingularity conditions

In this section, we study under which conditions all the elements of the Clarke gener-
alized Jacobians ∂Φ(z∗) defined in (18) and ∂ΦLPM(z̃∗) defined in (25) at solutions
z∗ and z̃∗ of (17) and (24), respectively, are nonsingular.

We begin first by fixing some notations that will be used later.
The index set {1,2, . . . , n} will be abbreviated by the capital letter I . If M =

(mij ) ∈ Mn(R) is a matrix and J , K ⊆ I , then MJ K denotes the submatrix in
M|J |,|K|(R) with elements mij , i ∈ J , j ∈ K.

We recall that a matrix M ∈ Mn(R) is a P-matrix if all its principal minors are
strictly positive. Furthermore, M is a P-matrix if and only if for every nonzero vector
x ∈ R

n \ {0}, there exist an index i ∈ I such that xi �= 0 and xi[Mx]i > 0.
Let us now introduce the function F : R

n × R
n × R → R

2n+1 defined by

z = (x, y,λ) �−→ F(z) =
⎡
⎣ y

λx − Ax − y

〈1n, x〉 − 1

⎤
⎦ .

It is easy to see that F is of class C1.

Proposition 1 Any H ∈ ∂Φ(z), with φ being one of the NCP-functions φmin or φFB,
can be written in the form

H = Da + DbF
′(z), (27)

where Da,Db ∈ M2n+1(R) are two positive semidefinite diagonal matrices defined
by

Da = diag(ai)1≤i≤2n+1 and Db = diag(bi)1≤i≤2n+1,

whose ith diagonal element being one of the two cases mentioned above in (19), (20)
and (21) for all i = 1, . . . , n and ai = 0, bi = 1 for i = n + 1, . . . ,2n + 1.
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Proof Let H ∈ ∂Φ(z). By Lemma 2, we have

H =
⎡
⎣ E F 0

λIn − A −In x

1T
n 0 0

⎤
⎦ .

On the other hand, we have

F ′(z) =
⎡
⎣ 0 In 0

λIn − A −In x

1T
n 0 0

⎤
⎦ . (28)

Hence, from these equalities and using [21, Proposition 2.6], the statement of the
proposition follows easily and we get

H = Da + DbF
′(z). �

To deal with the nonsingularity of all Clarke generalized Jacobian in ∂Φ(z∗) at a
solution z∗ = (x∗, y∗, λ∗), let us introduce some notations.

The function G : R
n × R → R

n+1 is defined by

w = (x,λ) �−→ G(w) =
[

λx − Ax

〈1n, x〉 − 1

]
. (29)

We set

w∗ = (
x∗, λ∗),

and

J = Δa + ΔbG
′(w∗), (30)

where Δa = diag(a1, . . . , an,0R), Δb = diag(b1, . . . , bn,1) two diagonal matrices of
Mn+1(R) with (x∗

i , y∗
i ) = (x∗

i , (λ∗x∗ − Ax∗)i) at a solution z∗ = (x∗, y∗, λ∗) and
G′(w∗) is given by

G′(w∗)=
[
λI∗

n − A x∗

1T
n 0

]
. (31)

We note that

λ∗Δa = Δλ∗a,

where

λ∗a = (
λ∗a1, λ

∗a2, . . . , λ
∗an

)
.

We set

J̃ = Δλ∗a + ΔbG
′(w∗). (32)

The following standard index sets will be used:

α := {
i ∈ {1, . . . , n, n + 1} : w∗

i > 0 = Gi

(
w∗)},
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β := {
i ∈ {1, . . . , n, n + 1} : w∗

i = 0 = Gi

(
w∗)},

γ := {
i ∈ {1, . . . , n, n + 1} : w∗

i = 0 < Gi

(
w∗)}.

Proposition 2 Let z∗ = (x∗, y∗, λ∗) be a fixed root of Φ defined in (16) with w∗ =
(x∗, λ∗). If the submatrix G′(w∗)αα is nonsingular and its Schur-complement

G′(w∗)
ββ

− G′(w∗)
βα

G′(w∗)−1
αα

G′(w∗)
αβ

is a P-matrix, then the Jacobians J and J̃ defined respectively in (30) and (32) are
nonsingular matrices.

