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Semi-Lagrangian schemes for mean field game models

E. Carlini F. J. Silva

Abstract— In this work we consider first and second order
Mean Field Games (MFGs) systems, introduced in [18], [19],
[20]. For the first order case, we recall a fully-discrete Semi-
Lagrangian (SL) scheme introduced in [9] and its main prop-
erties. We propose the natural extension of this scheme for the
second order case and we present some numerical simulations.

I. INTRODUCTION

Let us consider the system

−∂tv − σ∆v +H(Dv) = F (x,m(t)), in Q,

∂tm− σ∆m− div
(

DH(Dv)m
)

= 0, in Q,

v(x, T ) = G(x,m(T )) for x ∈ R
d , m(0) = m0,

(I.1)

where D denotes the space gradient, Q = R
d×(0, T ), T > 0,

σ ∈ R
+ and m0 is a probability measure on R

d. System

(I.1), as well as its stationary version, were introduced by

Lasry and Lions in [18], [19], [20] in order to model Nash

equilibria for differential games with a large numbers of

small players (see also the survey [15] about the various

applications of this theory in economics, natural resources

management, collective behavior, etc). Formally, the first

equation, together with its final condition, describes the value

function of an average or generic player, whereas the second

equation models the evolution of the initial distribution m0 of

the players if they follow the optimal strategy of the generic

player.

Under suitable assumptions over the data (see section II)

(I.1) admits at least one solution. More precisely, if σ 6= 0
system (I.1) has a classical solution (v,m), whereas if σ = 0
there exists (v,m) such that the first equation is satisfied in

the viscosity sense and the second equation is satisfied in

the distributional sense. Uniqueness of such solutions can

be established under an additional monotonicity assumption

over F and the final datum G (see (II.1)).

Finite-difference schemes to solve (I.1) when σ 6= 0,

have been proposed by [2], [3] and the first convergence

results have been obtained recently in [13], [14], for the

case when H is quadratic, and in [1], for the general case.

Let us mention that these methods allow to treat the case

of local interactions i.e. when the function F is of the

form F (x,m) = f(m(x)) for every absolutely continuous

probability measure m. In the same context of local interac-

tions, let us also mention the article [16], where a numerical

method, based on the optimal control of parabolic equations,

Dipartimento di Matematica, Sapienza Università di Roma
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is analyzed in detail. For the case σ = 0 the first step in the

approximation analysis was achieved in [7], where a semi-

discrete in time approximation was proved to converge to the

solution of the problem. Recently, in [9] an implementable

SL scheme was proposed and studied in detail.

Our aim in this article is to present some recent advances

in the numerical discretization of (I.1) for both: first order

and second order systems. We concentrate ourself on fully

discrete SL discretizations, as an interesting alternative to

finite-difference schemes, and their main properties. More

precisely, we will summarize the scheme proposed in [9],

which is the first paper that deals with the numerical analysis

of the first order system, and the main results obtained.

Next, we propose a natural extension to the second order

case and we display some simulations which show that our

scheme behaves well in practice. Theoretical studies such as

convergence results for our scheme in the second order case,

are the authors current subject of research.

For the sake of clarity, in this article we focus our attention

on numerical methods for the quadratic case, i.e. when

H(p) = 1
2 |p|

2. (I.2)

Nevertheless, our schemes, as well as their main properties,

can be extended to more general problems (see e.g. section

VI).

The article is organized as follows: We begin in section II

by recalling the standard assumptions for the data of (I.1).

Next, we review in section III the SL scheme introduced in

[9] for the first order case and the main results: existence of

a solution of the scheme and convergence to the solution of

(I.1). In section IV we propose a SL scheme for the second

order case and we provide in section V some numerical tests

for both types of systems. Finally, we discuss in section

VI some natural generalizations of our scheme for more

complicated problems.

II. ASSUMPTIONS AND PRELIMINARIES

We denote by P1 the space of probability measures over

R
d endowed with the Kantorvich distance:

d1(µ, ν) = sup

{
∫

Rd

φ(x)d[µ− ν](x) ; φ is 1-Lipschitz

}

.

In what follows we will suppose that H is given by (I.2)

and that

• F and G are continuous over Rd × P1.

