
Lazy	 Visibility	 Evalua/on
	 for	 Exact	 So7	 Shadows

Frédéric	 Mora,	 Lilian	 Aveneau,
	 Oana	 Apostu,	 Djamchid	 Ghazanfarpour

mardi 31 décembre 13

Introduction	 >	 context

Soft	 shadows	

·•underlying	 problem:	 area	 light	 source	 visibility

·•visibility	 accuracy	 /	 soft	 shadows	 quality

A	 common	 solution:	 sampling	

·•noise	 sensitive

·•can	 become	 expensive

mardi 31 décembre 13

Our context is high quality soft shadows computation. This implies to determine the visibility
of an area light source from any point in a scene. And the soft shadows quality highly
depends on the visibility accuracy.

A common solution is to sample the area light source and cast shadow rays. It is easy and
robust. However, as any sampling approach, it is sensitive to noise. Many samples may be
required to avoid the noise, increasing the computation time. Of course, many works on this
topic address this issue.

Introduction	 >	 our	 approach,	 main	 ideas

·•coherent	 visibility	 representation	
	 	 	 	 from/to	 an	 area	 light	 source	

·•contains	 all	 the	 possible	 light	 views

·•extract	 light	 visibility	 to	 compute	
	 	 	 	 analytic	 direct	 illumination

mardi 31 décembre 13

In this work, we propose to explore a completly different approach.

We compute analytic visibility from the area light source. This allows to find the visible parts
of the light source from any point, taking advantage of the visibility coherence between
neighboring points. The visible parts of the light are then used to compute analytic direct
illumination.

Introduction	 >	 Exact	 from-polygon	 visibility

Exact	 from-polygon	 visibility

·•a	 4D	 problem,	 complex

·•2002	 Nirenstein	 /	 Bittner	 (target	 scenario:	 exact	 PVS)

·•CSG	 computations	 (substractions	 of	 5D	 convex	 polyhedrons)

Common	 drawbacks	 	

·•very	 expensive	 (preprocess)
·•robustness	 issues

·•implementation	 is	 complicated

mardi 31 décembre 13

So, exact from-polygon visibility is the underlying problem. However this is a challenging one
because it is 4D and thus very complex.

The two first practical solutions were introduced by Nirenstein and Bittner in two thousand
two.

All the previous works on this topic rely on CSG computations in five dimensions.

This explains several drawbacks, because this is very expensive and prone to numerical
inaccuracy. In addition, this is complicated to implement properly.

Analytic	 from-polygon	 visibility

·•starts	 over	 from	 the	 theory

·•no	 5D	 CSG	 computations	 	 	 	 	 	 	 easy,	 robust,	 efficient

·•no	 preprocess

Introduction	 >	 core	 algorithm

mardi 31 décembre 13

Clearly, 5D CSG is the weak point.

Therefore we propose to start over from the theory in order to implement an approach which
does not use any 5D CSG computations. We want a method which is easy to implement,
robust and efficient, without any preprocess.

Outline	 >

·•Geometric	 basis

·•Visibility	 algorithm

·•Results

mardi 31 décembre 13

I will have to present or recall some geometric basis, mainly the Plucker Coordinates.
Next I will explain our visibility algorithm, followed by some results.

Geometrical	 basis	 >	 plucker	 coordinates	 of	 an	 oriented	 line

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

op oqpq x

mardi 31 décembre 13

So the Plucker space is five dimensional projective space of lines.

A 3D line maps to a point in the plucker space.
The six coordinates are not very intuitive but if we look closely, we can see that the three first
coordinates are the line direction while the three last ones encode the line location.

Geometrical	 basis	 >	 point	 -	 hyperplane	 duality

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

mardi 31 décembre 13

In the plucker space, any line can also be represented by a hyperplane.
This defines a dual representation as a point or as a hyperplane.

Geometrical	 basis	 >	 relative	 orientation	 of	 lines
F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

mardi 31 décembre 13

Plucker coordinates are often used for the so called «side operator». This allows to compute
the relative orientation of two lines. In other words, it describes how a line «turns» around
another one.

This is not an intuitive notion in 3D. To simplify, let’s consider two lines and let’s imagine we
are walking along the first one. At a time, we will left the second line on our right or on our
left. Eventually we will encounter the other line if the two lines are incident. The side operator
helps to distinguish between these tree possibilities: if it is positive, the two lines have a
positive orientation, if it is null they are incident, if it is negative they have a negative
orientation.

In the plucker space, the side operator has a much simpler geometric interpretation. indeed,
the side operator is equivalent to test the plucker point of one line against the hyperplane of
the other one. It is clear that three cases can occur: either the point is in the positive
halfspace, either it is incident to the hyperplane, either it is in the negative halfspace.

Geometrical	 basis	 >	 line-triangle	 intersection	 test

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

·•lines	 stabbing	 a	 triangle...

·•...	 have	 their	 plucker	 point	 inside	 the	 convex	 polyhedron...

·•...	 whose	 hyperplanes	 are	 the	 lines	 spanning	 the	 triangle	 edges

mardi 31 décembre 13

The plucker coordinates can be used to make a robust triangle-line intersection test.
Once again, we can imagine a nice walk along a triangle edges. All the lines stabbing the
triangle will be on the same side.

Here is the geometric interpretation in the plucker space:
Each line spanning a triangle edge can be mapped to a hyperplane.
And this three hyperplanes define a convex polyhedron.
All the lines stabbing the triangle have a consistent orientation with respect to the three
hyperplanes. This means that their plucker points are inside the polyhedron bounded by the
hyperplanes

Geometrical	 basis	 >	 lines	 stabbing	 triangles

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

cells and one of them contains all the lines (i.e. their Plücker
points) stabbing the triangle, while the other cells contain the
lines missing the triangle.

