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1. Introduction. Initiated by the seminal work of Aumann [START_REF] Aumann | Markets with a continuum of traders[END_REF], models to study equilibria in games with a large number of players have become a important research line in the fields of Economics and Applied Mathematics. In this direction, Mean Field Games (MFG) models were recently introduced by J-M. Lasry and P.-L. Lions in [START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF][START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Mean field games[END_REF] in the form of a new system of Partial Differential Equations (PDEs). Under some assumptions, the solution of this system captures the main properties of Nash equilibria for differential games with a very large number of identical "small" players. For a survey of MFG theory and its applications, we refer the reader to [START_REF] Cardaliaguet | Notes on mean field games: from P.-L. Lions' lectures at Collège de France[END_REF][START_REF] Guéant | Mean field games and applications[END_REF] and the lectures of P-L. Lions at the Collège de France [START_REF] Lions | Cours au Collège de France[END_REF]. The evolutive PDE system introduced in [START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF], with variables (v, m), is of the form:

-∂tv(x, t)σ 2 ∆v(x, t) + H(x, Dv(x, t)) = F (x, m(t)), in R d × (0, T ), ∂tm(x, t)σ 2 ∆m(x, t) -div ∂pH(x, Dv(x, t))m(x, t) = 0, in R d × (0, T ), v(x, T ) = G(x, m(T )) for x ∈ R d , m(0) = m0 ∈ P1,

where σ ∈ R, P 1 denotes the space of probability measures on R d and F : R d ×P 1 → R, G : R d × P 1 → R and H : R d × R d → R are given functions. The Hamiltonian H is supposed to be convex with respect to the second variable p. An important feature of the above system is its forward-backward structure: We have a backward Hamilton-Jacobi-Bellman (HJB) equation, i.e. with a terminal condition, coupled with a forward Fokker-Planck equation with initial datum m 0 . Under rather general assumptions, it can be proved that if σ = 0 then (1.1) admits regular solutions (see [START_REF] Lasry | Mean field games[END_REF]Theorem 2.6]). Based on this fact, finite differences schemes have been thoroughly analyzed in the papers [START_REF] Achdou | Mean field games: numerical methods[END_REF][START_REF] Achdou | Mean field games: numerical methods for the planning problem[END_REF][START_REF] Achdou | Mean field games: convergence of a finite difference method[END_REF]. When H(x, p) is quadratic with respect to p, specific methods have been proposed in [START_REF] Guéant | Mean field games equations with quadratic hamiltonian: a specific approach[END_REF][START_REF] Lachapelle | On a mean field game approach modeling congestion and aversion in pedestrian crowds[END_REF].

In this work, we are interested in the numerical analysis of the first order case (σ = 0) with quadratic Hamiltonian H(x, p) = 1 2 |p| 2 . In this case, system (1.1) takes the form -∂tv(x, t) + 1 2 |Dv(x, t)| 2 = F (x, m(t)), in R d × (0, T ), ∂tm(x, t) -div Dv(x, t)m(x, t) = 0, in R d × (0, T ), v(x, T ) = G(x, m(T )) for x ∈ R d , m(0) = m0 ∈ P1.

(1.

2)

The second equation (i.e. the Fokker-Planck equation with σ = 0) is called the continuity equation and describes the transport of the initial measure m 0 by the flow induced by -Dv(•, •). When F and G are non-local and regularizing operators (see [START_REF] Lasry | Mean field games[END_REF]), the existence of a solution (v, m) of (1.2) can be proved by a fixed point argument (see [START_REF] Cardaliaguet | Notes on mean field games: from P.-L. Lions' lectures at Collège de France[END_REF][START_REF] Lions | Cours au Collège de France[END_REF]). However, the numerical approximation of (v, m) is very challenging since, besides the forward-backward structure of (1.2), we can expect only Lipchitz regularity for v and L ∞ regularity for m (see e.g. [START_REF] Cardaliaguet | Notes on mean field games: from P.-L. Lions' lectures at Collège de France[END_REF]).

Although several numerical methods have been analyzed for each one of the equations in (1.2) (see e.g. the monographs [START_REF] Falcone | Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations[END_REF][START_REF] Sethian | Level set methods and fast marching methods, volume 3 of Cambridge Monographs on Applied and Computational Mathematics[END_REF][START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF] and the references therein for the HJB equation and [START_REF] Piccoli | Time-evolving measures and macroscopic modeling of pedestrian flow[END_REF][START_REF] Tosin | Existence and approximation of probability measure solutions to models of collective behaviors[END_REF] for the continuity equation), when the coupling between both equations is present, the authors are aware only of references [START_REF] Gosse | Convergence results for an inhomogeneous system arising in various high frequency approximations[END_REF], for the scalar case d = 1, and [START_REF] Achdou | On numerical approximations of the Hamillton-Jacobitransport system arysing in high frequency[END_REF], for the multidimensional case. However, in both references the structure of the system is forward-forward, i.e. both equations have initial conditions. This fact changes completely the theoretical and numerical analysis of the problem. As a matter of fact, for example in [START_REF] Achdou | On numerical approximations of the Hamillton-Jacobitransport system arysing in high frequency[END_REF], the key property for convergence result of the proposed numerical scheme is a one side Lipschitz condition for Dv(•, •) of the form:

∃C > 0 such that ∀t ∈ [0, T ], Dv(x, t) -Dv(y, t), x -y ≥ -C|x -y| 2 . (1.3) By the results in [START_REF] Poupaud | Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients[END_REF], condition (1.3) assures the stability of the so-called Fillipov characteristics and of the associated measure solutions of the continuity equation, which are the key to obtain their convergence result. Unfortunately, in our case (1.3) corresponds to the semiconvexity of v, which does not holds for an arbitrary time horizon T (see [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]).

Our line of research follows the ideas in [START_REF] Camilli | A semi-discrete in time approximation for a first order-finite mean field game problem[END_REF], where a semi-discrete in time Semi-Lagrangian scheme is proposed to approximate (1.2) and a convergence result is obtained. However, since the space variable is not discretized, the resulting scheme cannot be simulated. In this paper we propose a fully-discrete Semi-Lagrangian scheme for (1.2) and we study its main properties. We prove that the fully-discrete problem admits at least one solution and, for the case d = 1, we are able to prove the convergence of the scheme to a solution (v, m) of (1.2), when the discretization parameters tend to zero in a suitable manner. The key point of the proof is a weak semiconvavity property for the discretized solutions. Let us point out that our approximation scheme is presented in a general dimension d and several properties are proved in this generality. However, since in general (1.3) does not hold, uniform estimates in the L ∞ norm for the solutions of the scheme seems to be unavoidable in order to prove the convergence (see [START_REF] Cardaliaguet | Notes on mean field games: from P.-L. Lions' lectures at Collège de France[END_REF] for similar arguments regarding the vanishing viscosity approximation of (1.2)). Since we are able to prove these bounds only for d = 1, our convergence result for the fully-discrete scheme is valid only in this case.

The paper is organized as follows: In Section 2 we state our main assumptions, we collect some useful properties about semiconcave functions and we recall the main existence and uniqueness results for (1.2). In Section 3 we revisit the semidiscrete in time approximation of [START_REF] Camilli | A semi-discrete in time approximation for a first order-finite mean field game problem[END_REF] and we improve some results, for example we prove uniform L ∞ bounds for the solutions of the semi-discrete scheme, which improves slightly the convergence result of [START_REF] Camilli | A semi-discrete in time approximation for a first order-finite mean field game problem[END_REF]. Section 4 is devoted to the fullydiscrete scheme. We establish the main properties of the scheme and we prove our main results: The fully-discrete scheme admits at least one solution and, if d = 1 and the discretization parameters tend to zero in a suitable manner, every limit point of the solutions of the scheme is a solution of (1.2). Finally, in Section 5 we display some numerical simulations in the case of one space dimension.

Preliminaries.

2.1. Basic assumptions and existence and uniqueness results for (1.2). We denote by P 1 the set of the probability measures m such that R d |x|dm(x) < ∞.

The set P 1 is be endowed with the Kantorovich-Rubinstein distance

d 1 (µ, ν) = sup R d φ(x)d[µ -ν](x) ; φ : R d → R is 1-Lipschitz . (2.1)
Given a measure µ ∈ P 1 we denote by supp(µ) its support. In what follows, in order to simplify the notation, the operator D (resp. D 2 ) will denote the derivative (resp. the second derivative) with respect to the space variable x ∈ R d . We suppose that the functions F, G : R d × P 1 → R and the measure m 0 , which are the data of (1.2), satisfy the following assumptions:

(H1) F and G are continuous over R d × P 1 .

(H2) There exists a constant c 0 > 0 such that for any m ∈ P 1

F (•, m) C 2 + G(•, m) C 2 ≤ c 0 , where f (•) C 2 := sup x∈R d {|f (x)| + |Df (x)| + |D 2 f (x)|}.
(H3) The initial condition m 0 ∈ P 1 is absolutely continuous with respect to the Lebesgue measure, with density still denoted as m 0 , and satisfies supp(m 0 ) ⊂ B(0, c 1 ) and m 0 ∞ ≤ c 1 , for some c 1 > 0 .