• We have the following regularity for F and G

‖F (·,m)‖C2 + ‖G(·,m)‖C2 ≤ C.



• We have that m0 is absolutely continuous, with density

still denoted by m0 ∈ L∞(Rd), and has compact

support.

Note that the second assumption implies that F and G can

be interpreted as smoothing operators in the sense that they

transform probability measures into C2 functions.

We have (see [19], [20], [21], [8])

Theorem 2.1: If σ 6= 0 system (I.1) has a classical

solution (v,m). If σ = 0 then there exists (v,m) ∈
W 1,∞(Q)×C([0, T ];P1) such that the first equation in (I.1)

is satisfied in the viscosity sense, where the second equation

is satisfied in the distributional sense.

A uniqueness result can be obtained assuming the follow-

ing monotonicity condition: for all m1,m2 ∈ P1 we have
∫

Rd [F (x,m1)− F (x,m2)] d[m1 −m2](x) ≥ 0,
∫

Rd [G(x,m1)−G(x,m2)] d[m1 −m2](x) ≥ 0.
(II.1)

We have (see [19], [20], [21], [8])

Theorem 2.2: Under the additional condition (II.1) the

solution of (I.1) in Theorem 2.1 is unique.

Remark 2.1: The above results remain valid if F depends

also explicitly on the time variable t. However, in order to

simplify the notations we will not consider this dependence

in the presentation of our results.

In the rest of the article we focus our attention on

discretizations of (I.1). For the sake of simplicity, we will

present our schemes in the case when the space dimension

is one. Nevertheless, the schemes can be written in the case

of a general space dimension d (see [9]).

Given h, ρ > 0, let us define a space lattice Gρ and a

time-space grid Gρ,h as

Gρ := {xi = iρ, i ∈ Z} Gρ,h := Gρ × {tk}Nk=0,

where tk = kh (k = 0, . . . , N ) and tN = Nh = T . Let

us call B(Gρ) and B(Gρ,h) the space of bounded functions

defined on Gρ and Gρ,h, respectively. Given f ∈ B(Gρ) and

g ∈ B(Gρ,h) we define fi := f(xi), gi,k := g(xi, tk). Let us

consider the following linear interpolation operator

I[f ](·) :=
∑

i∈Z

fiβi(·) for f ∈ B(Gρ), (II.2)

where {βi ; i ∈ Z} are defined by

βi(x) := max{[1− |x− xi|/ρ, 0}.
We have that βi(x) is a continuous function with support

[xi − ρ, xi + ρ] and satisfies 0 ≤ βi ≤ 1, βi(xj) = δij (the

Kronecker symbol) and
∑

i∈Z
βi(x) = 1.

III. A FULLY DISCRETE SL SCHEME FOR THE FIRST

ORDER MFG SYSTEM

In this section we recall the scheme proposed in [9] for

the system

−∂tv +
1
2 |Dv|2 = F (x,m(t)), in Q,

∂tm− div
(

Dvm
)

= 0, in Q,

v(x, T ) = G(x,m(T )) for x ∈ R, m(0) = m0.
(III.1)

Given µ ∈ C([0, T ];P1), we denote by v[µ] the unique

viscosity solution (see [5]) of the following Hamilton-Jacobi-

Bellman (HJB) equation

−∂tv +
1
2 |Dv|2 = F (x, µ(t)), in Q,

v(x, T ) = G(x, µ(T )) for x ∈ R

(III.2)

and by m[µ] the unique solution in the distributional sense,

(see [4]), of the continuity equation

∂tm− div
(

Dvm
)

= 0, in Q,

m(0) = m0 ∈ P1.
(III.3)

To find a pair (v,m) such that (III.1) holds true is thus

equivalent to

Find µ ∈ C([0, T ];P1) such that m[µ] = µ. (III.4)

We present first the discretization of both equations in

(III.1) separately and then the corresponding discretization

of (III.4).