Pellegrini [Pel04] develops a more general approach. He

a

b

c

πa

πb

πc

R3 P5

Figure 3: Left: 2 triangles and 3 lines a, b, c in various

configurations. Right: The arrangement of hyperplanes (il-

lustrated by 6 2D lines) mapped from the 6 triangles edges.

They divide the Plücker space into cells. Filled cells are set

of lines intersecting at least one triangle. πa, πb and πc are

the Plücker points mapped from a, b and c. They are located

in the cells they belong to, according to the triangle(s) they

stab. For example, πb has a consistent orientation with re-

spect to the 6 hyperplanes since b intersects the two trian-

gles. Its relevant cell holds all the lines intersecting the two

triangles.

uses the Plücker space as a framework to provide theoreti-
cal bounds on various problems involving lines. Let S be a
set of several triangles (or convex polygons) and LS be the
lines spanning the triangles edges in S. Each line in LS can
be mapped to Plücker space as a hyperplane. This builds an
arrangement in Plücker space: A decomposition of the space
into cells by a set of hyperplanes. All the points in a same
cell satisfy the following property: They all have the same
sign with respect to its bounding hyperplanes. This is illus-
trated in Figure 3 with 2 triangles. Thus, in Plücker space,
all the lines (i.e. their Plücker points) belonging to the same
cell intersect the same subset of triangles in S. Notice that
this subset can be empty if the lines miss all the triangles in
S.

The decomposition of Plücker space into cells allows to
group lines together according to the subset of triangles they
intersect. This defines an equivalence relation on lines. Each
cell corresponds to an equivalence class (sometimes called
isotopy class [Pel91] or orientation class [CEG∗96]). To sum
up, the Pellegrini approach allows an exact and analytical
representation of all the sets of lines generated by a set of
triangles S, using the set of lines LS.

3.3. Orientation of lines intersecting two polygons

We focus on the set of lines intersecting two convex poly-
gons. We prove the following theorem:

Theorem 1 Let A and B be two convex polygons with n and

m vertices respectively. We define vvset = {vi j, i ∈ [1,n], j ∈
[1,m]} the set of the lines vi j defined by one vertex of A and

one vertex of B. Let l be any line and q a line intersecting A

and B:

side(l,x)≥ 0, ∀x ∈ vvset ⇒ side(l,q)≥ 0,
side(l,x)≤ 0, ∀x ∈ vvset ⇒ side(l,q)≤ 0.

In other words, if all the vertex-to-vertex lines of two poly-
gons have a positive (resp. negative) orientation with respect
to any line l, all the stabbing lines of the two polygons will
have a positive (resp. negative) orientation with respect to l.
This is also illustrated by Figure 5. We refer the reader to the
Appendix at the end of this paper for a detailed proof of the
theorem 1.

Using this theorem, we can determine if the set of lines
stabbing two polygons has a consistent orientation with re-
spect to a given line. The visibilty algorithm presented in the
next section uses this essential result.

It can be proved that the Plücker points of the lines in
vvset are the vertices of the smallest convex polyhedron in
the Plücker space containing the stabbing lines of A and B.
A demonstration can be found in [CAF06, ACFM11], but it
requires advanced knowledge in geometric algebra. For the
understanding and the correctness of this work, the theorem
demonstrated in this paper is sufficient.

4. Algorithm

Since equivalence classes are continuous sets of lines that
hit/miss the same subset of triangles, they represent coher-
ent paths through the scene independently of any viewpoint.
Therefore, two lines belonging to the same equivalence class
are spatially coherent. We use this property to build a Plücker
space partition representing the visibility of an area light
source.

4.1. Overview

We consider a convex area light source L, a triangle T , and
define their occluders O as the triangles intersecting their
convex hull. To represent the light source visibility, we focus
on the sets of lines intersecting L and which either miss all
the occluders in O, or hit at least one occluder in O. Thus,
we define:

• A visible class: Any equivalence class representing a set
of lines that do not intersect any occluders.

• An invisible class: Any equivalence class representing a
set of lines that intersect at least one occluder.

• An undefined class: An equivalence class that is not yet
found as visible or invisible.

Our algorithm builds a BSP tree in Plücker space, providing
a hierarchical representation of the equivalence classes gen-
erated by the occluders. Each leaf represents one of these
three classes. The algorithm is lazy: The BSP tree is grown
on-demand depending on when and where visibility infor-
mation is needed. The construction only relies on two oper-
ations: Inserting an occluder into the tree and growing the

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Pellegrini

·•lines	 spanning	 triangle	 edges	 ➡	 arrangement	 of	 hyperplanes

·•lines	 in	 a	 same	 cell	 intersect	 the	 same	 subset	 of	 triangles

mardi 31 décembre 13

This line-triangle intersection test extends to a set of triangles or convex polygons. This is
well explained by Pellegrini.

If all the lines spanning the triangle edges are mapped to hyperplanes, they define an
arrangement of hyperplanes which subdvide the plucker space into convex cells. And there is
an important property: points in a given cell are lines stabbing a same subset of triangles.
And if this subset is empty, they are lines missing all the triangles.

For example, any line stabbing the blue and the green triangles belongs to the same cell than
the red line b.

Geometrical	 basis	 >	 lines	 stabbing	 triangles

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

cells and one of them contains all the lines (i.e. their Plücker
points) stabbing the triangle, while the other cells contain the
lines missing the triangle.

Pellegrini [Pel04] develops a more general approach. He

a

b

c

πa

πb

πc

R3 P5

Figure 3: Left: 2 triangles and 3 lines a, b, c in various

configurations. Right: The arrangement of hyperplanes (il-

lustrated by 6 2D lines) mapped from the 6 triangles edges.