As a general rule in this paper, given an absolutely continuous measure (w.r.t the Lebesgue measure in R d ) m ∈ P 1 , its density will still be denoted by m. Let us recall the definition of a solution (v, m) of (1.2) (see [START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Mean field games[END_REF]).

Definition 2.1. The pair (v, m) ∈ W 1,∞ loc (R d × [0, T ]) × L 1 (R d × (0, T )) is a solution of (1.
2) if the first equation is satisfied in the viscosity sense, while the second one is satisfied in the distributional sense. More precisely, for every

φ ∈ C ∞ c (R d × [0, T ) R d φ(x, 0)m 0 (x)dx + T 0 R d [∂ t φ(x, t) -Dv(x, t), Dφ(x, t) ] m(x, t)dxdt = 0.
(2.2)

Remark 2.1. Classical arguments (see e.g. [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]) imply that (2.2) is equivalent to

R d φ(x)m 0 (x)dx - t 0 R d Dv(x, s), Dφ(x) m(x, s)dxds = 0, (2.3 
)

for all t ∈ [0, T ] and φ ∈ C ∞ c (R d ).
The following existence result is proved in [START_REF] Lions | Cours au Collège de France[END_REF][START_REF] Cardaliaguet | Notes on mean field games: from P.-L. Lions' lectures at Collège de France[END_REF]. Theorem 2.2. Under (H1)-(H3) there exists at least a solution (v, m) of (1.2).

A uniqueness result can be obtained assuming (H4) The following monotonicity conditions hold true

R d [F (x, m 1 ) -F (x, m 2 )] d[m 1 -m 2 ](x) ≥ 0 for all m 1 , m 2 ∈ P 1 R d [G(x, m 1 ) -G(x, m 2 )] d[m 1 -m 2 ](x) ≥ 0 for all m 1 , m 2 ∈ P 1 .
(2.4)

We have (see [START_REF] Lions | Cours au Collège de France[END_REF][START_REF] Cardaliaguet | Notes on mean field games: from P.-L. Lions' lectures at Collège de France[END_REF]): Theorem 2.3. Under (H1)-(H4) system (1.2) admits a unique solution (v, m).

Standard semiconcavity results.

In the proof of Theorem 2.2, as well as in the the proof of our main results, the concept of semiconcavity plays a crucial role. For a complete account of the theory and its applications to the solution of HJB equations, we refer the reader to the book [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF].

Definition 2.4. We say that w : R d → R is semiconcave with constant

C conc > 0 if for every x 1 , x 2 ∈ R d , λ ∈ (0, 1) we have w(λx 1 + (1 -λ)x 2 ) ≥ λw(x 1 ) + (1 -λ)w(x 2 ) -λ(1 -λ) C conc 2 |x 1 -x 2 | 2 . (2.5)
A function w is said to be semiconvex if -w is semiconcave.

Recall that for w : R d → R the super-differential D + w(x) at x ∈ R d is defined as

D + w(x) := p ∈ R d ; lim sup y→x w(y) -w(x) -p, y -x |y -x| ≤ 0 . (2.6)
We collect in the following Lemmas some useful properties of semiconcave functions (see [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]).

Lemma 2.5. For a function w : R d → R, the following assertions are equivalent: (i) The function w is semiconcave, with constant C conc . (ii) For all x, y ∈ R d , we have

w(x + y) + w(x -y) -2w(x) ≤ C conc |y| 2 .
(iii) For all x, y ∈ R d and p ∈ D + w(x), q ∈ D + w(y) q -p, y -x ≤ C conc |x -y| 2 .

(2.7) (iv) Setting I d for the identity matrix, we have that D 2 w ≤ C conc I d in the sense of distributions.

Lemma 2.6. Let w : R d → R be semiconcave. Then: (i) w is locally Lipschitz. (ii) If w n is a sequence of semiconcave functions (with the same semiconcavity constant) converging point-wisely to w, then the convergence is locally uniform and Dw n (•) → Dw(•) a.e. in R d .

2.3.

Representation formulas for the solutions of the HJB and the continuity equations. Let µ ∈ C([0, T ]; P 1 ) be given and let us denote by v[µ] for the unique viscosity solution of

-∂ t v(x, t) + 1 2 |Dv(x, t)| 2 = F (x, µ(t)), in R d × (0, T ), v(x, T ) = G(x, µ(T )) in R d . (2.8)
Under assumptions (H1)-(H2), standard results (see e.g. [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF]) yield that for each (x, t) ∈ R d × [0, T ], the following representation formula for v[µ](x, t) holds true

v[µ](x, t) = inf α∈L 2 ([t,T ];R d ) T t 1 2 |α(s)| 2 + F (X x,t [α](s), µ(s)) ds +G(X x,t [α](T ), µ(T )), where X x,t [α](s) := x - s t α(r)dr for all s ∈ [t, T ].          (CP) x,t [µ]
We set A x,t [µ] for the set of optimal controls α of (CP) x,t [µ], i.e. for the set of solutions of (CP) x,t [µ]. Classical arguments imply that for all (x, t) the set A x,t [µ] is non empty.

We now collect some important well known properties of problem (CP) x,t [µ] (see e.g. [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF][START_REF] Cardaliaguet | Notes on mean field games: from P.-L. Lions' lectures at Collège de France[END_REF]).

Proposition 2.7. Under (H1)-(H2), The value function v[µ] satisfies the following properties:

(i) We have that (x, t) → v[µ](x, t) is Lipchitz, with a Lipschitz constant independent of µ.

(ii) For all t ∈ [0, T ] the function v[µ](•, t) ∈ R is semiconcave, uniformly with respect to µ.

(iii) There exists a constant c 2 > 0 (independent of (µ, x, t)) such that

α L ∞ ([t,T ];R d ) ≤ c 2 for all α ∈ A x,t [µ].
(iv) For all (x, t) and α ∈ A x,t [µ], we have that

α(t) ∈ D + v[µ](x, t).
(2.9)

(v) For all t ∈ [0, T ] the function v[µ](•, t) is differentiable at x iff there exists α ∈ A x,t [µ] such that A x,t [µ] = {α}.
In this case, we have that

Dv[µ](x, t) = α(t). (2.10) (vi) For every s ∈ (t, T ] and α ∈ A x,t [µ], we have that v[µ](•, •) is differentiable at (X x,t [α](s), s).
Now, we define a measurable selection of optimal flows, i.e. of optimal trajectories for the family of problems {(CP) x,t [µ] ; (x, t) ∈ R d × [0, T ]}. Classical arguments (see [START_REF] Cardaliaguet | Notes on mean field games: from P.-L. Lions' lectures at Collège de France[END_REF][START_REF] Aubin | Set-valued analysis, volume 2 of Systems & Control: Foundations & Applications[END_REF]) show that the multivalued map (x, t) → A 

m[µ](t) := Φ[µ](•, 0, t)♯m 0 , (2.13) 
i.e.

m[µ](t)(A) = m 0 Φ[µ] -1 (•, 0, t)(A) for all A ∈ B(R d ),
or equivalently, for all bounded and continuous φ :

R d → R, R d φ(x)d [m[µ](t)] (x) = R d φ (Φ[µ](x, 0, t)) dm 0 (x).
Since Φ[µ](x, •, •) satisfies the semigroup property, omitting the dependence on µ for simplicity, Φ(x, s, t) = Φ(Φ(x, s, r), r, t) for all r ∈ [s, t],

we easily check that

m[µ](t) := Φ(•, r, t)♯ [Φ(•, 0, r)♯m 0 ] = Φ(•, r, t)♯ [m[µ](r)] for all r ∈ [s, t]. (2.14)
The fundamental result is the following Proposition 2.8. There exists a constant c 3 > 0 (independent of (µ, x, y, r, t)), such that |Φ(x, r, t) -Φ(y, r, t)| ≥ c 3 |x -y| for all 0 ≤ r ≤ t, and x, y ∈ R d .

The key in the proof of the above Proposition (see e.g. [START_REF] Cardaliaguet | Notes on mean field games: from P.-L. Lions' lectures at Collège de France[END_REF]Lemma 4.13]) is the semiconcavity of v[µ](•, t), which is uniform w.r.t µ, and Gronwall's Lemma. As a consequence we have that (see e.g. [START_REF] Cardaliaguet | Notes on mean field games: from P.-L. Lions' lectures at Collège de France[END_REF]Theorem 4.18 and Lemma 4.14]).