Proof It is easy to see that the EiCP is equivalent to the following system

{
find w ∈ R

n+1 \ {0}, such that

w ≥ 0, G(w) ≥ 0, 〈w,G(w)〉 = 0,
(33)

where G is given by (29).
The desired result follows immediately from Lemma 5.3 in [7] or Theorem 2.8

in [21]. �

Theorem 2 Assume that z∗ = (x∗, y∗, λ∗) is a fixed root of Φ and set w∗ = (x∗, λ∗).
Then the Jacobian J defined in (30) is nonsingular if and only if all elements H in
∂Φ(z∗) are nonsingular.

Proof Let H ∈ ∂Φ(z∗) and let X = (p, q, r) ∈ R
n × R

n × R be an arbitrary vector
such that

HX = 0R2n+1 . (34)

The previous equation (34) can be written explicitly as

⎡
⎣ E F 0

λ∗In − A −In x∗

1T
n 0 0

⎤
⎦
⎡
⎣p

q

r

⎤
⎦=

⎡
⎣0Rn

0Rn

0R

⎤
⎦ ,

where E and F are defined in Lemma 2. Therefore,

Ep + Fq = 0Rn , (35)

(
λ∗In − A

)
p − q + rx∗ = 0Rn , (36)

〈1n,p〉 = 0. (37)

Using (36), we have

q = (
λ∗In − A

)
p + rx∗. (38)
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Consequently, (35) becomes

Ep + F
(
λ∗In − A

)
p + rFx∗ = 0Rn . (39)

Therefore, {
Ep + F

(
λ∗In − A

)
p + rFx∗ = 0Rn ,

〈1n,p〉 = 0,

which can be rewritten in the following matricial form
[
E + F(λ∗In − A) Fx∗

1T
n 0

][
p

r

]
=
[

0Rn

0R

]
. (40)

By setting Y = (p, r) ∈ R
n × R, it is clear that (40) is equivalent to

JY = 0Rn+1 . (41)

Hence,

HX = 0R2n+1 ⇐⇒
{

JY = 0Rn+1,

q = (
λ∗In − A

)
p + rx∗.

The desired conclusion of Theorem 2 follows immediately from the last equiva-
lence. �

The following theorem gives nonsingularity conditions of the generalized Jacobian
of ΦLPM.

Theorem 3 Assume that z̃∗ = (x∗, ỹ∗, λ∗) is a fixed root of ΦLPM defined in (23) and
set w∗ = (x∗, λ∗). Then the Jacobian J̃ defined in (32) is nonsingular if and only if
all elements in ∂ΦLPM(z̃∗) are nonsingular.

Proof Let H̃ ∈ ∂ΦLPM(z̃∗) and let X = (p, q, r) ∈ R
n × R

n × R be an arbitrary
vector such that

H̃X = 0R2n+1 . (42)

The previous equation (42) can be written explicitly as
⎡
⎣−λ∗In F̃ −x∗

A −In 0
1T
n 0 0

⎤
⎦
⎡
⎣p

q

r

⎤
⎦=

⎡
⎣0Rn

0Rn

0R

⎤
⎦ ,

where F̃ is defined in Lemma 4. Therefore,

−λ∗p + F̃ q − rx∗ = 0Rn , (43)

Ap − q = 0Rn , (44)

〈1n,p〉 = 0. (45)

12



Using (44), we have

q = Ap. (46)

Consequently, (43) becomes

(
λ∗In − F̃A

)
p + rx∗ = 0Rn . (47)

Therefore, {(
λ∗In − F̃A

)
p + rx∗ = 0Rn,

〈1n,p〉 = 0.
(48)

Notice that E + F = In where E = diag(a1, . . . , an), F = diag(b1, . . . , bn) ∈ Mn(R)

are diagonal matrices whose ith diagonal element is given by (21) and φmin being the
min function defined in (15). Therefore, (48) becomes

{
λ∗Ep + (

λ∗F − F̃A
)
p + rx∗ = 0Rn ,

〈1n,p〉 = 0.
(49)

Since y∗ = λ∗x∗ − Ax∗, then we get ỹ∗ = Ax∗ = λ∗x∗ − y∗. Hence, F̃ =
diag(u1, . . . , un) whose ith diagonal element is given by

ui =

⎧⎪⎨
⎪⎩

1 if λ∗x∗
i > y∗

i ,

[0,1] if λ∗x∗
i = y∗

i ,

0 if λ∗x∗
i < y∗

i .