They divide the Plücker space into cells. Filled cells are set

of lines intersecting at least one triangle. πa, πb and πc are

the Plücker points mapped from a, b and c. They are located

in the cells they belong to, according to the triangle(s) they

stab. For example, πb has a consistent orientation with re-

spect to the 6 hyperplanes since b intersects the two trian-

gles. Its relevant cell holds all the lines intersecting the two

triangles.

uses the Plücker space as a framework to provide theoreti-
cal bounds on various problems involving lines. Let S be a
set of several triangles (or convex polygons) and LS be the
lines spanning the triangles edges in S. Each line in LS can
be mapped to Plücker space as a hyperplane. This builds an
arrangement in Plücker space: A decomposition of the space
into cells by a set of hyperplanes. All the points in a same
cell satisfy the following property: They all have the same
sign with respect to its bounding hyperplanes. This is illus-
trated in Figure 3 with 2 triangles. Thus, in Plücker space,
all the lines (i.e. their Plücker points) belonging to the same
cell intersect the same subset of triangles in S. Notice that
this subset can be empty if the lines miss all the triangles in
S.

The decomposition of Plücker space into cells allows to
group lines together according to the subset of triangles they
intersect. This defines an equivalence relation on lines. Each
cell corresponds to an equivalence class (sometimes called
isotopy class [Pel91] or orientation class [CEG∗96]). To sum
up, the Pellegrini approach allows an exact and analytical
representation of all the sets of lines generated by a set of
triangles S, using the set of lines LS.

3.3. Orientation of lines intersecting two polygons

We focus on the set of lines intersecting two convex poly-
gons. We prove the following theorem:

Theorem 1 Let A and B be two convex polygons with n and

m vertices respectively. We define vvset = {vi j, i ∈ [1,n], j ∈
[1,m]} the set of the lines vi j defined by one vertex of A and

one vertex of B. Let l be any line and q a line intersecting A

and B:

side(l,x)≥ 0, ∀x ∈ vvset ⇒ side(l,q)≥ 0,
side(l,x)≤ 0, ∀x ∈ vvset ⇒ side(l,q)≤ 0.

In other words, if all the vertex-to-vertex lines of two poly-
gons have a positive (resp. negative) orientation with respect
to any line l, all the stabbing lines of the two polygons will
have a positive (resp. negative) orientation with respect to l.
This is also illustrated by Figure 5. We refer the reader to the
Appendix at the end of this paper for a detailed proof of the
theorem 1.

Using this theorem, we can determine if the set of lines
stabbing two polygons has a consistent orientation with re-
spect to a given line. The visibilty algorithm presented in the
next section uses this essential result.

It can be proved that the Plücker points of the lines in
vvset are the vertices of the smallest convex polyhedron in
the Plücker space containing the stabbing lines of A and B.
A demonstration can be found in [CAF06, ACFM11], but it
requires advanced knowledge in geometric algebra. For the
understanding and the correctness of this work, the theorem
demonstrated in this paper is sufficient.

4. Algorithm

Since equivalence classes are continuous sets of lines that
hit/miss the same subset of triangles, they represent coher-
ent paths through the scene independently of any viewpoint.
Therefore, two lines belonging to the same equivalence class
are spatially coherent. We use this property to build a Plücker
space partition representing the visibility of an area light
source.

4.1. Overview

We consider a convex area light source L, a triangle T , and
define their occluders O as the triangles intersecting their
convex hull. To represent the light source visibility, we focus
on the sets of lines intersecting L and which either miss all
the occluders in O, or hit at least one occluder in O. Thus,
we define:

• A visible class: Any equivalence class representing a set
of lines that do not intersect any occluders.

• An invisible class: Any equivalence class representing a
set of lines that intersect at least one occluder.

• An undefined class: An equivalence class that is not yet
found as visible or invisible.

Our algorithm builds a BSP tree in Plücker space, providing
a hierarchical representation of the equivalence classes gen-
erated by the occluders. Each leaf represents one of these
three classes. The algorithm is lazy: The BSP tree is grown
on-demand depending on when and where visibility infor-
mation is needed. The construction only relies on two oper-
ations: Inserting an occluder into the tree and growing the

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

·•equivalence	 relation	 on	 lines	

·•lines	 are	 grouped	 according	 to	 the	 geometry	 they	 intersect

mardi 31 décembre 13

The arrangement of hyperplanes induces an equivalence relation on lines.

Using this equivalence relation we can group the lines according to the geometry they
intersect.

Geometrical	 basis	 >	 in	 short...

·•take	 some	 triangles

mardi 31 décembre 13

To sum-up:
Given a set of triangles,
map the line spanning their edges to hyperplanes in the plucker space
each cell of the related arrangement contains lines that hit or miss the same subset of
triangles

Geometrical	 basis	 >	 in	 short...

·•take	 some	 triangles

·•map	 the	 lines	 spanning	 their	
	 	 	 edges	 to	 plucker	 hyperplanes

mardi 31 décembre 13

To sum-up:
Given a set of triangles,
map the line spanning their edges to hyperplanes in the plucker space
each cell of the related arrangement contains lines that hit or miss the same subset of
triangles

Geometrical	 basis	 >	 in	 short...

·•take	 some	 triangles

·•this	 defines	 an	 arrangement	
	 	 	 of	 hyperplanes	 in	 Plucker	 space

·•map	 the	 lines	 spanning	 their	
	 	 	 edges	 to	 plucker	 hyperplanes

mardi 31 décembre 13

To sum-up:
Given a set of triangles,
map the line spanning their edges to hyperplanes in the plucker space
each cell of the related arrangement contains lines that hit or miss the same subset of
triangles

Geometrical	 basis	 >	 in	 short...