Theorem 2.9. We have that m[µ](•) is the unique solution (in the distributional sense) of

∂ t m(x, t) -div Dv[µ](x, t)m(x, t) = 0, in R d × (0, T ), m(x, 0) = m 0 (x) in R d .
(2.15)

Moreover, there exists a constant c 4 > 0, independent of µ, such that m[µ] satisfies the following properties:

(i) For all t ∈ [0, T ], the measure m[µ](t) is absolutely continuous (with density still denoted by m[µ](t)), has a support in B(0, c 4 ) and m[µ](t) ∞ ≤ c 4 . (ii) For all t, t ′ ∈ [0, T ],
we have that

d 1 (µ(t), µ(t ′ )) ≤ c 4 |t -t ′ |.
Remark 2.2. In the proof of the above result (see [START_REF] Cardaliaguet | Notes on mean field games: from P.-L. Lions' lectures at Collège de France[END_REF]) Proposition 2.8 is crucial in order to show that the transported measure m[µ](•) is absolutely continuous, as m 0 , and its density remains uniformly bounded in

L ∞ (R d ). Theorem 2.9 (i)-(ii) implies that m[µ](•) ∈ C([0, T ]; P 1 ). We thus see that (1.2) is equivalent to find m ∈ C([0, T ]; P 1 ), such that m(t) = Φ[m](•, 0, t)♯m 0 for all t ∈ [0, T ].
(MFG)

3. A revisit to the semi-discrete in time approximation. In this section we review the semi-discrete in time approximation studied in [START_REF] Camilli | A semi-discrete in time approximation for a first order-finite mean field game problem[END_REF] and we improve some results.

Semi-discretization of the HJB equation.

Given h > 0 and N ∈ N such that N h = T , we set t k := kh for k = 0, . . . , N . Let us define the following spaces:

K N := µ = (µ ℓ ) N ℓ=0 : such that µ ℓ ∈ P 1 for all ℓ = 0, . . . , N , A k := α = (α ℓ ) N -1 ℓ=k : such that α ℓ ∈ R d for k = 0, . . . , N -1.
For µ ∈ K N and k = 1, . . . , N , we consider the following semi-discrete approximation of (CP)

x,t [µ] v k [µ](x) := inf α∈A k N -1 ℓ=k 1 2 |α ℓ | 2 + F (X x,k ℓ [α], µ ℓ ) h + G(X x,k N [α], µN ) , where X x,k ℓ+1 [α] := X x,k ℓ [α] -hα ℓ for ℓ = k . . . , N -1, X x,k k [α] := x                (CP) x,k h [µ].
Note that no discretization is performed in the space variable. As for the continuous time problem, we have that (CP) x,k h [µ] admits at least a solution for all (x, k). We set by A k [µ](x) ⊆ A k for the set of optimal solutions of (CP) x,k h [µ], i.e. the set of discrete optimal controls. By the discrete dynamic programming principle (see e.g. [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF]), v k [µ](•) can be recursively calculated as

v k [µ](x) = inf α∈R d v k+1 [µ](x -hα) + 1 2 h|α| 2 + hF (x, µ k ), k = 0, . . . , N -1, vN [µ](x) = G(x, µN ),    (3.1)
which is a "semi-discrete in time version" of (2.8). Let us set,

v h [µ](x, t) := v [t/h] [µ](x) for all t ∈ [0, T ]. for the classical "extension" of v k [µ](•) to a function defined on R d × [0, T ]
. Now, we provide the "discrete" analogous results to those of Proposition 2.7.

Proposition 3.1. For all h > 0, we have:

(i) For any t ∈ [0, T ], the function v h [µ](•, t) is Lipschitz continuous, with a Lipschitz constant independent of µ. (ii) For all t ∈ [0, T ] the function v h [µ](•, t) is semiconcave, uniformly in (h, µ, t). (iii) There exists a constant c 5 > 0 (independent of (µ, h, x, k)) such that max ℓ=k,...,N -1 |α ℓ | ≤ c 5 for all α ∈ A k [µ](x). (iv) For all x ∈ R d , k = 0, . . . , N -1 and α ∈ A k [µ](x), we have α ℓ + hDF X x,k ℓ [α], µ ℓ ∈ D + v h [µ] X x,k ℓ [α], t ℓ for ℓ = k, . . . , N -1. (v) We have that v h [µ](•, t) is differentiable at x iff for k = [t/h] there exists α ∈ A k such that A k [µ](x) = {α}.
In that case, the following holds:

Dv h [µ](x, t) = α k + hDF (x, µ k ). (vi) Given (x, t) and α ∈ A k [µ](x), with k = [t/h], we have that for all s ∈ [t k+1 , T ], the function v h [µ](•, s) is differentiable at X x,k ℓ [α], with ℓ = [s/h].
Proof. We only prove (iv) since the other statements are proved in [START_REF] Camilli | A semi-discrete in time approximation for a first order-finite mean field game problem[END_REF]. For notational convenience, we omit the µ argument and we prove the result for ℓ = k,

since for ℓ = k + 1, . . . , N the assertion follows from (v)-(vi). Let x, y ∈ R d and σ ≥ 0. Since α ∈ A k [µ](x), we have v k (x + σy) ≤ N -1 ℓ=k 1 2 |α ℓ | 2 + F X x+σy,k ℓ [α], µ ℓ h + G X x+σy,k N [α], µ N ,
with equality for σ = 0. Therefore,

v k (x + σy) -v k (x) ≤ h N -1 ℓ=k F X x+σy,k ℓ [α], µ ℓ -F X x,k ℓ [α], µ ℓ +G X x+σy,k N [α], µ N -G X x,k ℓ [α], µ N . (3.2)
On the other hand, the optimality condition for α yields

α k = h N -1 ℓ=k+1 DF X x,k ℓ [α], µ ℓ + DG X x,k ℓ [α], µ N .
Combining with (3.2) and taking the limit as σ → 0, gives lim sup

σ→0 v k (x + σy) -v k (x) σ -α k + hDF (x, µ k ), y ≤ 0,
which, by [11, Proposition 3.15 and Theorem 3.2.1], implies the result.

Given (x, k) and α ∈ A k [µ](x) we set α k [µ](x) := α k . (3.3) Proposition 3.1(iv) implies that α k [µ](x) ∈ D + v h [µ](x, t k ) -hDF (x, u k ). (3.4) 
A straightforward computation shows that α k [µ](x) solves, for each (x, k), the problem defined in (3.1). Moreover, by Proposition 3.1(v)-(vi), the following relation holds true

α ℓ = α ℓ [µ] X x,k ℓ [α] for all ℓ = k, . . . , N -1. (3.5) 3.2. Semi-discretization of the continuity equation. Let α x,k [µ] ∈ A k be a measurable selection of the multifunction (x, k) → A k [µ](x). Given this mea- surable selection, we set α k [µ](x) = α x,k k [µ], as in (3.3). By (3.4) -(3.5), there exists a measurable function (x, k) → p k [µ](x) ∈ R d such that p k [µ](x) ∈ D + v k [µ](x)
and for all time iterations ℓ = k, . . . , N we have

α ℓ [µ] X x,k ℓ [α x,k [µ]] = p ℓ [µ] X x,k ℓ [α x,k [µ]] -hDF X x,k ℓ [α x,k [µ]], µ ℓ . (3.6) Moreover, Proposition 3.1(v)-(vi) implies that for ℓ = k + 1, . . . , N p ℓ [µ] X x,k ℓ [α x,k ℓ [µ] = Dv ℓ [µ] X x,k ℓ [α x,k ℓ [µ]] for all x ∈ R d (3.7)
and

p k [µ] (x) = Dv k [µ] (x) for a.a. x ∈ R d . (3.8) Given (x, k 1 ), the discrete flow Φ k1,• [µ](x) ∈ R (N -k)×d is defined as Φ k1,k2 [µ](x) := x -h k2-1 ℓ=k1 α x,k1 ℓ [µ] for all k 2 ≥ k 1 . (3.9)
Equivalently, by (3.6), for all

k 1 ≤ k 2 ≤ k 3 , Φ k1,k3 [µ](x) := x -h k3-1 ℓ=k1 α ℓ [µ] X x,k1 ℓ [α x,k1 [µ]] , = Φ k1,k2 [µ](x) -h k3-1 ℓ=k2 α ℓ [µ] X x,k1 ℓ [α x,k1 [µ]] . (3.10)
In particular, for all

k 1 ≤ k 2 , Φ k1,k2+1 [µ](x) = Φ k1,k2 [µ](x) -hα k2 [µ] (Φ k1,k2 [µ](x)) . (3.11)
The following result, analogous to Proposition 2.8, is an important improvement of [10, Lemma 3.6]. Proposition 3.2. There exists a constant c 6 > 0 (independent of µ and small enough h) such that for all k = 1, ..., N and x, y ∈ R d we have

|Φ 0,k [µ](x) -Φ 0,k [µ](y)| ≥ c 6 |x -y|.
(3.12)