(50)

Recall that F = diag(b1, . . . , bn) is defined by

bi =

⎧⎪⎨
⎪⎩

1 if x∗
i > y∗

i ,

[0,1] if x∗
i = y∗

i ,

0 if x∗
i < y∗

i .

(51)

Using the complementarity approach

0 ≤ x∗ ⊥ y∗ ≥ 0,

and the fact that λ∗ > 0, we get

0 ≤ λ∗x∗ ⊥ y∗ ≥ 0 and x∗
i = 0 or y∗

i = 0.

Therefore,

F̃ = F.

We note also that we have obviously

Fx∗ = x∗ (since E + F = In).
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Consequently, (49) becomes
{

λ∗Ep + F
(
λ∗In − A

)
p + rx∗ = 0Rn ,

〈1n,p〉 = 0,
(52)

which can be rewritten in the following matricial form
[

Ẽ + F(λ∗In − A) Fx∗

1T
n 0

][
p

r

]
=
[

0Rn

0R

]
, (53)

where Ẽ = λ∗E. By setting Y = (p, r) ∈ R
n × R, it is clear that (53) is equivalent to

J̃ Y = 0Rn+1 . (54)

Hence,

H̃X = 0R2n+1 ⇐⇒
{

J̃ Y = 0Rn+1,

q = Ap.

The desired conclusion of Theorem 3 follows immediately from the last equiva-
lence. �

In order to illustrate the above results, we consider the following examples.

Example 1 Consider the following matrix

A =
[

8 −1
3 4

]
.

Using Lemma 1, it is easy to see that λ∗ = 4 is a solution of the EiCP with x∗ =
(0,1)T as an associated eigenvector. We set

z∗ = (0,1,1,0,4)T , z̃∗ = (0,1,−1,4,4),

and we show that z∗ (respectively z̃∗) is a “good solution” of the nonlinear equation
Φ(z) = 0 defined in (17) (respectively ΦLPM(z̃) = 0 defined in (24)).

A direct application of Proposition 2 yields

G′(w∗)=
⎡
⎣−4 1 0

−3 0 1
1 1 0

⎤
⎦ and

G′(w∗)
αα

=
[

0 1
1 0

]
(which is a nonsingular matrix),

with w∗ = (0,1,4)T , α = {2,3}, β = ∅ and γ = {1}.
Hence, the first condition of Proposition 2 is satisfied and so is the second, since

β is empty. Consequently, J and J̃ are nonsingular matrices and so are H and H̃ (by
Theorems 2 and 3).

14



On the other hand, a direct calculation of the Jacobian matrix H ∈ ∂Φ(z∗) shows
that it is nonsingular and is given by

H =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 1 0

−4 1 −1 0 0
−3 0 0 −1 1
1 1 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

with φ being one of the NCP-functions φmin or φFB.
Moreover, we have

F̃ = F =
[

0 0
0 1

]
,

where ỹ∗ = Ax∗ = (−1,4)T . A direct calculation of the Jacobian matrix H̃ ∈
∂ΦLPM(z̃∗) shows that it is nonsingular and is given by

H̃ =

⎡
⎢⎢⎢⎢⎣

−4 0 0 0 0
0 −4 0 1 −1
8 −1 −1 0 0
3 4 0 −1 0
1 1 0 0 0

⎤
⎥⎥⎥⎥⎦ .

Example 2 Let

B =
⎡
⎣ 15 −2 0

−11 9 −1
6 −10 23

⎤
⎦ .