·•take	 some	 triangles

·•this	 defines	 an	 arrangement	
	 	 	 of	 hyperplanes	 in	 Plucker	 space

·•map	 the	 lines	 spanning	 their	
	 	 	 edges	 to	 plucker	 hyperplanes

·•each	 cell	 contains	 lines	 that	 hit/miss	
	 	 	 the	 same	 subset	 of	 triangles

mardi 31 décembre 13

To sum-up:
Given a set of triangles,
map the line spanning their edges to hyperplanes in the plucker space
each cell of the related arrangement contains lines that hit or miss the same subset of
triangles

Geometrical	 basis	 >	 in	 short...

Equivalence	 relation	 on	 lines

·•one	 cell	 	 	 	 	 	 	 	 	 one	 equivalence	 class

·•equivalent	 lines	 are	 coherent	 paths	 through	 the	 triangles

We	 want	 to	 compute	 equivalence	 classes	 representing	 coherent	

paths	 from/to	 an	 area	 light	 source	 through	 its	 occluders

mardi 31 décembre 13

One cell corresponds to one equivalence class and thus equivalent lines In a visibility context,
equivalent lines are coherent paths through the triangles.

We want to compute the paths from the area light source which are not blocked by any
geometry. This means computing the equivalence classes which represent sets of line not
stabbing any triangle and sets of lines stabbing at least one triangle.

Outline	 >

·•Geometric	 basis

·•Visibility	 algorithm

·•Results

mardi 31 décembre 13

We can now detail our visibility algorithm

Visibility	 algorithm	 >	 BSP	 representation	 of	 an	 occluder
F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

tree. The former allows to find the leaves affected by an oc-
cluder in the tree, while the latter grows the tree by replacing
a leaf with an occluder’s equivalence classes.

l0

l1

l2

h0

h1

h2o

Figure 4: Let l0, l1, l2 be the lines defined by the edges of an

occluder o, and h0, h1, h2 their dual hyperplanes in Plücker

space. We can build a BSP tree whose leaves are the four

equivalence classes generated by the triangle: Three visible

classes (left leaves) and one invisible class (right leaf). We

note bsp(o) such a representation.

Growing a BSP tree:

Let o be an occluder, we note bsp(o) the BSP representa-
tion of the equivalence classes generated by o (see Figure 4).
The tree grows each time an occluder is merged: The visi-
ble/invisible classes generated by the occluder are added to
the tree. Merging o into the tree consists in replacing a leaf
by the root of bsp(o). As a consequence, each inner node
contains a hyperplane corresponding to an occluder’s edge.

L L L

o o o

o o o

h h h

h h h

Figure 5: 2D illustration of an insertion using Theorem 1.

An occluder o intersects a subset of all the lines originating

from the light L. This subset may have a negative (left exam-

ple), a positive (right example) or a mixed (center example)

orientation with respect to any hyperplane h from an inner

node. Theorem 1 allows to define this orientation using the

vvset lines, i.e. the lines defined by one vertex of o and one

vertex of L. As a consequence the occluder o is inserted into

the right or left or both subtrees of the node."

Inserting an occluder:

Inserting an occluder relies on the Theorem 1. The procedure
is illustrated by Figure 5 and detailed in Algorithm 1 by the
insertOccluder function. Occluders are inserted into
the tree and located into the leaves (and thus the classes)
they may affect. Inserting an occluder o comes down to test-
ing the relative orientation of a hyperplane (from an inner

node) and the lines occluded by o. Since the occlusion cre-
ated by an occluder o is the set of lines intersecting both
L and o, we use Theorem 1 to determine the orientation of
the occluded lines with respect to the hyperplane. In Algo-
rithm 1, the function insertOcluder (line 9) describes
the process. If the current node n is a leaf which is not an
invisible class, it is affected by the occluder o and thus it is
stored in the leaf (line 12). Otherwise, if n is an inner node,
we have to test the relative orientation of the lines blocked
by o with respect to n.hyperplane, the hyperplane contained
in the node n. This relies on Theorem 1 using o.vvset, the
lines defined by one vertex of o and one vertex of the light
(line 14). If the orientation is positive (resp. negative) o is
inserted in the left (line 15) (resp. right (line 17)) child of n.
Otherwise, o is inserted in the both children (line 19− 20).
Those are the 3 cases illustrated by Figure 5.

The BSP tree construction is driven by the visibility queries
in order to compute only the required equivalence classes.
The following section presents this process and gives the de-
tails of our visibility algorithm. Next, we describe how it is
used in our soft shadow framework.

4.2. Visibility algorithm

We consider the following visibility query: Given a point xyz

on the triangle T , we want to find out the visible parts of the
light L from xyz through the occluders O. This involves all
the lines originating from xyz and intersecting L. As a conse-
quence, we have to find the subsets of those lines belonging
to a visible class. At first, we explain how those sets can be
represented using convex fragments of L. Let us consider a

xyz xyz

h

h

L L

Figure 6: The point xyz and the line h define a plane that sets

apart the lines stabbing L and having a positive or negative

orientation with respect to h

line h spanning an occluder edge in O. We observe that h and
xyz define a plane p that sets apart the lines intersecting xyz

and L in two sets: The first one with a positive orientation
with respect to h, the second one with a negative orientation.
Figure 6 gives an illustration. Notice that the orientation of
p is coherent with the orientation of h. As a consequence, if
L is split by p, we can compute the two relevant polygons
L ∩ p+ and L ∩ p− so that they represent respectively the

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

·•hyperplanes	 (inner	 nodes)

·•visible	 classes	 (leaves)

·•invisible	 classes	 (leaves)

mardi 31 décembre 13

First, let’s consider a single occluder. We can use a Binary Space Partionning tree to represent
the equivalence classes induced by this occluder.

Each node stores one hyperplane from an occluder edge.

Each leaf correspond to one equivalence class. The left leaves are visible classes, they
represent the lines missing the occluder. The right leaf is an invisible class, it represents the
lines blocked by the occluder.

Visibility	 algorithm	 >	 principle

Light

Point

Occluders

·•visibility	 from	 the	 area	 light	 source	 ?