Thus, Φ 0,k [µ](•) is invertible in Φ 0,k [µ](R d ) and the inverse Υ 0,k [µ](•) is 1/c 6 - Lipschitz. Proof. For notational convenience, let us set Φ k = Φ 0,k [µ](x) and Ψ k = Φ 0,k [µ](y). Expression (3.11) implies that |Φ k+1 -Ψ k+1 | 2 ≥ |Φ k -Ψ k | 2 -2h [α k [µ](Φ k ) -α k [µ](Ψ k )] • (Φ k -Ψ k ). (3.13)
By (3.6) we have (omitting the dependence on µ)

α k (Φ k ) -α k (Ψ k ) = p k (Φ k ) -p k (Ψ k ) -h [DF (Φ k ) -DF (Ψ k )] .
By the semiconcavity of v k [µ](•) and the semiconvexity of

F (•, µ(t l )), Lemma 2.5(iii) gives [α k (Φ k ) -α k (Ψ k )] • (Φ k -Ψ k ) ≤ c(1 + h) |Φ k -Ψ k | 2 , (3.14) 
for some c > 0. By (3.13) and (3.14), there is c ′ > 0 (independent of h small enough) such that

|Φ k+1 -Ψ k+1 | 2 ≥ (1 -hc ′ ) |Φ k -Ψ k | 2 .
Therefore, for every k = 1, ..., N , we get

|Φ k+1 -Ψ k+1 | 2 ≥ (1 -hc ′ ) k |x -y| 2 ≥ (1 -hc ′ ) [T /h] |x -y| 2 .
and the result follows from the convergence of (1 -hc ′ ) [T /h] to exp(-c ′ T ) as h ↓ 0.

A natural semi-discretization of the solution m[µ] of (2.15), whose representation formula is given by (2.13), is then obtained as the push-forward of m 0 under the discrete flow Φ 0,k [µ](•), i.e. for every k = 0, . . . , N we define

m k [µ] := Φ 0,k [µ](•)♯m 0 .
(3.15) By (3.10) we have

m k [µ] = Φ ℓ,k [µ](•)♯m ℓ [µ] for all ℓ = 1, . . . , k, (3.16) 
which is the analogous to (2.14), for the continuous time case. In particular, for all φ ∈ C b (R d ) (space of bounded and continuous functions over R d ), we have Lemma 3.3. There exist c 7 > 0 (independent of (µ, h)) such that: (i) For all k 1 , k 2 ∈ {1, ..., N }, we have that

R d φ(x)dm k+1 [µ](x) = R d φ (x -hα k [µ](x)) dm k [µ](x), (3.17 
d 1 (m k1 [µ], m k2 [µ]) ≤ c 7 h|k 1 -k 2 | = c 7 |t k1 -t k2 |. (3.18) (ii) For all k = 1, ..., N , m k [µ] is absolutely continuous (with density still denoted by m k [µ]), has a support in B(0, c 7 ) and m k [µ] ∞ ≤ c 7 .
Proof. By Proposition 3.1(iii) we have

|Φ 0,k1 [µ](x) -Φ 0,k2 [µ](x)| ≤ c 5 h|k 1 -k 2 | = c 5 |t k1 -t k2 |. (3.19)
By definition of m k [µ](•), we have that for any 1-Lipschitz function φ :

R d → R R d φ(x) d [m k1 [µ] -m k2 [µ]] (x) ≤ R d |Φ 0,k1 [µ](x) -Φ 0,k2 [µ](x)|dm 0 (x) ≤ c 5 h|k 1 -k 2 | = c 5 |t k1 -t k2 |.
On the other hand, since by (H1) we have supp(m 0 ) ⊂ B(0, c 1 ), Proposition 3.1(iii) implies that supp(m k [µ]) is contained in B(0, c 1 + 2c 5 T ). Moreover, for any Borel set A and k = 1, ..., N , Proposition 3.2 and the fact that m 0 ∞ ≤ c 1 imply

m k [µ](A) = m 0 (Υ 0,k [µ](A)) ≤ m 0 ∞ |Υ 0,k (A)| ≤ c 1 c 6 |A|,
where |A| denotes the Lebesgue measure of the set A. Thus, m k [µ] is absolutely continuous and its density, still denoted by

m k [µ], satisfies m k [µ] ∞ ≤ c1 c6 .
The result follows by taking c 7 = max{c 5 , c 1 + 2c 5 T, c 1 /c 6 }.

We now define

m h [µ](t) := t k+1 -t h m k [µ] + t -t k h m k+1 [µ] if t ∈ [t k , t k+1 ]. (3.20) 
The following result is a clear consequence of Lemma 3.3 and (3.20).

Proposition 3.4. There exists constants c 8 > 0 (independent of µ and small enough h) such that:

(i) For all t 1 , t 2 ∈ [0, T ], we have that

d 1 (m h [µ](t 1 ), m h [µ](t 2 )) ≤ c 8 |t 1 -t 2 |. (3.21) (ii) For all t ∈ [0, T ], m h [µ](t) is absolutely continuous (with density denoted by m h [µ](•, t)), has a support in B(0, c 8 ) and m h [µ](•, t) ∞ ≤ c 8 .
3.3. The semi-discrete scheme for the first order MFG problem (1.2). For a given N > 0, consider the following semi-discretization of (MFG):

Find m ∈ K N such that m k = Φ 0,k [m](•)♯m 0 for all k = 0, . . . , N, (MFG) h .
The following result is proved in [START_REF] Camilli | A semi-discrete in time approximation for a first order-finite mean field game problem[END_REF].

Theorem 3.5. Under (H1)-(H3) we have that (MFG) h admits at least one solution m h ∈ K N . Moreover, if (H4) holds, the solution is unique.

Given any solution m h of (MFG) h , using (3.20) we define an element, still denoted by m h , in C([0, T ]; P 1 ). Theorem 3.6. Under (H1)-(H3) every limit point of m h in C([0, T ]; P 1 ), as h ↓ 0, solves (MFG). In particular, if (H4) holds we have that m h → m (the unique solution of (MFG)) in C([0, T ]; P 1 ) and in L ∞ R d × [0, T ] -weak- * .

Proof. Proposition 3.4 and Ascoli Theorem imply that m h has at least one limit point m in C([0, T ]; P 1 ) as h ↓ 0. The fact that m solves (MFG) is proved in [10, Theorem 4.3] using optimal control techniques. Finally, by Proposition 3.4(ii) we have that

m h → m in L ∞ R d × [0, T ] -weak- * . The result follows.
4. The fully-discrete scheme. Given h, ρ > 0, we consider a d dimensional lattice G ρ := {x i = iρ, i ∈ Z d } and a time-space grid G ρ,h := G ρ × {t k } N k=0 , where t k = kh (k = 0, . . . , N ) and t N = N h = T . We set B(G ρ ) and B(G ρ,h ) for the space of bounded functions defined on G ρ and G ρ,h , respectively. Given f ∈ B(G ρ ) and g ∈ B(G ρ,h ) we will use the notation

f i := f (x i ),
g i,k := g(x i , t k ) for all i ∈ Z d and k = 0, . . . , N .

Let us consider the P 1 basis {β i ; i ∈ Z d }, where the function

β i : R d → R is defined by β i (x) := 1 -x-xi 1 ρ + := max{[1 -x-xi 1 ρ , 0}.
Denoting by e 1 , . . . , e d the canonical base of R d , it is easy to verify that

β i (x) is continuous with compact support contained in Q(x i ) := [x i -ρe 1 , x i +ρe 1 ]ו • •×[x i -ρe d , x i +ρe d ], 0 ≤ β i ≤ 1, β i (x j ) = δ ij (the Kronecker symbol) and i∈Z d β i (x) = 1. Let us consider the interpolation operator I[•] : B(G ρ ) → C b (R d ), as I[f ](•) := i∈Z d f i β i (•). (4.1)
We recall a standard estimate for I (see e.g. [START_REF]Handbook of numerical analysis[END_REF][START_REF] Quarteroni | Numerical Mathematics[END_REF]). Given φ ∈ C b (R d ), let us define φ ∈ B(G ρ ) by φi := φ(x i ) for all i ∈ Z d . We have that sup

x∈R d |I[ φ](x) -φ(x)| = O(ρ γ ), (4.2) 
where

γ = 1 if φ is Lipschitz and γ = 2 if φ ∈ C 2 (R d ).
4.1. The fully-discrete scheme for the HJB equation. For a given µ ∈ C([0, T ], P 1 ), we define recursively v ∈ B(G ρ,h ) using the following Semi-Lagrangian scheme for (2.8):

v i,k = S ρ,h [µ](v •,k+1 , i, k) k = 0, . . . , N -1 and v i,N = G(x i , µ(t N )), (4.3) 
where

S ρ,h [µ] : B(G ρ ) × Z d × {0, . . . , N -1} → R is defined as S ρ,h [µ](f, i, k) := inf α∈R d I[f ](x i -hα) + 1 2 h|α| 2 + hF (x i , µ(t k )). (4.4) 
The following properties of S ρ,h [µ] are a straightforward consequence of the definition and assumptions (H1) and (H2).