Lemma 1 ensures that λ∗ = 23 is a solution of EiCP associated to B with x∗ =
(0,0,1)T as an eigenvector. In this case, y∗ = λ∗x∗ − Bx∗ = (0,1,0)T and ỹ∗ =
Bx∗ = (0,−1,23)T . We set

z∗ = (0,0,1,0,1,0,23)T , z̃∗ = (0,0,1,0,−1,23,23)T ,

and we show that z∗ (respectively z̃∗) is a “good solution” of the nonlinear equation
Φ(z) = 0 (respectively ΦLPM(z̃) = 0). A direct application of Proposition 2 yields

G′(w∗)=

⎡
⎢⎢⎣

8 2 0 0
11 14 1 0
−6 10 0 1
1 1 1 0

⎤
⎥⎥⎦ and

G′(w∗)
αα

=
[

0 1
1 0

]
(which is a nonsingular matrix),

with w∗ = (0,0,1,23)T , α = {3,4}, β = {1} and γ = {2}. Moreover, the Schur-
complement of G′(w∗)αα ,

G′(w∗)
ββ

− G′(w∗)
βα

G′(w∗)−1
αα

G′(w∗)
αβ

= 8 − [
0 0

][0 1
1 0

][−6
1

]
= 8 > 0,
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is obviously a P-matrix. Hence, J and J̃ are nonsingular and so are H and H̃ by
Theorems 2 and 3. On the other hand, a direct calculation of the Jacobian matrix H ,
with φmin being the min function defined in (15), yields

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ 0 0 1 − δ 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
8 2 0 −1 0 0 0
11 14 1 0 −1 0 0
−6 10 0 0 0 −1 1
1 1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where δ ∈ [0,1]. The determinant of H is given by

det(H) = 8 − 7δ.

We note that H is nonsingular since δ ∈ [0,1].
Similarly, the determinant of the Jacobian matrix H̃

H̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−23 0 0 δ 0 0 0
0 −23 0 0 0 0 0
0 0 −23 0 0 1 −1
15 −2 0 −1 0 0 0

−11 9 −1 0 −1 0 0
6 −10 23 0 0 −1 0
1 1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

is given by

det(H̃ ) = −23(23 − 15δ).

Hence, H̃ is nonsingular since δ ∈ [0,1].
Example 3 Let

C =
[

1 −1
0 1

]
.

Analogously to the two examples above, using Lemma 1, λ∗ = 1 is a solution of EiCP
associated to C with x∗ = (1,0)T as an eigenvector, y∗ = λ∗x∗ − Cx∗ = (0,0)T and
ỹ∗ = Cx∗ = (1,0)T . We show that

z∗ = (1,0,0,0,1)T and z̃∗ = (1,0,1,0,1)T

are “bad solutions”. A direct calculation of H ∈ ∂Φ(z∗) shows that it is not always
nonsingular. If we take the NCP-function φmin defined in (15), we get

H =

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
0 δ 0 1 − δ 0
0 1 −1 0 1
0 0 0 −1 0
1 1 0 0 0

⎤
⎥⎥⎥⎥⎦ ,
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where δ ∈ [0,1]. We have

det(H) = −δ,

which means that H is nonsingular if and only if δ ∈ ]0,1].
In the same way, since

det(H̃ ) = 1 − δ,

where δ ∈ [0,1], and

H̃ =

⎡
⎢⎢⎢⎢⎣

−1 0 1 0 1
0 −1 0 δ 0
1 −1 −1 0 0
0 1 0 −1 0
1 1 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

then the Jacobian matrix H̃ is nonsingular if and only if δ ∈ [0,1[.
On the other hand, using Proposition 2, we get

G′(w∗)=
⎡
⎣0 1 1

0 0 0
1 1 0

⎤
⎦ and

G′(w∗)
αα

=
[

0 1
1 0

]
(which is a nonsingular matrix),

with α = {1,3}, β = {2} and γ = ∅. However, since the Schur-complement of
G′

αα(w∗) is equal to zero, it is not a P-matrix. Then, the second condition of Propo-
sition 2 is not satisfied.

6 Testing on matrices of order 3, 4 and 5

The first numerical experiment will be given by taking matrices of order 3, 4 and 5
that are known to have 9, 23 and 57 Pareto-eigenvalues, respectively.