·•light	 visibility	 from	 the	 point	 ?

mardi 31 décembre 13

Here is an example:
We have an area light source, a set of occluders and a point.

Visibility	 algorithm	 >	 principle

Light

Point

Occluders

?

·•visibility	 from	 the	 area	 light	 source	 ?

·•light	 visibility	 from	 the	 point	 ?

mardi 31 décembre 13

Two questions:
 - what are the visible or invisible classes corresponding to the visibility from the area light
source ?

Visibility	 algorithm	 >	 principle

Light

Point

Occluders

·•visibility	 from	 the	 area	 light	 source	 ?

·•light	 visibility	 from	 the	 point	 ?

?
?

mardi 31 décembre 13

 - what parts of the light are visible from the point ?

Our solution solves both these two problems.

Visibility	 algorithm	 >	 principle

A

Occluders

·•start	 with	 an	 undefined	 class	 and	 all	 the	 occluders

?

mardi 31 décembre 13

At first we focus on the first problem by looking for the classes representing the visibility
from the light.

This is done by lazily growing a BSP tree in the plucker space.

The algorithm starts with a single leaf associated with all the occluders. Since occluders
remain, the visibility from the light is undefined.

Visibility	 algorithm	 >	 principle

A

·•select	 a	 random	 occluder

?

mardi 31 décembre 13

And since the visibility is undefined, we have to grow the BSP tree.
We select randomly an occluder...

Visibility	 algorithm	 >	 principle

A

·•replace	 the	 leaf	 with	 the	 occluder	 BSP	 representation

·•remaining	 occluders	 can	 affect	 the	 visible	 classes

?

mardi 31 décembre 13

... and replace the leaf with its BSP representation, inserting the related classes.
Then the remaining occluders have to be inserted into the tree to check wether they affect
the newly added equivalence classes.

Visibility	 algorithm	 >	 occluded	 lines	 orientation

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

tree. The former allows to find the leaves affected by an oc-
cluder in the tree, while the latter grows the tree by replacing
a leaf with an occluder’s equivalence classes.

l0

l1

l2

h0

h1

h2o

Figure 4: Let l0, l1, l2 be the lines defined by the edges of an

occluder o, and h0, h1, h2 their dual hyperplanes in Plücker

space. We can build a BSP tree whose leaves are the four

equivalence classes generated by the triangle: Three visible

classes (left leaves) and one invisible class (right leaf). We

note bsp(o) such a representation.

Growing a BSP tree:

Let o be an occluder, we note bsp(o) the BSP representa-
tion of the equivalence classes generated by o (see Figure 4).
The tree grows each time an occluder is merged: The visi-
ble/invisible classes generated by the occluder are added to
the tree. Merging o into the tree consists in replacing a leaf
by the root of bsp(o). As a consequence, each inner node
contains a hyperplane corresponding to an occluder’s edge.

L L L

o o o

o o o

h h h

h h h

Figure 5: 2D illustration of an insertion using Theorem 1.

An occluder o intersects a subset of all the lines originating

from the light L. This subset may have a negative (left exam-

ple), a positive (right example) or a mixed (center example)

orientation with respect to any hyperplane h from an inner

node. Theorem 1 allows to define this orientation using the

vvset lines, i.e. the lines defined by one vertex of o and one

vertex of L. As a consequence the occluder o is inserted into

the right or left or both subtrees of the node."

Inserting an occluder:

Inserting an occluder relies on the Theorem 1. The procedure
is illustrated by Figure 5 and detailed in Algorithm 1 by the
insertOccluder function. Occluders are inserted into
the tree and located into the leaves (and thus the classes)
they may affect. Inserting an occluder o comes down to test-
ing the relative orientation of a hyperplane (from an inner

node) and the lines occluded by o. Since the occlusion cre-
ated by an occluder o is the set of lines intersecting both
L and o, we use Theorem 1 to determine the orientation of
the occluded lines with respect to the hyperplane. In Algo-
rithm 1, the function insertOcluder (line 9) describes
the process. If the current node n is a leaf which is not an
invisible class, it is affected by the occluder o and thus it is
stored in the leaf (line 12). Otherwise, if n is an inner node,
we have to test the relative orientation of the lines blocked
by o with respect to n.hyperplane, the hyperplane contained
in the node n. This relies on Theorem 1 using o.vvset, the
lines defined by one vertex of o and one vertex of the light
(line 14). If the orientation is positive (resp. negative) o is
inserted in the left (line 15) (resp. right (line 17)) child of n.
Otherwise, o is inserted in the both children (line 19− 20).
Those are the 3 cases illustrated by Figure 5.

The BSP tree construction is driven by the visibility queries
in order to compute only the required equivalence classes.
The following section presents this process and gives the de-
tails of our visibility algorithm. Next, we describe how it is
used in our soft shadow framework.

4.2. Visibility algorithm

We consider the following visibility query: Given a point xyz

on the triangle T , we want to find out the visible parts of the
light L from xyz through the occluders O. This involves all
the lines originating from xyz and intersecting L. As a conse-
quence, we have to find the subsets of those lines belonging
to a visible class. At first, we explain how those sets can be
represented using convex fragments of L. Let us consider a

xyz xyz

h

h

L L

Figure 6: The point xyz and the line h define a plane that sets

apart the lines stabbing L and having a positive or negative

orientation with respect to h

line h spanning an occluder edge in O. We observe that h and
xyz define a plane p that sets apart the lines intersecting xyz

and L in two sets: The first one with a positive orientation
with respect to h, the second one with a negative orientation.
Figure 6 gives an illustration. Notice that the orientation of
p is coherent with the orientation of h. As a consequence, if
L is split by p, we can compute the two relevant polygons
L ∩ p+ and L ∩ p− so that they represent respectively the

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

·•orientation	 of	 the	 occluded	 lines	 with	 respect	 to	 h	 ?