Lemma 4.1. The following assertions hold true: (i) [The scheme is well defined] There exists at least one α ∈ R d that minimizes the r.h.s. of (4.4). Moreover, there exists

c 9 > 0 such that sup i∈Z d ,k=0,...,N |v i,k | ≤ c 9 . (ii)[Monotonicity] For all v, w ∈ B(G ρ ) with v ≤ w, we have that S ρ,h [µ](v, i, k) ≤ S ρ,h [µ](w, i, k) ∀ i ∈ Z d , k = 0, . . . , N. (4.5) 
(iii) For every K ∈ R and w ∈ B(G ρ ) we have

S ρ,h [µ](w + K, i, n) = S ρ,h [µ](w, i, n) + K. (4.6) (iv)[Consistency] Let (ρ n , h n ) → 0 (as n ↑ ∞)
and consider a sequence of grid points (x in , t kn ) → (x, t) and a sequence µ n ∈ C([0, T ]; P 1 ) such that µ n → µ. Then, for every φ ∈ C 1 R d × [0, T ) , we have

limn→∞ 1 hn φ(xi n , t kn ) -S ρn,hn [µn](φ k n+1 , in, kn) = -∂tφ(x, t) + 1 2 |Dφ(x, t)(x, t)| 2 -F (x, µ(t)). (4.7)
where

φ k = {φ(x i , t k )} i∈Z d .
We define

v ρ,h [µ](x, t) := I[v •,[ t h ] ](x) for all (x, t) ∈ R d × [0, T ], (4.8) 
where we recall that v i,k is defined by (4.3).

The following notion of weak semiconcavity (see e.g. [START_REF] Lin | L 1 -stability and error estimates for approximate Hamilton-Jacobi solutions[END_REF]), will be very useful.

Definition 4.2. Given C, ρ > 0, we say that f : R d → R is (C, ρ)-weakly semiconcave if for all x, y ∈ R d and λ ∈ [0, 1] we have

λf (x) + (1 -λ)f (y) ≤ f (λx + (1 -λ)y) + C 2 λ(1 -λ) |x -y| 2 + ρ 2 . (4.9)
For the sake of completeness, we recall the following elementary properties of weak semiconcave whose proofs are easy adaptations of the semiconcave case. Lemma 4.3. For a continuously differentiable function f : R d → R the following assertions are equivalent:

(i) The function f is (C, ρ)-weakly semiconcave. (ii) For every x, y ∈ R d f (x + y) -2f (x) + f (x -y) ≤ C(|y| 2 + ρ 2 ). (4.10) (iii) For every x, y ∈ R d f (y) -f (x) -Df (x), y -x ≤ C 2 |y -x| 2 + ρ 2 . (4.11) 
In particular, if f is (C, ρ)-weakly semiconcave then

Df (y) -Df (x), y -x ≤ C |y -x| 2 + ρ 2 ∀ x, y ∈ R d . (4.
12)

The following result yields the weak semiconcavity of v ρ,h [µ].

Lemma 4.4. For every t ∈ [0, T ], the following assertions hold true:

(i) [Lipschitz property] The function v ρ,h [µ](•, t) is Lipschitz with constant indepen- dent of (ρ, h, µ, t). (ii) [Weak semiconcavity] The function v ρ,h [µ](•, t) is (C, ρ)-weakly semiconcave, with C independent of (ρ, h, µ, t).
Proof. By (H2) we have that DG(•, µ(T )) ∞ ≤ c 0 and so I[G](•, µ(T )) is c 0 -Lipschitz. Thus, by the (4.3) and (4.8), we get that v ρ,h [µ](•, t N -1 ) is Lipschitz with constant hc 0 + c 0 . Iterating the argument, using (H2) for F , we get that Proof. Using assumption (H1), the proof of this results is a straightforward variation of the proof in [START_REF] Carlini | Convergence of a large time-step scheme for mean curvature motion[END_REF], which is a revised proof of the result given in [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF]. However, for the sake of completeness we provide the details. For (y,

v ρ,h [µ](•, t) is c 0 (1 + T ) Lipschitz
s) ∈ R d ×[0, T ], set v * (y, s) := lim sup (y ′ ,s ′ )→(y,s) n→∞ v ρn,hn [µ n ](y ′ , s ′ ), v * (y, s) := lim inf (y ′ ,s ′ )→(y,s) n→∞ v ρn,hn [µ n ](y ′ , s ′ ).
Let us prove that v * is a viscosity subsolution of

-∂ t v(x, t) + 1 2 |Dv(x, t)| 2 = F (x, µ(t)) for (x, t) ∈ R d × (0, T ), v(x, T ) = G(x, µ(T )) for x ∈ R d . (4.13)
Let (ȳ, s) ∈ R d × (0, T ) and φ ∈ C 1 (R d × (0, T )) be such that v * (ȳ, s) = φ(ȳ, s) and v * -φ has a global strict maximum at (ȳ, s). Since v * (•, •) is upper semicontinuous, a standard argument in the theory of viscosity solutions implies that, up to some subsequence, there exists (y n , s n ) → (ȳ, s), such that

(v ρn,hn [µn] -φ)(yn, sn) = max (y,s)∈R d ×(0,T ) (v ρn,hn [µn] -φ)(y, s) and (v ρn,hn [µn] -φ)(yn, sn) → (v * -φ)(ȳ, s) = 0.
Thus, for any (y, s) ∈ R d × [0, T ] we have that

v ρn,hn [µ n ](y, s) ≤ φ(y, s) + ξ n , with ξ n := (v ρn,hn [µ n ] -φ)(y n , s n ) → 0. (4.14) Let k := N → {0, . . . , N -1} be such that s n ∈ [t k(n) , t k(n)+1
). Evidently, we have that t k(n) → s. By taking y = x i , i ∈ Z d , and s = t k(n)+1 in (4.14), we get that

v i,k(n)+1 ≤ φ(x i , t k(n)+1 ) + ξ n for all i ∈ Z d . (4.15) Lemma 4.1(ii)-(iii) implies that S ρn,hn [µ n ](v •,k(n)+1 , i, k(n)) ≤ S ρn,hn [µ n ](φ k(n)+1 , i, k(n)) + ξ n for all i ∈ Z d .
In particular, using (4.3), we get

v i,k(n) ≤ S ρn,hn [µ n ](φ k(n)+1 , i, k(n)) + ξ n for all i ∈ Z d ,
which yields, by the definition of v ρn,hn [µ n ](y n , s n ) in (4.8),

v ρn,hn [µ n ](y n , s n ) ≤ i∈Z d β i (y n )S ρn,hn [µ n ](φ k(n)+1 , i, k(n)) + ξ n .
Now, recalling the definition of ξ n , we get

φ(y n , s n ) ≤ i∈Z d β i (y n )S ρn,hn [µ n ](φ k(n)+1 , i, k(n)). (4.16) 
We claim now that φ(y n , s

n ) = φ(y n , t k(n) ) + O(h 2 n ).
In fact, either s n = t k(n) (and the claim obviously holds), or s n ∈ (t k(n) , t k(n)+1 ). In the latter case, since (v ρn,hn -φ)(y n , •) has a maximum at s n and v ρn,hn is constant in (t k(n) , t k(n)+1 ), then ∂ t φ(y n , s n ) = 0 and the claim follows from a Taylor expansion. Thus, by our claim and (4.16), we have that

φ(y n , t k(n) ) ≤ i∈Z d β i (y n )S ρn,hn [µ n ](φ k(n)+1 , i, k(n)) + o(h n ).
(4.17)

Now, inequality (4.17), estimate (4.2) and the fact that ρ 2 n /h n → 0 imply that lim

n→∞ i∈Z d β i (y n ) φ(x i , t k(n) ) -S ρn,hn [µ n ](φ k(n)+1 , i, k(n)) h n ≤ 0.
Finally, by the consistency property in Lemma 4.1(iv) we obtain that

-∂ t φ(ȳ, s) + 1 2 |Dφ(ȳ, s)| 2 -F (ȳ, µ(s)) ≤ 0,
which implies that v * is a subsolution of (4.14). The supersolution property for v * can be proved in a similar manner. Therefore, by a classical comparison argument, v ρn,hn [µ n ] converges locally uniformly to v[µ] in R d × (0, T ).