A1 =
⎡
⎣ 5 −8 2

−4 9 1
−6 −1 13

⎤
⎦ , A2 =

⎡
⎢⎢⎣

132 −106 18 81
−92 74 24 101
−2 −44 195 7
−21 −38 0 230

⎤
⎥⎥⎦

and

A3 =

⎡
⎢⎢⎢⎢⎣

788 −780 −256 156 191
−548 862 −190 112 143
−456 −548 1308 110 119
−292 −374 −14 1402 28
−304 −402 −66 38 1522

⎤
⎥⎥⎥⎥⎦ .
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Table 1 Comparison of the three solvers on the matrices A1, A2 and A3

Methods A1 A2 A3

Iter Time Failure (%) Iter Time Failure (%) Iter Time Failure (%)

LPM 4 0.0003 0 6 0.0006 0 7 0.0004 0

SNMFB 8 0.0012 5 10 0.0015 16 11 0.0014 31

SNMmin 2 0.0003 47 2 0.0008 71 2 0.0007 95

We compare LPM, SNMFB and SNMmin by computing the number of iterations, the
CPU-time and the number of failures.

Remark 4 In our case, a failure is declared if the Jacobian matrix is ill-conditioned
or in the SNM, the number of iterations exceeded 100.

The comparison results are summarized in Table 1 where “Iter” denotes the aver-
age iterative number,“Time” denotes the average CPU-time and “Failure (%)” repre-
sents the percentage of the number of failures to find a solution for (EiCP).

We have used 105 random initial points, in order to obtain the 57 Pareto-
eigenvalues of A3 simultaneously by the three solvers. We note that LPM finds all
eigenvalues of A3 by using only 103 random initial points.

Conclusion As a first numerical experiment, it is clear that the LPM captures our
attention by comparing the percentage of failures of each solver since it has the least
percentage. We can also observe that the number of iterations of the SNMFB is high
compared to the two others.

In the next section, we confirm our result by enlarging the set of tested examples.
Moreover, we will compare the CPU time of the three solvers, since for the moment,
LPM and SNMmin have almost the same computing time.

7 Numerical results

In this section, we compare the three solvers that have been defined in Sects. 3 and 4,
namely LPM, SNMFB and SNMmin. In order, to complete this experience, we choose
the performance profiles developed by E.D. Dolan and J.J. Moré [6, 10] as a tool for
comparing the solvers. The performance profiles give, for each t ∈ R, the proportion
ρs(t) of test problems on which each solver under comparison has a performance
within the factor t of the best possible ratio.

Computing time, number of iterations, number of failures and maximum number
of eigenvalues found by each solver are used as performance measures to compare
these algorithms.

Due to the absence of library dedicated to EiCP, we have chosen a set P of 100
matrices, most of them are taken from the Matrix Market [3], with size less than 350.
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Fig. 1 Performance profiles
where tp,s is the average
computing time (Color figure
online)

Fig. 2 Performance profiles
where tp,s is the maximum
number of solutions (Color
figure online)

Let S be the set of the three solvers that will be compared and ns the number of
solvers. The performance ratio is defined by

rp,s = tp,s

min{tp,s : s ∈ S} ,

where p ∈ P , s ∈ S, and tp,s is either

• the average CPU time required to solve problem p by solver s corresponding to
Fig. 1, or

• the maximum number of solutions corresponding to Fig. 2, or
• the number of failures (in the sense of Remark 4) corresponding to Fig. 3, or
• the average iterative number corresponding to Fig. 4.

The performance of the solver s ∈ S is defined by

ρs(t) = 1

np

size {p ∈ P : rp,s ≤ t},
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Fig. 3 Performance profiles
where tp,s is the number of
failures (Color figure online)

Fig. 4 Performance profiles
where tp,s is the average
iterative number (Color figure
online)

where, np is the number of problems, and t is a real factor. In this case, ρs(t) is the
probability, for solver s ∈ S, that the performance ratio rp,s is within a factor t ∈ R

of the best possible ratio. For more details, we refer to [10].
Thanks to the performance profile plot, one can compare how well a solver can

perform relative to the other by taking in consideration the four criteria listed above.
The value of ρs(1) gives the probability that the solver s will win over the two others,
while ρs(t), for large value of t , measures the robustness of the solver s.

