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Abstract: This note summarizes some recent advances on the theory of optimality conditions
for PDE optimization. We focus our attention on the concept of strong minima for optimal
control problems governed by semi-linear elliptic and parabolic equations. Whereas in the field
of calculus of variations this notion has been deeply investigated, the study of strong solutions for
optimal control problems of partial differential equations (PDEs) has been addressed recently.
We first revisit some well-known results coming from the calculus of variations that will highlight
the subsequent results. We then present a characterization of strong minima satisfying quadratic
growth for optimal control problems of semi-linear elliptic and parabolic equations and we end
by describing some current investigations.
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1. INTRODUCTION

The study of weak and strong minima in calculus of
variation goes back to the works of Euler, Legendre,
Weierstrass, Jacobi, Erdmann, where the first important
results in this area have been stated. The objective of
this note is to highlight some new characterizations of
strong minima in the field of PDE optimization and their
connection with well-known results coming from calculus
of variations and optimal control of ordinary differential
equations (ODEs).

Let us recall that, in the framework of the calculus of
variations, we speak of weak minima whenever neighbor-
hoods of feasible trajectories are considered in the space
of Lipschitz functions, whereas for strong minima, neigh-
borhood are considered in the uniform topology. These
two definitions lead to different necessary and sufficient
conditions. For instance, a necessary first order condition
for a weak minima is given by the Euler-Lagrange (E-
L) equation, which is weaker than Weiestrass-Pontryagin
condition, which is necessary for strong minima. Regard-
ing second order sufficient condition, we have that E-L
equation and the coercivity of a certain quadratic form
Q1 imply weak local minima (see Theorem 1), whereas to
assure strong local minima essentially the E-L equation has
to be replaced by a strict Weiestrass-Pontryagin condition
(see Theorem 2).

The concept of weak and strong minima has been consid-
ered also in other settings such as the optimal control of
ODEs and of semi-linear elliptic and parabolic PDEs. In
the ODE case, the study of strong minima, initiated by

the seminal work of Pontryagin et al. (1964), is exposed
in detail in Milyutin and Osmolovskĭı (1998) and the
references therein. In this context, important progress has
been done in Bonnans and Osmolovskĭı (2010) and Bon-
nans and Osmolovskĭı (2011), in the presence of control
and state constraints. For semi-linear elliptic equations,
Pontryagin minimum principles have been established for
strong minima in Raitums (1986) and Bonnans and Casas
(1989, 1991). Even if second order theory for weak minima
has been deeply studied in Casas et al. (1996); Bonnans
(1998); Bonnans and Zidani (1999); Casas and Tröeltzsch
(1999, 2002, 2009) and Casas et al. (2008), the first results
for the analysis of strong minima are provided in Bayen
et al. (2012). In this work a characterization of strong
minima satisfying a quadratic growth property is proved.
For the case of semi-linear parabolic equations, first-order
necessary conditions in the form of a Pontryagin principle
has been the subject of study of several works (see the
monograph Li and Yong (1994) and the references therein),
whereas the second order analysis for weak minima has
been investigated for instance in Goldberg and Tröeltzsch
(1993); Raymond and Tröltzsch (2000) and Rösch and
Tröltzsch (2003).

In this note, we will mainly discuss characterizations of
strong minima for optimal control problems governed by
semi-linear elliptic and parabolic equations. We present
a summary of the work in Bayen et al. (2012) for the
elliptic case and we exhibit some recent findings for the
parabolic case. A discussion about the current research of
the authors is also provided.



The exposition is organized as follows. In the second sec-
tion, we make a brief review of the well-known necessary
and sufficient optimality conditions in the field of calculus
of variations that motivates the analysis for the elliptic and
parabolic frameworks. In the third section, we review the
results of Bayen et al. (2012) dealing with a characteriza-
tion of strong minima satisfying quadratic growth in terms
of a second order condition and a strengthened Pontryagin
condition. Finally, we discuss in the last section extensions
of the results in Bayen et al. (2012) to the parabolic case
as well as the inclusion of state constraints, which is the
subject of our current research.