A. The fully-discrete scheme for the HJB equation

For a given µ ∈ C([0, T ];P1) let us define v ∈ B(Gρ,h)
using the following SL scheme for (III.2):
{

vi,k = Sρ,h[µ](v·,k+1, i, k) ∀ k = 0, . . . , N − 1,

vi,N = G(xi, µ(tN )),
(III.5)

with Sρ,h[µ] : B(Gρ)× Z× {0, . . . , N − 1} → R given by

Sρ,h[µ](f, i, k) := infα∈R

[

1
2I[f ](xi − hα) + 1

2h|α|2
]

+hF (xi, µ(tk)).
(III.6)

This type of SL scheme for HJB equations has been studied

extensively in the recent years (see e.g. [11] and the refer-

ences therein for a detailed exposition). Let us set

vρ,h[µ](x, t) := I[v
·,[ t

h ]
](x) for all (x, t) ∈ Q, (III.7)

which can be seen as an extension to Q of v defined by

(III.5) in the time-space grid Gρ,h. We have the following

convergence result (see [9, Theorem 4.5]):

Theorem 3.1: Let (ρn, hn) → 0 be such that
ρ2
n

hn

→ 0.

Then, for every sequence µn ∈ C([0, T ];P1) such that

µn → µ in C([0, T ];P1), we have that vρn,hn
[µn] → v[µ]

uniformly over compact sets of Q.

B. The fully-discrete scheme for the continuity equation

Given ρ ∈ C∞
c (R) such that ρ ≥ 0 and

∫

R
ρ(x)dx = 1,

for ε > 0 consider the mollifier ρε(x) :=
1
ερ

(

x
ε

)

and set

vερ,h[µ](·, t) := ρε ∗ vρ,h[µ](·, t). (III.8)

Let us consider the discrete flow

Φε
i,k,k+1[µ] := xi − hDvερ,h[µ](xi, tk). (III.9)

We define the following scheme in the time-space grid Gρ,h

mε
i,k+1[µ] :=

∑

j∈Z
βi

(

Φε
j,k,k+1[µ]

)

mε
j,k[µ],

mε
i,0[µ] :=

∫

Ei

m0(x)dx.
(III.10)



where Ei := [xi ± 1
2ρ] for all i ∈ Z.

Remark 3.1: The above scheme has the follows proba-

bilistic interpretation: For any k = 0, . . . , N , we have that

{mi,k ; ı ∈ Z} corresponds to the law of a inhomogeneous

discrete-time Markov chain {Xk ; k = 0, . . . , N}, taking

values in Gρ, with initial distribution

P(X0 = xi) =

∫

Ei

m0(x)dx

and transition probabilities

P(Xk+1 = xi | Xk = xj) = βi

(

Φε
j,k,k+1[µ]

)

.

�

Let us define mε
ρ,h[µ](·, tk) ∈ L∞(R) as

m
ε
ρ,h[µ](x, tk) :=

1

ρ

∑

i∈Z

m
ε
i,k[µ]IEi

(x) (III.11)

and if t ∈ [tk, tk+1]

mε
ρ,h[µ](x, t) :=

(

tk+1−t

h

)

mε
ρ,h[µ](x, tk)

+
(

t−tk
h

)

mε
ρ,h[µ](x, tk+1).

(III.12)

It is easy to check that mε
ρ,h[µ] ∈ C([0, T ];P1).

C. The fully discrete approximation SL of the first order

mean field game problem

Given the above discretizations, it is natural so consider

the following discrete version of (III.4)

Find µ ∈ C([0, T ];P1) such that mε
ρ,h[µ] = µ. (III.13)

We have (see [9, Theorem 4.12])

Theorem 3.2: There exists at least one solution of

(III.13).

The proof of the above result is based on Brouwer’s

fixed-point theorem. The main result of [9] is the following

convergence property for the solutions of (III.13).

Theorem 3.3: Consider a sequence of positive numbers

ρn, hn, εn satisfying that ρn = o (hn), hn = o(εn) and

ρn = O(ε
3/2
n ) as εn ↓ 0. Let {mn}n∈N be a sequence

of solutions of (III.13) for the corresponding parameters

(εn, ρn, hn). Then every limit point in C([0, T ];P1) of mn

(there exists at least one) solves (III.4). In particular, if (II.1)

holds we have that mεn
ρn,hn

→ m (the unique solution of

(MFG)) in C([0, T ];P1) and in L∞ (R× [0, T ])-weak-∗.