Note that for all t ∈ [0, T ], the function v ρ,h [µ](•, t) is not, in general, differentiable at x i ∈ G ρ . Thus, we cannot use the useful characterizations of weak semiconcavity (see Lemma 4.3) for differentiable functions. Therefore, we will regularize v ρ,h [µ](•, t) with the usual convolution technique. Let ρ ∈ C ∞ c (R d ) with ρ ≥ 0 and R d ρ(x)dx = 1. For ε > 0, we consider the mollifier ρ ε (x) := 1 ε d ρ x ε and define

v ε ρ,h [µ](•, t) := ρ ε * v ρ,h [µ](•, t) for all t ∈ [0, T ]. (4.18)
Using Lemma 4.4(i) we easily check the estimates

v ε ρ,h [µ](•, •) -v ρ,h [µ](•, •) ∞ = γε, Dv ε ρ,h [µ](•, •) ∞ = γ ε (4.19)
where γ > 0 is independent of (ε, ρ, h, µ, t). We have:

Lemma 4.6. For every t ∈ [0, T ], the following assertions hold true: 

(i) [Lipschitz property] The function v ε ρ,h [µ](•, t) is Lipschitz with constant d 0 inde- pendent of (ρ, h, µ, t). (ii) [Weak semiconcavity] The function v ε ρ,h [µ](•, t) is (d 1 , ρ)-weakly semiconcave, with d 1 independent of (ρ, h, ε, µ, t).
v εn ρn,hn [µ n ](y, t) -v εn ρn,hn [µ n ](x, t) -Dv εn ρn,hn [µ n ](x, t), y -x ≤ 1 2 d 1 |y -x| 2 + ρ 2 n .
Thus, every limit point p of t Dv εn ρn,hn

[µ n ](x, t) satisfies v[µ](y, t) -v[µ](y, t) -p, y -x ≤ 1 2 d 1 |y -x| 2 for all x, y ∈ R d .
Therefore, if Dv[µ](x, t) exists, the semiconcavity of v[µ] implies that p = Dv[µ](x, t) from which the result follows.

4.2. The fully-discrete scheme for the continuity equation. Given µ ∈ C([0, T ]; P 1 ) and ε > 0 let us define

Φ ε i,k,k+1 [µ] := x i -hα ε i,k [µ] for all i ∈ Z d , k = 0, . . . , N -1, (4.20) 
where αε

i,k := αε ρ,h [µ](x i , t k ) and αε ρ,h [µ] : R d × [0, T ] → R d is defined as αε ρ,h [µ](x, t) := Dv ε ρ,h [µ](x, t). (4.21)
Given the family {Φ ε i,k,k+1 [µ] ; i ∈ Z d , k = 0, . . . , N -1}, we now consider a fully-discrete scheme for (2.15) which turns out to be equivalent to the one proposed [START_REF] Piccoli | Time-evolving measures and macroscopic modeling of pedestrian flow[END_REF], under some slight change of notation. Let us define

S :=    z = (z i ) i∈Z d ; z i ∈ R + and i∈Z d z i = 1    .
The coordinates of m ∈ S N +1 := {ν = (ν i ) N k=0 ; ν k ∈ S} are denoted as m i,k , with i ∈ Z d and k = 0, ..., N . We set

E i := [x i ± 1 2 ρe 1 ] × ... × [x i ± 1 2 ρe d ] for all i ∈ Z d ,
and define m ε [µ] ∈ S N +1 recursively as

m ε i,k+1 [µ] := j∈Z d βi Φ ε j,k,k+1 [µ] m ε j,k [µ], for i ∈ Z d , k = 0, . . . , N -1, m ε i,0 [µ] := E i m0(x)dx, for i ∈ Z d . (4.22)
Remark 4.1. Note that, omitting the dependence in µ, for k = 0, . . . , N -1 we have that

i∈Z d m ε i,k+1 = i∈Z d j∈Z d βi Φ ε j,k,k+1 m ε j,k = j∈Z d m ε j,k i∈Z d βi Φ ε j,k,k+1 = j∈Z d m ε j,k = 1,
because j∈Z d m ε j,0 = 1. Therefore, the scheme (4.22) is conservative.

Let us define m ε ρ,h [µ] ∈ L ∞ (R d × [0, T ]) as m ε ρ,h [µ](x, t) := 1 ρ d t k+1 -t h i∈Z d m ε i,k [µ]IE i (x) + t-t k h i∈Z d m ε i,k+1 [µ]IE i (x) , if t ∈ [t k , t k+1 ). (4.23)
Therefore, for every t ∈ [t k , t k+1 ) we have

m ε ρ,h [µ](x, t) := t k+1 -t h m ε ρ,h [µ](x, t k ) + t -t k h m ε ρ,h [µ](x, t k+1 ). (4.24)
By abuse of notation, we continue to write m ε ρ,h [µ](t) for the probability measure in R d whose density is given by (4.23). Thus, by the very definition, we can identify

m ε ρ,h [µ](•, •) ∈ L ∞ (R d × [0, T ]) with an element m ε ρ,h [µ](•) ∈ C([0, T ]; P 1
). We now study some technical properties of the family

{Φ ε i,k,k+1 [µ] ; i ∈ Z d , k = 0, . . . , N -1}. The next result, which is an easy consequence of the weak semicon- cavity of v ε ρ,h [µ],
is similar to the one proved in Proposition 3.2. Proposition 4.8. For any i, j ∈ Z d and k = 0, . . . , N -1, we have

|Φ ε i,k,k+1 [µ] -Φ ε j,k,k+1 [µ]| 2 ≥ (1 -d 2 h)|x i -x j | 2 -d 2 hρ 2 , (4.25) 
where d 2 ≥ 0 is independent of (ρ, h, ε, µ). Proof. For the reader's convenience, we omit the µ argument. Recalling (4.20) and (4.21), for every k = 0, . . . , N -1 we have

|Φ ε i,k,k+1 -Φ ε j,k,k+1 | 2 = x i -x j -h Dv ε ρ,h (x i , t k ) -Dv ε ρ,h (x j , t k ) 2 , = |x i -x j | 2 + h 2 |Dv ε ρ,h (x i , t k ) -Dv ε ρ,h (x j , t k )| 2 + -2h Dv ε ρ,h (x i , t k ) -Dv ε ρ,h (x j , t k ), x i -x j ,
which yields to

|Φ ε i,k,k+1 -Φ ε j,k,k+1 | 2 ≥ |x i -x j | 2 -2h Dv ε ρ,h (x i , t k ) -Dv ε ρ,h (x j , t k ), x i -x j .
Therefore, by Lemma 4.6(ii) and (4.12) in Lemma 4.3, there exists d 2 > 0 such that (4.25) holds.

Now we provide a technical result which, in the case d = 1, allow us to obtain uniform L ∞ bounds for m ε ρ,h [µ] (see Proposition 4.10(ii) below). Lemma 4.9. Suppose that d = 1. Then, there exists d 3 > 0 (independent of h small enough and (ρ, ε, µ)) such that for any i ∈ Z and k = 0, . . . , N -1, we have that

j∈Z β i Φ ε j,k,k+1 ≤ 1 + d 3 h. (4.26) 
Proof. For notational simplicity, let us set y j = Φ ε j,k,k+1 . Note that for any j 1 , j 2 ∈ Z, Proposition 4.8 implies that

|y j1 -y j2 | 2 ≥ (1 -d 2 h) |x j1 -x j2 | 2 -d 2 hρ 2 .
Thus, if j 1 = j 2 , we get

|y j1 -y j2 | 2 ≥ (1 -2d 2 h) ρ 2 , i.e. |y j1 -y j2 | ≥ (1 -2d 2 h)ρ. (4.27) 
Since the diameter of supp(β i ) is equal to 2ρ, the above inequality implies that for h small enough (independent of (ρ, ε, µ)), the cardinality of

Z i := {j ∈ Z ; y j ∈ supp(β i ))}
is at most 3. If Z i only has one element, then (4.26) is trivial. If Z i has two elements y j1 , y j2 with y j1 < y j2 , then

β i (y j1 ) + β i (y j2 ) = 2 - |y j1 -x i | ρ - |y j2 -x i | ρ ≤ 2 - |y j1 -y j2 | ρ ,
by the triangular inequality. Using (4.27) we get

β i (y j1 ) + β i (y j2 ) ≤ 2 -(1 -2d 2 h) ≤ 1 + 2d 2 h,
from which (4.27) follows. Finally, if Z i has three elements y j1 , y j2 and y j3 , then (supposing for example that y j1 ≤ y j2 ≤ x i < y j3 ) we have

β i (y j1 ) + β i (y j3 ) = 1 - xi-yj 1 ρ + 1 - yj 3 -xi ρ , = 2 - yj 2 -yj 1 ρ - yj 3 -yj 2 ρ ≤ 2 -2 (1 -2d 2 h) ≤ 4d 2 h.
Using that β i (y j2 ) ≤ 1 and the above estimate, we obtain (4.27) with d 3 := 4d 2 .

Using the above results, we can establish some important properties for m ε ρ,h [µ], which are similar to those found for m h [µ] in the semi-discrete case (see Proposition 3.4).