The numerical experiments are carried out in a Powerbook Mac OS 10.6.8 with a
processor 2.33 GHz Intel Core 2 Duo and 2 Go memory. All the program codes are
written and executed in Matlab 7.7.

Figures 1, 2, 3, and 4 show the performance profiles of each solver and a detailed
description of the tested problems is given.

Figure 1 presents the performance profiles of the three solvers corresponding to the
average computing time. We observe that the LPM is efficient and robust. In fact, in
the interval [0,1], LPM can solve 99 % of the problems, while SNMFB and SNMmin
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do not reach 40 % and require a long running time. SNMFB has a lower number of
wins than either LPM and SNMmin. However, for t ≥ 2, the three solvers confirm
their robustness.

Figure 1 also indicates that relative to the computing time, with the same initial
points and under the same stopping criterion, LPM is the fastest solver, followed
respectively by SNMmin and SNMFB.

In Fig. 2, the performance ratio represents the maximum number of solutions
found by each solver. We remark that the LPM is the winner, it is able to solve 99 %
of the problems and detects the maximum number of Pareto-eigenvalues. SNMFB has
a lower number of wins than either LPM or SNMmin but its performance increases
with the growth of the factor t .

The LPM captures our attention in Fig. 3, with its ability to solve over 99 %
of problems. Performance ratio represents here the number of failures to solve
each problem by each solver (see Remark 4). Another point of interest is that
the number of failures giving by SNMmin is important than the other solvers. We
conclude again that the LPM is the winner followed respectively by SNMFB and
SNMmin.

In Fig. 4, performance ratio displays the average iterative number for each solver.
It is clear that SNMmin has the most wins, followed by LPM and SNMFB. We observe
that the performance of LPM becomes interesting when t ≥ 2.

We conclude that LPM confirms again its efficiency, robustness and its abil-
ity to solve EiCP. By comparing the three solvers on a set of problems with re-
spect to the computing time, number of iterations, number of failures and max-
imum number of found eigenvalues, LPM performs better than the two other
solvers.

8 Applications to Pareto bivariate Eigenvalue Complementarity Problems
(bi-EiCP)

We define, in this section, the so-called, bivariate Eigenvalue Complementarity
Problems (bi-EiCP for short), in the case of Pareto cones. Surprisingly, the numerical
simulations for this subject have never been studied. We propose to generalize the
LPM, defined in Sect. 4, and to use the same tools mentioned in the previous sec-
tion as performance measures to compare our method with SNMFB and SNMmin for
solving bi-EiCP.

8.1 The classical bi-Eigenvalue Problems (bi-EiP)

Let A,B,C and D be real matrices of order n× n, n×m, m× n and m×m, respec-
tively. The classical unconstrained bivariate Eigenvalue Problem is defined by

(bi-EiP)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

find a pair (λ,μ) ∈ R × R, (x, y) ∈ R
n × R

m, such that

Ax + By = λx

Cx + Dy = μy

‖x‖ = ‖y‖ = 1.

(55)
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The problem (55) can be rewritten in the equivalent form

{
Ez = Λz,

‖zi‖ = 1, i = 1,2,
(56)

where

E =
[

A B

C D

]
, Λ := diag{λIn,μIm} and z =

[
z1
z2

]
=
[
x

y

]
.

Bi-EiP arises in many fields of applied mathematics and engineering [23, 41].
They are necessary for the understanding of the constrained bi-EiCP. Bi-EiP was first
studied by Hotelling in a brief paper [16] in 1935. His definitive study of the prob-
lem appeared one year later in [17] and still stands as a key reference in multivariate
statistical literature. In 1961, an iterative method, proposed by Horst [15], has been
used for solving bi-EiP. Three decades later, Chu and Watterson [4] proved the con-
vergence of Horst’s iterative method. Among recent contributions of bi-EiP, we can
cite [13] and references therein. In this section, we propose the use of SNM to solve
bi-EiCP.