·•computing	 the	 vertex-to-vertex	 lines	 orientation	 is	 sufficient

mardi 31 décembre 13

This requires to test the orientation of the lines stabbing the light source and an occluder
with the hyperplane in the nodes.

Fortunately, it is sufficient to test the vertex-to-vertex lines orientation with respect to a
hyperplane. The details are in the paper.

If all the vertex-to-vertex lines have a consistent orientation, so does any line stabbing the
light and the occluder. In this case we can insert the occluder in the left or in the right
subtree.

if the orientation is not consistent, the occluder may affect both the subtree. Thus we
conservatively insert the occluder in the both subtrees. Previous works would have computed
CSG operations in such a case.

Visibility	 algorithm	 >	 principle

A

·•insert	 the	 remaining	 occluders	 in	 the	 tree

·•visible	 classes	 reached	 by	 occluders	 become	 undefined	

?

mardi 31 décembre 13

So we insert the occluders into the tree.

if they reach a visible class, they are associated to its leaf which becomes undefined

Visibility	 algorithm	 >	 principle

A
?

mardi 31 décembre 13

The process continues until all the occluders reach a leaf

Visibility	 algorithm	 >	 principle

A

·•occluders	 reaching	 invisible	 classes	 are	 discarded

·•first	 problem	 is	 partially	 solved

?

mardi 31 décembre 13

If it is an invisible class, the occluders are discarded since this already represents blocked
lines.

Now we have partially solved our first problem : to find the visible and invisble classes
representing the visibility from the light

Visibility	 algorithm	 >	 principle

A
?

·•light	 visibility	 from	 the	 point	 ?

mardi 31 décembre 13

We now focus on our second problem : to compute the light source visibility from a given
point.

Is this view is already included in the tree ?

To answer, we have to filter the lines in the view beam into the tree to find the classes they
belong to.

Thus we need to test the lines orientation in the view beam against each hyperplane in the
nodes.

Visibility	 algorithm	 >	 view	 beam	 orientation

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

tree. The former allows to find the leaves affected by an oc-
cluder in the tree, while the latter grows the tree by replacing
a leaf with an occluder’s equivalence classes.

l0

l1

l2

h0

h1

h2o

Figure 4: Let l0, l1, l2 be the lines defined by the edges of an

occluder o, and h0, h1, h2 their dual hyperplanes in Plücker

space. We can build a BSP tree whose leaves are the four

equivalence classes generated by the triangle: Three visible

classes (left leaves) and one invisible class (right leaf). We

note bsp(o) such a representation.

Growing a BSP tree:

Let o be an occluder, we note bsp(o) the BSP representa-
tion of the equivalence classes generated by o (see Figure 4).
The tree grows each time an occluder is merged: The visi-
ble/invisible classes generated by the occluder are added to
the tree. Merging o into the tree consists in replacing a leaf
by the root of bsp(o). As a consequence, each inner node
contains a hyperplane corresponding to an occluder’s edge.

L L L

o o o

o o o

h h h

h h h

Figure 5: 2D illustration of an insertion using Theorem 1.

An occluder o intersects a subset of all the lines originating

from the light L. This subset may have a negative (left exam-

ple), a positive (right example) or a mixed (center example)

orientation with respect to any hyperplane h from an inner

node. Theorem 1 allows to define this orientation using the

vvset lines, i.e. the lines defined by one vertex of o and one

vertex of L. As a consequence the occluder o is inserted into

the right or left or both subtrees of the node."

Inserting an occluder:

Inserting an occluder relies on the Theorem 1. The procedure
is illustrated by Figure 5 and detailed in Algorithm 1 by the
insertOccluder function. Occluders are inserted into
the tree and located into the leaves (and thus the classes)
they may affect. Inserting an occluder o comes down to test-
ing the relative orientation of a hyperplane (from an inner

node) and the lines occluded by o. Since the occlusion cre-
ated by an occluder o is the set of lines intersecting both
L and o, we use Theorem 1 to determine the orientation of
the occluded lines with respect to the hyperplane. In Algo-
rithm 1, the function insertOcluder (line 9) describes
the process. If the current node n is a leaf which is not an
invisible class, it is affected by the occluder o and thus it is
stored in the leaf (line 12). Otherwise, if n is an inner node,
we have to test the relative orientation of the lines blocked
by o with respect to n.hyperplane, the hyperplane contained
in the node n. This relies on Theorem 1 using o.vvset, the
lines defined by one vertex of o and one vertex of the light
(line 14). If the orientation is positive (resp. negative) o is
inserted in the left (line 15) (resp. right (line 17)) child of n.
Otherwise, o is inserted in the both children (line 19− 20).
Those are the 3 cases illustrated by Figure 5.

The BSP tree construction is driven by the visibility queries
in order to compute only the required equivalence classes.
The following section presents this process and gives the de-
tails of our visibility algorithm. Next, we describe how it is
used in our soft shadow framework.

4.2. Visibility algorithm

We consider the following visibility query: Given a point xyz

on the triangle T , we want to find out the visible parts of the
light L from xyz through the occluders O. This involves all
the lines originating from xyz and intersecting L. As a conse-
quence, we have to find the subsets of those lines belonging
to a visible class. At first, we explain how those sets can be
represented using convex fragments of L. Let us consider a

xyz xyz

h

h

L L

Figure 6: The point xyz and the line h define a plane that sets

apart the lines stabbing L and having a positive or negative

orientation with respect to h

line h spanning an occluder edge in O. We observe that h and
xyz define a plane p that sets apart the lines intersecting xyz

and L in two sets: The first one with a positive orientation
with respect to h, the second one with a negative orientation.
Figure 6 gives an illustration. Notice that the orientation of
p is coherent with the orientation of h. As a consequence, if
L is split by p, we can compute the two relevant polygons
L ∩ p+ and L ∩ p− so that they represent respectively the

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

·•view	 beam	 orientation	 with	 respect	 to	 a	 given	 line	 h

·•not	 consistent	 ?	 Then	 split	 the	 light	 L	 !

mardi 31 décembre 13

Such a test is equivalent to compute the light position with respect to the plane defined by
the viewpoint and the line corresponding to the hyperplane in the node.