Proposition 4.10. Suppose that ρ = O(h). Then, there exists a constant d 4 > 0 (independent of (ρ, h, ε, µ)) such that: (i) For all t 1 , t 2 ∈ [0, T ], we have that

d 1 (m ε ρ,h [µ](t 1 ), m ε ρ,h [µ](t 2 )) ≤ d 4 |t 1 -t 2 |. (4.28) (ii) For all t ∈ [0, T ], m ε ρ,h [µ](t) has a support in B(0, d 4 ). (iii) If d = 1 then we have m ε ρ,h [µ](•, t) ∞ ≤ d 4 .
Proof. Let φ ∈ C(R d ) be a 1-Lipschitz function. By (4.24), the function

ψ φ : [0, T ] → R, defined as ψ φ (t) := R d φ(x)dm ε ρ,h [µ](t), is affine in each interval [t k , t k+1 ], with k = 0, . . . , N -1. It clearly belongs to W 1,∞ ([0, T ]) and d dt ψ φ ∞ = 1 h max k=0,...,N -1 R d φ(x)d[m ε ρ,h [µ](t k+1 ) -m ε ρ,h [µ](t k )] .
For every k = 0, . . . , N -1 we have, omitting µ from the notation,

R d φ(x)d[m ε ρ,h (t k+1 ) -m ε ρ,h (t k )] = 1 ρ d i∈Z d E i φ(x)dx   j∈Z d β i Φ ε j,k,k+1 m ε j,k -m ε i,k   , = j∈Z d m ε j,k   i∈Z d β i Φ ε j,k,k+1 1 ρ d E i φ(x)dx - 1 ρ d E j φ(x)dx   .
On the other hand, since φ is 1-Lipschitz, we have that

1 ρ d Ei φ(x)dx -φ(x i ) ≤ ρ. (4.29) 
Using (4.29), estimate (4.2), Lemma 4.6(i) and the fact that ρ = O(h), we get that

R d φ(x)d[m ε ρ,h (t k+1 ) -m ε ρ,h (t k )] ≤ j∈Z d m ε k,j i∈Z d β i Φ ε j,k,k+1 φ(x i ) -φ(x j ) + 2ρ, = j∈Z d m ε k,j φ Φ ε j,k,k+1 -φ(x j ) + 2cρ, ≤ d 0 h + 2cρ = d 0 + 2cρ h h ≤ c ′ h,
for some constants c, c ′ > 0 independents of (ρ, h, ε, µ). Therefore, we obtain that d dt ψ φ ∞ ≤ c ′ , which proves (i) with d 4 to be chosen later.

In order to prove (ii), it suffices to note that since Dv ε ρ,h [µ] ∞ ≤ d 0 we easily check that supp(m ε ρ,h [µ](t)) ⊂ B(0, c 1 + 2d 0 T ). Now, let us assume d = 1. By the definition of m ε ρ,h [µ](•, 0) in (4.23) and assumption (H1), we have

m ε ρ,h [µ](•, 0) ∞ = max i∈Z 1 ρ m ε i,0 [µ] ≤ m 0 ∞ ≤ c 1 .
Now, given k = 0, . . . , N -1, we have that

m ε ρ,h [µ](•, t k+1 ) ∞ ≤ max i∈Z 1 ρ m ε i,k+1 [µ] = 1 ρ max i∈Z    j∈Z β i Φ ε j,k,k+1 [µ] m ε j,k [µ]    .
Therefore, by Lemma 4.9, we obtain that

m ε ρ,h [µ](•, t k+1 ) ∞ ≤ m ε ρ,h [µ](•, t k ) ∞ j∈Z βi Φ ε j,k,k+1 [µ] ≤ (1 + d3h) m ε ρ,h [µ](•, t k ) ∞.
Iterating in the above expression, we obtain that

m ε ρ,h [µ](•, t k+1 ) ∞ ≤ (1 + d 3 h) T h m 0 ∞ ≤ e d3T c 1 ,
for h small enough. The result follows, by taking d 4 = max{c ′ , c 1 + 2d 0 T, e d3T c 1 }.

4.3. The fully-discrete scheme for the first order MFG problem (1.2). For a given ρ, h, ε > 0 and µ ∈ S N +1 we still write µ for the element in C([0, T ]; P 1 ) defined as

µ(x, t) := 1 ρ d   t k+1 -t h i∈Z d µ i,k I Ei (x) + t -t k h i∈Z d µ i,k+1 I Ei (x)   if t ∈ [t k , t k+1 ].
(4.30) Let us consider the following fully-discretization of (MFG):

Find µ ∈ S N +1 such that µ i,k = m ε i,k [µ] ∀ i ∈ Z d and k = 0, . . . , N, (4.31) 
where we recall that m ε i,k [µ] is defined in (4.22). In order to prove that (4.31) admits at least a solution, we will need the following stability result. Lemma 4.11. Let µ n ∈ S N +1 be s a sequence converging to µ ∈ S N +1 . Then: Theorem 4.12. There exists at least one solution of (4.31). Proof. This is a straightforward consequence of Lemma 4.11, Proposition 4.10(ii) and Brouwer fixed-point theorem.

(i) v ε ρ,h [µ n ](•, •) → v ε ρ,h [µ](•, •) uniformly over compact sets. (ii) m ε i,k [µ n ] → m ε i,k [µ]
[µ n ](•, •) → αρ,h ε [µ](•, •).
Given a solution m ε ∈ S N +1 of (4.31), we set m ε ρ,h (•, •) for the extension to R d × [0, T ] defined in (4.23). Now we prove our main result.

Theorem 4.13. Suppose that d = 1 and that (H1)-(H3) hold. Consider a sequence of positive numbers ρ n , h n , ε n satisfying that ρ n = o (h n ), h n = o(ε n ) and ε n ↓ 0 as n ↑ ∞. Let {m n } n∈N be a sequence of solutions of (4.31) for the corresponding parameters ρ n , h n , ε n . Then every limit point in C([0, T ]; P 1 ) of m n (there exists at least one) solves (MFG). In particular, if (H4) holds we have that m εn ρn,hn → m (the unique solution of (MFG)) in C([0, T ]; P 1 ) and in

L ∞ R d × [0, T ] -weak- * .
Proof. For notational convenience we will write v n := v εn ρn,hn [m n ]. By Proposition 4.10(i) and Ascoli theorem we can assume the existence of m ∈ C([0, T ]; P 1 ) such that m n (as an element of C([0, T ]; P 1 )) converge to m in C([0, T ]; P 1 ). Moreover, Proposition 4.10(iii) implies that, up to some subsequence, m n (as an element of

L ∞ (R d × [0, T ])) converge in L ∞ R d × [0, T ] -
weak- * to some m. Thus, we necessarily have that m is absolutely continuous and its density, still denoted as m, is equal to m. In order to complete the proof, we now show that m solves the continuity equation (2.3), i.e. for any t ∈ [0, T ] and

φ ∈ C ∞ c (R d ) R φ(x)dm(t)(x) = R φ(x)dm 0 (x) - t 0 R Dφ(x)Dv[m](x, s)dm(s)(x)ds. (4.32)
Given t ∈ [0, T ], let us set t n := t hn h n . We have

R φ(x)dm n (t n ) = R φ(x)dm 0 (x) + n-1 k=0 R φ(x)d [m n (t k+1 ) -m n (t k )] . (4.33)
By definitions (4.22) and (4.23), setting Φ n i,k,k+1 := x i -h n Dv n (x i , t k ), for all k = 0, . . . , n -1 we have

R φ(x)dm n (t k+1 ) = i∈Z m n i,k+1 1 
ρn Ei φ(x)dx, = i∈Z 1 ρn Ei φ(x)dx j∈Z β i Φ n j,k,k+1 m n j,k , = j∈Z m n j,k i∈Z β i Φ n j,k,k+1 1 
ρn Ei φ(x)dx.

(4.34)

As in (4.29) we get

1 ρ Ei φ(x)dx -φ(x i ) ≤ Dφ ∞ ρ.
Therefore, combining with (4.34), we get (recalling (4.2) with γ = 1)

R φ(x)dm n (t k+1 ) = j∈Z m n j,k i∈Z β i Φ n j,k,k+1 φ(x i ) + O(ρ), = j∈Z m n j,k I[φ] Φ n j,k,k+1 + O(ρ), = j∈Z m n j,k φ Φ n j,k,k+1 + O(ρ). (4.35)
On the other hand, by Lemma 4.4(i), the function v n (•, t) is Lipschitz (with Lipschitz constant independent of n). Therefore, by (4.19) we have the existence of a constant c > 0 (independent of n) such that

|Dv n (x, t) -Dv n (y, t)| ≤ c ε n |x -y|, (4.36) 
which implies, setting Φ n k,k+1 (

x) = x -h n Dv n (x, t), that φ Φ n k,k+1 (x) -φ Φ n k,k+1 (y) ≤ c ′ 1 + h ε n |x -y|.
for some c ′ > c (which is also independent of n). Therefore, we have

1 ρ Ej φ Φ n k,k+1 (x) dx -φ Φ n j,k,k+1 ≤ c ′ 1 + h ε n ρ. Since h εn = O(1), by (4.35), we get R φ(x)dm n (t k+1 ) = j∈Z m n j,k 1 ρn Ej φ Φ n k,k+1 (x) dx + O (ρ) , = R φ Φ n k,k+1 (x) dm n (t k ) + O (ρ) .
The expression above yields to Proposition 4.10(i) gives that for all s ∈ [t k , t k+1 ], with k = 0, . . . , n -1, we have