2. BOUNDED STRONG MINIMA IN THE CALCULUS
OF VARIATIONS

The well-know results briefly reviewed in this section can
be found for instance in e.g. Milyutin and Osmolovskĭı
(1998). We consider the simplest problem in the calculus
of variations:

inf

∫ b

a

ℓ(t, y(t), ẏ(t))dt,

s.t. y ∈ W 1,∞([a, b];Rn),

y(a) = ŷ1, y(b) = ŷ2,

which can be written as

inf J1(u) :=

∫ b

a

ℓ(t, y[u](t), u(t))dt,

s.t. u ∈ L∞([a, b];Rn),

y[u](b) = ŷ2,















(P1)

where

y[u](t) := ŷ1 +

∫ t

a

u(t)dt ∀ t ∈ (a, b).

Let us fix ū ∈ L∞([a, b];Rn) and set ȳ := y[ū].

Definition 2.1. Let R > 0. We say that ū is a:
(i) weak local solution of (P1) if ∃ ε > 0 such that

J1(ū) ≤ J1(u) ∀ u satisfying ‖u− ū‖∞ ≤ ε.

(ii) strong local solution of (P1) if ∃ ε > 0 such that

J1(ū) ≤ J1(u) ∀ u satisfying ‖y[u]− ȳ‖∞ ≤ ε.

(iii) R-bounded strong local solution of (P1) if ∃ ε > 0 such
that

J1(ū) ≤ J1(u) ∀ u satisfying ‖u− ū‖∞ ≤ R,

and ‖y[u]− ȳ‖∞ ≤ ε.

A strong local solution is always a R-bounded strong local
solution, which itself is always a weak local solution. It
is easy to see that a weak local solution is not always
a strong one. Take for instance ℓ(t, y, u) := u2 − u4 and
(a, b) = (0, 1), (ŷ1, ŷ2) = (0, 0), so that one can see that
y ≡ 0 is a weak minimum but not a R-bounded strong
one.

Let us define the Hamiltonian H : [a, b]× R
3n → R, as

H(t, y, p, u) := ℓ(t, y, u) + p⊤u.

For simplicity we will assume that H is C2. Let us recall
that if ū is weak solution of (P1) then the following E-L
condition holds true

− ˙̄p(t) = Hy(t, ȳ(t), p̄(t), ū(t)) a.e. in (a,b), (1)

where

p̄(t) := −ℓu(t, ȳ(t), ū(t)) a.e. in (a, b). (2)

In the above notation and in the rest of this note, the sub-
scripts denote derivation with respect to the corresponding
variable. Note that, by definition of p̄, we have that

Hu(t, ȳ(t), p̄(t), ū(t)) = 0 a.e. in (a, b). (3)

Now, let us define the quadratic formQ1 : L2([0, T ];Rn) →
R by

Q1(v) :=

∫ b

a

D2
(y,u)2H(t, ȳ(t), p̄(t), ū(t))(z[v], v)2dt,

where

z[v](t) :=

∫ b

a

v(s)ds ∀ t ∈ (a, b).

The following second-order conditions hold true.

Theorem 1. Suppose that ū is a weak local solution of
(P1). Then Q1(v) ≥ 0 for all v such that z[v](b) = 0.
Conversely, if there exists α > 0 such that Q1(v) ≥ α‖v‖22
for all v such that z[v](b) = 0, then ū is a weak solution of
(P1).

Now, we recall the analogous analysis for R-bounded
strong local solutions. If ū is a R-bounded strong lo-
cal solution of (P1) then it satisfies a.e. the following
Weierstrass-Pontryagin condition

H(t, ȳ(t), p̄(t), ū(t)) ≤ H(t, ȳ(t), p̄(t), v) ∀v ∈ R
n. (4)

We say that the strict Weierstrass-Pontryagin condition
holds at ū if the above inequality can be replaced by a strict
inequality. Note that (4) is a stronger condition than (3).
We have the following second-order sufficient condition for
a R-bounded strong local solution of (P1).

Theorem 2. Suppose that ū is continuous and that
(i) The strict Weierstrass-Pontryagin condition holds true.
(ii) If z[v](b) = 0 then Q(v) ≥ α‖v‖22.
Then, ū is a R-bounded strong local solution of (P1).