Remark 3.2: Even if all the properties of our scheme

are valid on a general dimension for the state space, we

are able to prove the above convergence result only for

the one-dimensional case (see [9]). Thus, the proof of a

convergence of this type in general dimensions remains as

an open question.

IV. A FULLY DISCRETE SL SCHEME FOR THE SECOND

ORDER MFG SYSTEM

In this section we consider the natural extension of the

scheme presented above to the second order MFG system

−∂tv − 1
2σ

2∆v + 1
2 |Dv|2 = F (x,m(t)), in Q,

∂tm− 1
2σ

2∆v − div
(

Dvm
)

= 0, in Q,

v(x, T ) = G(x,m(T )) for x ∈ R, m(0) = m0.
(IV.1)

As before, given µ ∈ C([0, T ];P1), we denote by v[µ] the

classical solution of the HJB equation (see [12])

−∂tv − 1
2σ

2∆v + 1
2 |Dv|2 = F (x, µ(t)), in Q,

v(x, T ) = G(x, µ(T )) for x ∈ R

(IV.2)

and by m[µ] the unique classical solution of the following

Kolmogorov or Fokker-Planck equation (see [17])

∂tm− 1
2σ

2∆m− div
(

Dvm
)

= 0, in Q,

m(0) = m0 ∈ P1.
(IV.3)

Remark 4.1: The solution m of (IV.3) has the following

representation formula (see e.g. [10]): consider the stochastic

differential equation (SDE)

dX(t) = −Dv(X(t), t)dt+ σdW (t), ∀ t ∈ (0, T ),

X(0) = ξ,

where the law of ξ is given by m0. Then, we have that the

law of X(t), denoted by L(X(t)), satisfies

m(t) = L(X(t)) ∀ t ∈ [0, T ].

�

We now present the schemes for both equations in (IV.1)

separately.

A. The fully-discrete scheme for the HJB equation

We consider the following scheme for (IV.2)
{

vi,k = Ŝρ,h[µ](v·,k+1, i, k) ∀ k = 0, . . . , N − 1,

vi,N = G(xi, µ(tN )),
(IV.4)

where Ŝρ,h[µ] : B(Gρ)×Z×{0, . . . , N −1} → R is defined

as

Ŝρ,h[µ](f, i, k) := infα∈R

[

1
2I[f ](xi − hα+

√
hσ)+

1
2I[f ](xi − hα−

√
hσ) + 1

2h|α|2
]

+ hF (xi, µ(tk)).

(IV.5)

This scheme has been proposed in [6] for a second order

possibly degenerate Hamilton-Jacobi-Bellman equation, cor-

responding to an infinite horizon stochastic optimal control

problem. The following properties of Ŝρ,h[µ] are easy to

verify.

Proposition 4.1: The following assertions hold true:

(i) [The scheme is well defined] There exists at least one

α ∈ R that minimizes the r.h.s. of (IV.5).



(ii) [Monotonicity] For all v, w ∈ B(Gρ) with v ≤ w, we

have that

Ŝρ,h[µ](v, i, k) ≤ Ŝρ,h[µ](w, i, k).

(iii) For every K ∈ R and w ∈ B(Gρ) we have

Ŝρ,h[µ](w +K, i, n) = Ŝρ,h[µ](w, i, n) +K.

(iv) [Consistency] Let (ρn, hn) → 0 (as n ↑ ∞) and consider
a sequence of grid points (xin , tkn

) → (x, t) and a sequence
µn ∈ C([0, T ];P1) such that µn → µ. Then, for every φ ∈
C2 (R× [0, T )), we have

limn→∞
1

hn

[

φ(xin , tkn
)− Ŝρn,hn

[µn](φkn+1
, in, kn)

]

= −∂tφ(x, t)−
σ2

2
∆φ(x, t) + 1

2
|Dφ(x, t)|2 − F (x, µ(t)).

where φk = {φ(xi, tk)}i∈Z.

We set v[µ] for the extension of vi,k to Q, as in (III.7).