R φ(x)d [m n (t k+1 ) -m n (t k )] = R φ Φ n k,k+1 (x) -φ(x) dm n (t k ) + O (ρ) , = -h n R Dφ(x)Dv n (x, t k )dm n (t k ) +O h 2 n + ρ n (4.37) Since Dφ(•)•Dv n (•, t k ) is c ′′ /ε n -Lipschitz (with c ′′ large enough),
R Dφ(x)Dv n (x, t k )d [m n (s) -m n (t k )] ≤ c ′′ ε n |s -t k | ≤ c ′′ h n ε n , which implies that, using that Dv n (x, s) = Dv n (x, t k ) for s ∈ [t k , t k+1 [, t k+1 t k R Dφ(x)Dv n (x, s)d [m n (s) -m n (t k )] ds ≤ c ′′ h 2 n ε n . (4.38)
Therefore, combining (4.38) and (4.37), we obtain that

R φ(x)d [m n (t k+1 ) -m n (t k )] = - t k+1 t k R Dφ(x)Dv n (x, s)dm n (s)(x)ds +O h 2 n εn + ρ n .
Thus, summing from k = 0 to k = n -1 and using (4.33) 

R φ(x)dm n (t n )(x) = R φ(x)m n (x, 0) - tn 0 R Dφ(x)Dv n (x, s)m n (x,
I [0,tn] Dφ(•) • Dv n (•, •) → I [0,t] Dφ(•) • Dv[ m](•, •) ∈ L 1 (R × [0, T ]) strongly in L 1 ,
and since m n converge to m in L ∞ (R × [0, T ])-weak- * , we can pass to the limit in (4.39) to obtain (4.32). The result follows.

5. Numerical Tests. We show numerical simulations for the case d = 1. Given ε, ρ, h > 0 we set {m ε i,k ; i ∈ Z d , k = 0, . . . , T h } for the solution of (4.31) and {v ε i,k ; i ∈ Z d , k = 0, . . . , T h } for the associate value functions. We approximate heuristically m ε i,k and v ε i,k with a fixed-point iteration method. We consider as initial guess the element in m ε,0 ∈ S N +1 given by

m ε,0 i,k = m ε i,0 = Ei m 0 (x)dx, i ∈ Z, k = 0, . . . , N.
Next, for p = 0, 1, 2, . . ., given m ε,p ∈ S N +1 we calculate v ε,p+1 ∈ B(G ρ,h ) with the backward scheme (4.3), taking as µ the extension of m ε,p to C([0, T ]; P 1 ) defined in (4.30). The element m ε,p+1 ∈ S N +1 is then computed with the forward scheme (4.22), taking

ρ(x) = 1 √ 2π e -x 2 /2 .
(5.1)

In the numerical simulations we approximate (4.21) with a discrete convolution using a central difference scheme for the gradient. The iteration process is stopped once the quantities

E(v ε,p ) := v ε,p+1 -v ε,p ∞ , E(m ε,p ) := m ε,p+1 -m ε,p ∞ , (5.2) 
are below a given threshold τ .

Remark 5.1. The theoretical study of the convergence of the fixed-point iterations is not analyzed in the present paper. The analysis of a convergent and efficient method to solve (4.31) remains as subject of future research.

By Proposition 4.10(ii), we know that m ε has a compact support, uniformly in (ε, ρ, h). Therefore, in order to calculate the iteration m ε,p+1 i,k we only need the values v ε,p+1 i,k for i such that iρ belongs to a compact set K, which is independent of (ε, ρ, h, p). This fact allows us to drop the analysis of boundary conditions.

For the numerical tests we will consider running costs of the form

1 2 α 2 (t) + F (x, m(t)) = 1 2 α 2 (t) + f (x) + V (x, m(t)),
where f is C 2 and V (x, m(t)) = ρ σ * [ρ σ * m(t)] (x), for some σ > 0 to be chosen later.

(5.3)

A straightforward calculation shows that F (x, m(t)) = f (x) + V (x, m(t)) satisfies assumption (H4).

5.1. Test 1. We simulate a game where the agents are adverse to the presence of other agents during the game and, at the end, they do not want to live at the boundary of a domain Ω.

In order to model this situation, we take Ω = [-0.2, 1.2], and the running cost

1 2 α 2 + F (x, m) = 1 2 α 2 + 0.3V (x, m),
where V given by (5.3) with σ = 0.3. We choose T = 1 as final time and

G(x) = -0.5(x + 0.5) 2 (1.5 -x) 2 ,
as final cost function. We take as initial mass distribution We model now a game where the agents want to live at x = 0.2 but again they are adverse to the presence of other agents. We consider a space numerical domain given by Ω = [0, 1] and a final time T = 1. The running cost function is modeled as

m 0 (x) = ν(x) Ω ν(x)dx
1 2 α 2 + F (x, m) = 1 2 α 2 + (x -0.2) 2 + V (x, m),
where V (x, m) is defined in (5.3) with σ = 0.05. We do not consider a final cost, i.e. we take G ≡ 0. We choose as initial mass distribution:

m 0 (x) = ν(x) Ω ν(x)dx
, with ν(x) = e -(x-0.75) 2 /(0.1) 2 .

We choose ε = 0.2, as space discretization step ρ = 1.25 • 10 -2 and as time step h = 0.02. Fig. 5.5 shows the mass evolution. As it is expected, during the evolution the mass distribution tends to concentrate at the "low energy" configuration x = 0.2 In this case, the system is not coupled and after one iteration we obtain the solution. In Fig. 5.9, the mass evolution is shown. It is seen that, during the evolution, the measure maintains its original shape, due to the absence of conflict between the agents. This shows qualitative differences with the situation where conflict is present, as was displayed in the case of Fig. 5.5. 

  )which applied with φ ≡ 1 gives m k [µ](R d ) = 1 for k = 0, . . . , N .We have the following Lemma, which improves [10, Lemma 3.7] since we now prove, using Proposition 3.2, uniform bounds for the density of m k [µ].

2 n

 2 for all t ∈ [0, T ]. The proof of the second assertion is provided e.g. in [3, Lemma 4.1]. Theorem 4.5. Let (ρ n , h n ) → 0 (as n ↑ ∞) be such that ρ hn → 0. Then, for every sequence µ n ∈ C([0, T ]; P 1 ) such that µ n → µ in C([0, T ]; P 1 ), we have that v ρn,hn [µ n ] → v[µ] uniformly over compact sets.

Proof. 2 n

 2 The result follows directly from the definition of v ε ρ,h [µ](•, t) and the corresponding results for v ρ,h [µ](•, t) in Lemma 4.4.As a consequence we obtain Theorem 4.7. Let (ρ n , h n , ε n ) → 0 (as n ↑ ∞) be such that ρ hn → 0. Then, for every sequence µ n ∈ C([0, T ]; P 1 ) such that µ n → µ in C([0, T ]; P 1

  Assertion (ii) for i ∈ Z d and k = 1 follows hence from the definition (4.22) of m ε i,1 [µ n ]. Therefore, by recursive argument we get the result for all i ∈ Z d and k = 0, . . . , N -1.
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 5154102 Fig. 5.1. Mass evolution m ε i,klogarithmic scale on the y-axis with respect to number of fixed-point iterations on the x-axis. The fixed point iteration method has been stopped when both errors are below τ = 10 -3 .
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 555657 Fig. 5.5. Mass distribution m ε i,k
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 58 Fig. 5.8. Errors: E(m ε,p ) (left), E(v ε,p ) (right), p = 0...., 50
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 59 Fig. 5.9. Mass distribution m ε i,k (case "no game" with F = (x -0.2) 2 )

  The first assertion is a consequence of Theorem 4.5 and the uniform estimate (4.19). Now, Lemma 4.6 and Lemma 4.3(iii) imply that Dv εn ρn,hn [µ

), we have that v εn ρn,hn [µ n ] → v[µ] uniformly over compact sets and Dv εn ρn,hn [µ n ](x, t) → Dv[µ](x, t) at every (x, t) such that Dv[µ](x, t) exists. Proof. n ](x, t) is uniformly bounded in n and

  for all i ∈ Z d and k = 0, . . . , N . Proof. Because of the assumptions on F and G in (H1) we clearly have (i). By definition of v ε ρ,h [µ n ](x, t) and (i), Lebesgue theorem implies that we have pointwise convergence of Dv ε ρ,h [µ n ] to Dv ε ρ,h [µ] and obvoiusly also of αρ,h ε

  By Theorem 4.7 we have that Dv n (x, s) → Dv[ m](x, s) for a.a. (x, s) ∈ R × [0, T ]. Therefore, using that φ ∈ C ∞ c (R), the Lebesgue theorem implies that

	s)dx ds
	+O hn εn + ρn hn .
	(4.39)
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