If the light is in the positive or negative halfspace of the plane, any line in the view beam has
a negative or positive orientation with the hyperplane.

And if the plane intersect the light source, lines in the view beam have different orientations.
However, we can split the light by the plane. This defines two view beams, one with all the
lines having a positive orientation, one with all the lines having a negative orientation.

Visibility	 algorithm	 >	 principle

A

·•negative	 orientation	 	 	 	 	 	 	 	 right	 child

?

mardi 31 décembre 13

For example, we start from the root node and find that the orientation is negative. So we have
to search in the right subtree, which contains all the lines having a negative orientation with
respect to the root node.

Visibility	 algorithm	 >	 principle

A
?

mardi 31 décembre 13

Visibility	 algorithm	 >	 principle

A

·•	 heterogeneous	 orientation	 	 	 	 	 	 	 	 split	 the	 light

?

mardi 31 décembre 13

If the light is split by the plane, the orientation is not consistent, so we compute the light
fragments

Visibility	 algorithm	 >	 principle

AA

·•insert	 light	 fragments	 in	 the	 relevant	 child

?

mardi 31 décembre 13

and insert them in the relevant child

Visibility	 algorithm	 >	 principle

A

·•light	 fragments	 reaching	 a	 visible	 class	 are	 visible

?

mardi 31 décembre 13

if a fragment reaches a visible class, the fragment is visible from the point. Because it
belongs to a set of lines that does not intersect any occluder.

Visibility	 algorithm	 >	 principle

A

?

mardi 31 décembre 13

The process continues until every fragments reach a leaf

Visibility	 algorithm	 >	 principle

A A

?

mardi 31 décembre 13

Visibility	 algorithm	 >	 principle

A

·•Light	 fragments	 reaching	 invisible	 class	 are	 invisible

?

mardi 31 décembre 13

If a fragment reaches an invisible class, it is not visible from the point since it belongs to a
set of lines that intersect at least one occluder.

Visibility	 algorithm	 >	 principle

A

·•a	 light	 fragment	 has	 reached	 an	 undefined	 class

·•recurse	 !

·•BSP	 tree	 grows	 on	 demand

?

mardi 31 décembre 13

If a fragment reaches an undefined class, we don’t know if it is visible or not, because
occluders remain and may affect the visibility.

This is the same situation as starting. We just have to recurse until all fragments are found
visible or invisible.

Finally the BSP tree grows only when and where it is needed.

Visibility	 algorithm	 >	 key	 points

Visibility	 coherence

·•first	 queries	 grow	 the	 tree

·•next	 queries	 take	 advantage	 of	 the	 first	 ones

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Ti
m

e
(m

s)

M
em

or
y

(M
B)

Query number

Time
Memory

mardi 31 décembre 13

We gave an example with one point-light query, but this algorithm is designed to answer
many point-light queries.
This graph show the memory growth of the tree in green, as well as the cost per point-light
query in red. About eighteen thousand queries were performed

The first queries have an extra cost because they grow the tree.
However the following queries are cheaper, taking advantage of the previous ones. This is
because neigbouring points with similar view are likely to depend on the same equivalence
classes.

Visibility	 algorithm	 >	 key	 points

Robustness/efficiency

·•BSP	 tree	 growth	 :	 	 point/hyperplane	 sign	 tests

·•view	 beam	 filtering	 :	 at	 worst,	 plane-polygon	 intersection

F. Mora & L. Aveneau & O. Apostu & D. Ghazanfarpour / Lazy visibility evaluation for exact soft shadows

whether two polygons are mutually visible. Thus the al-
gorithm output is a boolean value. Whenever possible, the
computation of the whole visibility set is avoided since the
process can be terminated as soon as a visibility is found.

• Mount, Bittner and Mora algorithms aim to compute and
store all the visibility information. In this case, the output
is a partition of the Plücker space encoded in a Binary
Space Partitioning tree.

Despite this difference, they all rely on Computing Solid Ge-
ometry in the Plücker space which is computationally very
expensive. As a consequence, they are only used as a pre-
process step. In addition 5D CSG operations are very com-
plex to implement and prone to numerical instability. Thus,
the reliability and the scalability of these solutions is re-
stricted.

The soft shadow algorithm presented in this paper relies
on a novel approach to capture the visibility from a polygon.
It also leads to the construction of a BSP tree in the Plücker
space. But in contrast to the previous works, the tree is built
lazily and at run time, not as a pre-process step. Visibility is
computed on-demand when and where it is required, accord-
ing to the image resolution. It does not rely on any expensive
and complicated 5D CSG operation. This makes the algo-
rithm very easy to implement, efficient and computationally
robust, whereas previous methods are complex and suffer
from numerical instability.

3. Geometrical basis

In this section we introduce the geometrical knowledge un-
derlying the work presented in this paper. In particular, we
demonstrate a result on the orientation of the lines stabbing
two polygons. This result is important for our algorithm.