B. The fully-discrete scheme for the Fokker-Planck equation

As in the first order case, vερ,h[µ] denotes the convolution

of vρ,h[µ] with a smoothing kernel. Let us define

Φε,+
i,k,k+1[µ] := xi − hDvερ,h[µ](xi, tk) + σ

√
h,

Φε,−
i,k,k+1[µ] := xi − hDvερ,h[µ](xi, tk)− σ

√
h.

We consider the following scheme for (IV.3)

mε
i,k+1[µ] := 1

2

∑

j∈Z
βi

(

Φε,+
j,k,k+1[µ]

)

mε
j,k[µ]

+ 1
2

∑

j∈Z
βi

(

Φε,−
j,k,k+1[µ]

)

mε
j,k[µ],

mε
i,0[µ] :=

∫

Ei

m0(x)dx,
(IV.6)

and we define the extension of the scheme to an element in

L∞(R× [0, T ]) as in (III.11) and (III.12).

Remark 4.2: As in remark 3.1, the scheme (IV.6) has the

follows probabilistic interpretation: For any k = 0, . . . , N ,

we have that {mi,k ; ı ∈ Z} corresponds to the law of

a inhomogeneous discrete-time Markov chain {Xk ; k =
0, . . . , N}, taking values in Gρ, with initial distribution

P(X0 = xi) =

∫

Ei

m0(x)dx

and transition probabilities

P(Xk+1 = xi | Xk = xj) = 1
2βi

(

Φε,+
j,k,k+1[µ]

)

+ 1
2βi

(

Φε,−
j,k,k+1[µ]

)

.

�

C. The fully discrete SL approximation of the second order

mean field game problem

Let us consider the following fully SL discretization of

(IV.1)

Find µ ∈ C([0, T ];P1) such that mε
ρ,h[µ] = µ. (IV.7)

Existence of a solution of (IV.7) as well as a convergence

result in C([0, T ];P1) can be established using similar tech-

niques as those explored in [9]. However, since the solutions

of (IV.1) are regular, we expect to improve this type of

convergence and to obtain similar results to those in [1] with

the advantage of being able to chose large time steps.

V. NUMERICAL TESTS

We present numerical simulations for the first and second

order systems. As we will see, these simulations will show

different behavior according to the type of model. Given

the discrete positive parameters (ε, ρ, h), we call {mε
i,k} for

the solutions of (III.13) and (IV.7) and we denote by {vεi,k}
the associated discrete value functions. In order to compute

mε
i,k and vεi,k, we use a fixed–point iteration method. Let us

emphasize that the convergence of such a method has not

been proved yet and remains as an important challenge. We

consider as initial guess the element in mε,0 given by

mε,0
i,k = mε

i,0 =

∫

Ei

m0(x)dx, i ∈ Z, k = 0, . . . , N.

Next, for p = 0, 1, 2, . . ., given mε,p we calculate vε,p+1

with the backward schemes (III.5) and (IV.4), taking as µ
the extension of mε,p to C([0, T ];P1) defined in (III.11)
and (III.12). The element mε,p+1 is then computed with the
forward schemes (III.10) and (IV.6), using a regularizing
kernel ρε. In the numerical simulations we approximate
(III.8) with a discrete convolution and we use a central
difference scheme for the gradient. The iteration process is
stopped once the quantities

E(vε,p) := ‖vε,p+1 − v
ε,p‖∞, E(mε,p) := ‖mε,p+1 −m

ε,p‖∞,

are below a given threshold τ = 10−3.

In the next two subsections, we will solve the first order

scheme (III.13) and the second order scheme (IV.7) with

a viscosity coefficient σ = 0.05. We consider a space

numerical domain given by Ω = [0, 1] and a final time T = 2.

We will take G = 0 and F of the form (see Remark 2.1)

F (x,m, t) = f(x, t) + V (x,m),

where

V (x,m) = −10
∫

Ω
(y − x)2dm(y) and

f(x, t) = 5(x− (1− sin(2πt))/2)2.
(V.1)

Interpreting F as the running cost of an average player, the

term f(x, t) = 5(x−(1−sin(2πt))/2)2 constrains the agents

to stay close to the point (1 − sin(2πt))/2 at each time t.
The term V (x,m) avoid high concentration of the density

distribution.