Remark 3. An extension of this result when ū is not
continuous can be found in Milyutin and Osmolovskĭı
(1998).

3. SEMI-LINEAR ELLIPTIC CONTROLLED
SYSTEMS

In this part, we summarize a result of Bayen et al. (2012)
concerning the characterization of strong minima for op-
timal control problems governed by semi-linear elliptic
equations. Although it is more delicate to study strong
minima in this setting, the scheme of the analysis is parallel
to the one in the calculus of variations theory.

Let Ω ⊂ R
n a bounded open set with a C1,1 boundary. We

consider the semi-linear elliptic equation:
{

−∆y + ϕ(y, u) = 0 in Ω,

y = 0 on ∂Ω.
(5)

Whenever ϕ is Lipschitz and satisfies ϕy ≥ 0, it is well
known that for any u ∈ L∞(Ω), there exists a unique

solution y[u] ∈ W 2,s(Ω) ∩ W
1,s
0 (Ω) (with s ∈ (1,∞)))

of (5). In particular, as s is arbitrary, classical Sobolev
inequalities yield that y[u] ∈ C(Ω). Let us now take
a, b ∈ C(Ω) such that a ≤ b over Ω. Consider the set

K1 = {u ∈ L∞(Ω) | a(x) ≤ u(x) ≤ b(x), a.e.} , (6)

and a cost function ℓ(y, u) satisfying standard assumptions
(see Bayen et al. (2012)). We define



J2(u) :=

∫

Ω

ℓ(y[u](x), u(x))dx, (7)

and our aim is to study the problem:

min J2(u) s.t. u ∈ K1. (P2)

Definition 3.1. Let ū ∈ K1 and set ȳ := y[ū]. We say that
(i) ū is a weak local solution of (P2) if ∃ ε > 0 such that

J2(ū) ≤ J2(u) ∀ u ∈ K1 s.t. ‖u− ū‖∞ ≤ ε.

(ii) ū is a strong local solution of (P2) if ∃ ε > 0 such that

J2(ū) ≤ J2(u) ∀ u ∈ K1 s.t. ‖y[u]− ȳ‖∞ ≤ ε.

Next we define stronger notions involving quadratic
growths.

Definition 3.2. We say that :
(i) J2 has a local quadratic growth in K1 at ū in the weak
sense if ∃ α, ε > 0 s.t.

J2(ū) + α‖u− ū‖22 ≤ J2(u) ∀ u ∈ K1 s.t. ‖u− ū‖∞ ≤ ε.

(ii) J2 has a local quadratic growth in K1 at ū in the strong
sense if ∃ α, ε > 0 s.t.

J2(ū)+α‖u− ū‖22 ≤ J2(u) ∀ u ∈ K1 s.t. ‖y[u]− ȳ‖∞ ≤ ε.

We introduce the Hamiltonian

H(y, p, u) := ℓ(y, u)− pϕ(y, u). (8)

The adjoint state p̄ is defined as the unique solution of
{

−∆p̄ = Hy(y, p̄, u) in Ω,

p̄ = 0 on ∂Ω.
(9)

Definition 3.3. We say that
(i) ū is a Pontryagin extremal if a.e.

H(ȳ(x), p̄(x), ū(x)) ≤ H(ȳ(x), p̄(x), v), ∀v ∈ [a(x), b(x)]

(ii) H has global quadratic growth at ū ∈ K1 if ∃ α > 0 s.t.

H(ȳ(x), p̄(x), ū(x)) + α|v − ū(x)|2 ≤ H(ȳ(x), p̄(x), v),

for all x ∈ Ω and v ∈ [a(x), b(x)].

First and second-order necessary and sufficient conditions
for a weak local solution ū can be found e.g. in Bonnans
(1998) and Casas et al. (1996).

Regarding strong local solutions, a first order necessary
condition of Pontryagin type has been proved in Raitums
(1986) and Bonnans and Casas (1991, 1989). Namely, if ū
is a strong local solution of (P2), then it is a Pontryagin
extremal.