8.2 Pareto bi-Eigenvalue Complementarity Problems

For real matrices A ∈ Mn(R), B ∈ Mn,m(R), C ∈ Mm,n(R) and D ∈ Mm(R), the
bi-EiCP associated to the Pareto cones (Rn+,R

m+) is written as follows:

⎧⎪⎨
⎪⎩

find (λ,μ) ∈ R × R and (x, y) ∈ R
n \ {0} × R

m \ {0}, such that

x ≥ 0, λx − Ax − By ≥ 0, 〈x,λx − Ax − By〉 = 0,

y ≥ 0, μy − Cx − Dy ≥ 0, 〈y,μy − Cx − Dy〉 = 0.

(57)

The couple (λ,μ) ∈ R × R is called the Pareto-bi-eigenvalue of the block structured
matrix E.

In [2], A. Amri and A. Seeger generalize Lemma 1 to solve bi-EiCP. They charac-
terized the Pareto-bi-eigenvalue (57). The following Lemma is in this sense.

Lemma 5 [2] Given a pair (λ,μ) ∈ R×R, the following statements are equivalent:

(i) Problem (57) has a nonzero solution (x, y) ∈ R
n × R

m.
(ii) There are index sets I ⊆ N = {1, . . . , n} and J ⊆ M = {1, . . . ,m} such that

{
AIIξ + BIJη = λξ

CJIξ + DJJη = μη
(58)

has a solution (ξ, η) ∈ R
|I |+|J | satisfying the interiority conditions

ξ ∈ int
(
R

|I |
+
)
, η ∈ int

(
R

|J |
+
)

(59)
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and the binding conditions
∑
k∈I

aikξk +
∑
l∈J

bilηl ≤ 0, ∀ i ∈ N \ I, (60)

∑
k∈I

cjkξk +
∑
l∈J

djlηl ≤ 0, ∀ j ∈ M \ J. (61)

Furthermore, (x, y) can be constructed from (ξ, η) by setting

xi =
{

ξi if i ∈ I,

0 if i ∈ N \ I,
and yj =

{
ηj if j ∈ J,

0 if j ∈ M \ J.
(62)

Without loss of generality, we will assume that λ,μ > 0. In the same manner as
EiCP, as a first step towards a reformulation of bi-EiCP as a system of equations, we
write

x ≥ 0, y ≥ 0,

u ≥ 0, v ≥ 0,

uT x = 0, vT y = 0,

λx − Ax − By − u = 0, μy − Cx − Dy − v = 0,

〈1n, x〉 − 1 = 0, 〈1m,y〉 − 1 = 0.

Using NCP-functions, the first three conditions above can be rewritten in the succinct
form Uϕ(x,u) = 0 and Vϕ(y, v) = 0, where Uϕ : R

2n → R
n and Vϕ : R

2m → R
m are

respectively given by

Uϕ(x,u) =
⎡
⎢⎣

ϕ(x1, u1)
...

ϕ(xn,un)

⎤
⎥⎦ , Vϕ(y, v) =

⎡
⎢⎣

ϕ(y1, v1)
...

ϕ(ym, vm)

⎤
⎥⎦ .

Here, ϕ is one of the NCP-functions (14) or (15).
In short, we are led to solve the following system of d = 2(n + m + 1) equations

Φ(z) = 0Rd ,

where Φ : R
d → R

d is a locally Lipschitz function defined by

Φ(z) = Φ(x,u, y, v,λ,μ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Uϕ(x,u)

Vϕ(y, v)

λx − Ax − By − u

μy − Cx − Dy − v

〈1n, x〉 − 1

〈1m,y〉 − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (63)
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Lemma 6 The Clarke generalized Jacobian of Φ at z = (x,u, y, v,λ,μ) is given by

∂Φ(z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

E1 F1 0 0 0 0
0 0 E2 F2 0 0

λIn − A −In −B 0 x 0
−C 0 μIm − D −Im 0 y

1T
n 0 0 0 0 0
0 0 1T

m 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (64)

with [E1,F1] ∈ ∂Uϕ(x,u) and [E2,F2] ∈ ∂Vϕ(y, v), where E1, F1, E2 and F2 can
be computed in the same way as in Lemma 2.

8.3 Lattice Projection Method applied to bi-EiCP

In this section, we reformulate the bi-EiCP into a system of nonlinear equations. The
following lemma is in this sense.