We choose as initial mass distribution:

m0(x) =
ν(x)

∫

Ω
ν(x)dx

with ν(x) = e−(x−0.5)2/(0.1)2

and as regularizing kernel

ρε(x) =
1√
2π

e−(x−0.5)2/2ε2 , (V.2)

with ε = 0.3. We take as space discretization step ρ = 1.6 ·
10−2 and as time step h = 0.02.



A. Test 1: first order MFG model (σ = 0)

At the initial time the density is concentrated around

x = 0.5; due to the term f(x, t) in the running cost

the density tends to concentrate around the curve

x(t) = (1− sin(2πt))/2. At the same time the second term

in V avoid m to form high concentration of players, i.e. the

players do not want to be surrounded by a large number of

players.

Fig. 1 shows the density evolution in the domain Ω×[0, T ].
In Fig. 2, we show the errors E(mε,p) and E(vε,p) of the

fixed–point algorithm for the density and the value function.
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Fig. 1. Density distribution mε
i,k

B. Test 2: second order MFG model (σ = 0.05)

In this case, the presence of a diffusive term influences

the evolution of the density. Again the density tends to

concentrate around the curve x(t) = (1 − sin(2πt))/2. On

the other hand, the viscosity term make the density spread

around this curve, as it is shown in Fig. 3, where the density

evolution is displayed.
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In Fig. 4 we show the errors E(mε,p) and E(vε,p) of the

fixed–point algorithm for the density and the value function.

VI. TOWARDS A GENERALIZATION

Our scheme can be readily generalized to a more general
MFG system of the form

−∂tv −
∑

i,j
aij(x, t)∂ijv +H(Dv) = F (x,m(t)), in Q,

∂tm−
∑

i,j
∂ij(aij(x, t)v)− div

(

DH(Dv)m
)

= 0, in Q,

v(x, T ) = G(x,m(T )) for x ∈ R
d, m(0) = m0,

(VI.1)



where

a(x, t) = σ(x, t)σ⊤(x, t).

The existence of a solution of (VI.1) has not been established

yet. A possible method to establish such an existence result

could be a semi-discrete in time approximation, in the line

of [7], and then to pass to the limit when the discretization

parameter tends to zero. Even at this early stage, we can

always write down the corresponding fully discrete SL

schemes for both equations and to couple them in order to

figure out the SL scheme for (VI.1). The theoretical and

numerical analysis of (VI.1) is a subject of future research

of the authors.

VII. CONCLUSIONS

We have presented a fully discrete SL scheme to approxi-

mate both: first and second order MFGs systems. The scheme

results to be very flexible, in fact it can be easily generalized

to more complicated systems like (VI.1). The main advantage

of such scheme is to be explicit and to allow large time steps.

In [9], it is shown that for the first order case the following

relation between the space and time step is required:

ρ = o(h).

This is a standard assumption for SL schemes (see the

monograph [11] for an extensive description). We have kept

this relationship also to approximate the second order prob-

lem. Let us remark that the more restrictive parabolic CFL

condition (h = O(ρ2)) is avoided. The advantage is that we

need much less time iterations to approximate the problem

with respect to standard explicit finite difference scheme, for

which the parabolic CFL condition is required to make such

approximations stable. A rigorous convergence analysis for

the SL approximation of the second order problem is the

subject of a forthcoming paper.

1 2 3 4 5 6 7 8 9
10

−4

10
−3

10
−2

10
−1

10
0

1 2 3 4 5 6 7 8 9
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Fig. 4. Errors: E(mε,p) (left), E(vε,p) (right), p = 0...., 9

REFERENCES

[1] Y. Achdou, F. Camilli, and I. Capuzzo Dolcetta. Mean field games:
convergence of a finite difference method. Preprint, 2012.

[2] Y. Achdou, F. Camilli, and I. Capuzzo Dolcetta. Mean field games:
Numerical methods for the planning problem. SIAM J. of Control &

Optimization, 50:79–109, 2012.

[3] Y. Achdou and I. Capuzzo Dolcetta. Mean field games: Numerical
methods. SIAM Journal of Numerical Analysis, 48-3:1136–1162, 2010.

[4] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces
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