Our main result is a characterization of the local quadratic
growth J in the strong sense, which is based on a second-
order condition. Let us define the tangent cone to K1 at ū
by

TK1
(ū) :=

{

v ∈ L2(Ω) ; v ≥ 0 in [ū(x) = a(x)]
v ≤ 0 in [ū(x) = b(x)]

}

,

and the critical cone at u:

CK1
(ū) := {v ∈ TK1

(ū) ; Hu(ȳ(x), p̄(x), ū(x))v(x) = 0,

a.e.}.

Let us consider the quadratic form

Q2(v) :=

∫

Ω

D2
(y,u)2H(ȳ(x), p̄(x), ū(x))(z[v], v)2dx,

where z[v] is the solution of
{

−∆z[v] +Dϕ(ȳ, ū)(z[v], v) = 0 in Ω,

z[v] = 0 on ∂Ω.

Now we can state the main result of Bayen et al. (2012).

Theorem 4. The cost functional J satisfies the local
quadratic growth property at ū in the strong sense if and
only if the Hamiltonian has global quadratic growth at
ū ∈ K1 and there exists α > 0 s.t.

Q2(v) ≥ α‖v‖22 for all v ∈ CK1
(ū).

The proof of the above theorem relies on a decomposition
result of the cost functional which extends the one in
Bonnans and Osmolovskĭı (2010) for the ODE framework.
It provides a second-order expansion for J2, which can be
written as the sum of two terms: the first one corresponds
to a variation of the cost due to a perturbation which
is “large in L∞”, but supported on a set with “small”
measure. The second term corresponds to a variation
which is “small in L∞” and thus can be treated as in the
classical weak case. The proof of this decomposition result
relies on standard estimates in Ls for solutions of linear
elliptic equations (see e.g. Gilbarg and Trudinger (1983)).

4. SEMI-LINEAR PARABOLIC CONTROLLED
SYSTEMS

Let Ω ⊆ R
n open and bounded with a C1,1 boundary, and

let T > 0 be fixed. Set Q = Ω×(0, T ) and Σ = ∂Ω×(0, T ).
Let us consider the following controlled parabolic equation

∂ty −∆y + ϕ(y, u) = 0, in Q,

y(0, ·) = y0(·), in Ω,

y(t, x) = 0, in Σ,

(10)

where ϕ is Lipschitz and satisfies ϕy ≥ 0. Classical
regularity assumptions for ϕ imply that for any u ∈
L∞(Q) equation (10) admits a unique solution y[u] ∈
L2([0, T ];H1(Ω)) ∩ C(Q).

Given a, b ∈ C(Q̄), let us define

K2 = {u ∈ L∞(Q) | a(t, x) ≤ u(t, x) ≤ b(t, x), a.e.} .

and

K3 =

{

u ∈ L∞(Q) ; Gi(u) = 0 i = 1, . . . , k,
Gj(u) ≤ 0 j = k + 1, . . . ,m

}

.

where, for some C2 functions gi, gj ,

Gi(u) :=

∫

Ω

gi(y[u](T, x))dx, Gj(u) :=

∫

Ω

gj(y[u](T, x))dx.

Given C2 functions ℓ : R2 → R and Φ : R → R we set

J3(u) :=

∫

Q

ℓ(y[u](t, x), u(t, x))dxdt+

∫

Ω

Φ(y[u](T, x))dx.

Using sharp results from the theory of anisotropic Sobolev
spaces (see Besov et al. (1979)), we can show a decom-
position result for the cost function in the same line of
Bonnans and Osmolovskĭı (2010) and Bayen et al. (2012).
This allows to prove the natural extension of Theorem 4
for the problem

min J3(u) s.t. u ∈ K2. (P3)

We are now studying the validity of this type of character-
ization for the more complicated problem when final state
constraints are included, i.e.

min J3(u) s.t. u ∈ K2 ∩ K3. (P3)

The main difficulty is to prove in this case that the
coercivity of the associated quadratic form on the critical
cone is a necessary condition for quadratic growth in the
strong sense. Some preliminary advances in this direction



have been done following ideas from Bonnans and Zidani
(1999) in the elliptic framework.
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