Lemma 7 Solving bi-EiCP is equivalent to find the roots of the following nonlinear
and semismooth function ΦLPM : R

d → R
d defined by

ΦLPM(z) = ΦLPM(x,u, y, v,λ,μ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

u+ − λx

Ax + By − u

v+ − μy

Cx + Dy − v

〈1n, x〉 − 1
〈1n, y 〉 − 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (65)

The Clarke generalized Jacobian of ΦLPM at z = (x,u, y, v,λ,μ) is given by

∂ΦLPM(z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−λIn E3 0 0 −x 0
A −In B 0 0 0
0 0 −μIm F3 0 −y

C 0 D −Im 0 0
1T
n 0 0 0 0 0
0 1T

m 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (66)

where E3 ∈ ∂(·)+(u) and F3 ∈ ∂(·)+(v) (see Lemma 4).

8.4 Numerical experiments for solving bi-EiCP

Similarly to Sect. 7, we study here the following three solvers:

(i) SNMFB, where Φ : R
d → R

d is defined in (63) and ϕ is the Fischer-Burmeister
function (14),

(ii) SNMmin, where Φ is defined in (63) and ϕ is the min-function (15),
(iii) The generalization of the LPM, where ΦLPM is defined in (65).
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Fig. 5 Performance profiles
where tp,s is the average
computing time (Color figure
online)

Fig. 6 Performance profiles
where tp,s is the number of
failures (Color figure online)

For the comparison, we may use computing time, number of failures, maximum
number of solutions and number of iterations as performance measures. Due to the
long time required for the simultaneous execution of solvers, we restrict our analysis
to a set of 80 matrices for solving bi-EiCP.

In Fig. 5, LPM captures our attention since it has the most wins and it does not
require a long running time to solve bi-EiCP. Relative to the computing time, LPM is
the fastest solver, followed respectively by SNMFB and SNMmin.

Figure 6 represents the performance profiles of the three solvers with respect to the
number of failures. We observe that LPM is able to solve 99 % of problems, whereas
SNMmin has a lower number of wins.

In Fig. 7, LPM confirms its ability to detect the maximum number of solutions.
We also note that the performance of SNMmin is lower.

In Fig. 8, we compare the number of iterations corresponding to the common set
of eigenvalues of each problem for the three solvers. With respect to this criterion, the
performance of LPM and SNMmin are very close, while SNMFB has a lower number
of wins. We note that when t ≥ 0.5, the three solvers are comparable.
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Fig. 7 Performance profiles
where tp,s is the maximum
number of solutions (Color
figure online)

Fig. 8 Performance profiles
where tp,s is the average
iterative number (Color figure
online)

Fig. 9 Performance profiles of
A+ and SNMFB where tp,s is
the average iterative number
(Color figure online)
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Due to the difference of the performance between (LPM, SNMFB) and SNMmin,
with respect to the maximum number of solutions (see Fig. 7), the performance given
in Fig. 8 for the three solvers does not reach 86 %.

In Fig. 9, we represent only the performance profiles of LPM and SNMFB corre-
sponding to the average iterative number. We note that both solvers solve 95 % of
problems.

It is clear that, in this figure, the number of iterations of SNMFB is more important
than LPM. SNMFB needs more iterations to solve each problem. LPM has the most
wins, the robustness of the two solvers is confirmed when t ≥ 0.6.

9 Concluding remarks

In this paper, we proposed a new algorithm, namely the Lattice Projection Method
(LPM), for solving Eigenvalue Complementarity Problems and bi-Eigenvalue Com-
plementarity Problems. This method is compared to SNMmin and SNMFB, two al-
gorithms widely discussed in the literature for solving nonlinear complementarity
problems. The performance profiles assessment, evaluated on more than 100 bench-
mark datasets, indicate the efficiency and the robustness of the LPM. It would be
interesting to consider the globalization of the LPM and compare it to other solvers
like PATH-solver [8, 9]. This is out of the scope of this paper and will probably be
the subject of a future project of research. Another forthcoming work will involve the
extension of the proposed algorithm to the second order cone (also called the Lorentz
cone).
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