3.1. Plücker’s coordinates

The Plücker space is a five dimensional projective space, de-
noted P

5, well known in computer graphics as an efficient
solution for dealing with real 3D lines [Sho98]. We only re-
call here the properties used in this paper. Let’s consider an
oriented 3D line l going through two distinct points p and q

of coordinates (px, py, pz) and (qx,qy,qz) respectively. The
line l maps to the Plücker point denoted πl ∈ P

5. The six
coordinates of πl , denoted (l0, l1, l2, l3, l4, l5) are defined by:

l0 = qx − px l3 = qz py −qy pz

l1 = qy − py l4 = qx pz −qz px

l2 = qz − pz l5 = qy px −qx py

Any Plücker point is in bijection with its dual hyperplane:

hl(x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

with x ∈ P
5 with coordinates (x0, x1, x2, x3, x4, x5). Thus,

any line l in the 3D space can be mapped to the Plücker
space as a point πl or its dual hyperplane hl . We now recall
the definition of the so-called side operator:

side(l,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

l

r

l

r

l

r

hl hl hl

πr

πr

πr

side(l, r) > 0 side(l, r) = 0 side(l, r) < 0

Figure 1: Above: The relative orientation of two lines

is given by the sign of the side operator. Under: Since

side(l,r) = hl(πr), applying the side operator comes down

to testing the position of the Plücker point of one line against

the dual hyperplane of the other line

where l and r are two 3D lines, (l0, l1, l2, l3, l4, l5) and
(r0,r1,r2,r3,r4,r5) are respectively the coordinates of their
Plücker point, πl and πr. The sign of the side operator dert-
ermines the relative orientation of the two lines. In partic-
ular, two lines are incident (or parallel) if their side opera-
tor equals zero. We can notice that: side(l,r) = hl(πr). This
leads to the geometrical interpretation of the side operator as
depicted in Figure 1.

3.2. On the lines intersecting the same triangles

a

πa

l0 hl0

l1

hl1

l2

hl2

R3 P5

Figure 2: Left: A triangle in 3D space. l0, l1, l2 are the lines

spanning the triangle’s edges. a is a line stabbing the tri-

angle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes

mapped from l0, l1 and l2. πa is the Plücker point mapped

from the stabbing line a. πa has a consistent orientation with

respect to l0, l1 and l2. From a geometrical point of view, πa

lies at the intersection of the halfspaces induced by hl0 , hl1

and hl2 . Thus, these 3 hyperplanes provide an analytical rep-

resentation of all the lines stabbing the triangle.

A direct application of the side operator is an easy and ro-
bust line-triangle intersection test. A line intersects a triangle
if its orientation is consistent with respect to the lines span-
ning the triangle edges. This is depicted in Figure 2. Beyond
this intersection test, we can notice that the 3 hyperplanes
related to the triangle edges divide the Plücker space into

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

mardi 31 décembre 13

The process is robust because it relies on simple operations.
To grow the tree we only need to perform point/hyperplane tests in the plucker space
An to filter a view beam, we need, at worst, to split a convex polygon by a plane.

Outline	 >

·•Geometric	 basis

·•Visibility	 algorithm

·•Results

mardi 31 décembre 13

I will now present some results

Visibility	 algorithm	 >	 application	 to	 soft	 shadows

·•group	 all	 image	 points	 per	 visible	 triangles

·•for	 each	 group

·•get	 the	 occluders	 and	 initialize	 a	 BSP	 tree

·•for	 each	 image	 point

·•run	 a	 point-light	 query	

·•compute	 analytic	 direct	 illumination

mardi 31 décembre 13

To test our approach, we plug our algorithm in a ray tracer to compute soft shadows.

From the primary rays, we group all the image points per visible triangles.

Next, for each group we select the occluders using a shaft culling approach, and initialize an
empty BSP tree.

At last, for each image point in a group, we query the tree to find the visible parts of the light
and compute analytic direct illumination (assuming a uniform light source)

Results	 >	 comparison	 method

Configuration

·•2.67	 GHz	 Intel	 Core	 i7	 920,	 4GB	 of	 memory

·•all	 picture	 at	 1280	 x	 720,	 1	 primary	 ray	 per	 pixel

·•all	 tests	 use	 4	 threads

Ray-traced	 shadows

·•optmized	 (CPU)	 ray-tracer	 (SAH	 kd-tree,	 SIMD,	 multithreading)

·•4	 shadow	 rays	 at	 a	 time

·•uncorrelated	 stratified	 sampling

mardi 31 décembre 13

We compare our approach with ray traced soft shadows using an optimized ray tracer.

All picture are rendered at the same resolution with one primary ray per pixel for comparison
purpose.

Results	 >	 comparison	 on	 equivalent	 time

T-Rex	 (26K	 triangles)

Time	 :	 6.5s
Memory	 :	 19	 MB	

Time	 :	 7s
32	 samples	

mardi 31 décembre 13

At first we present results at equivalent time. This is only the time spent in the soft shadows
computations.

The first scene, T-Rex is moderate but has complex shadows with a long area light source. It
is a difficult configuration for our method because complex shadows means more
equivalence classes to compute.
During the process, the memory consumption can vary because the trees are built one after
another and each one grows lazily. So, here we report the maximum memory load reach
during the computations.

We produce accurate and noise free shadows within seven seconds. In comparison, the ray
traced shadows remain very noisy because of the low sample number.

Results	 >	 comparison	 on	 equivalent	 time

Sponza	 with	 Neptune	 (115K	 triangles)

Time	 :	 7s
Memory	 :	 16	 MB	

Time	 :	 7s
32	 samples	

mardi 31 décembre 13

This is a more important model with more than one hundred K triangles, Sponza with the
Neptune statue.

Results	 >	 comparison	 on	 equivalent	 time

Conference	 (282K	 triangles)

Time	 :	 6s
Memory	 :	 20	 MB	

Time	 :	 6s
32	 samples	

mardi 31 décembre 13

The well knonw conference model, with almost three hundred triangles.

These results show that our method has a consistent behaviour in different configurations.
The shadow complexity has the main impact because it is directly related to the number of
equivalence classes we have to compute.

Results	 >	 comparison	 on	 equivalent	 time

Soda	 Hall	 (2147K	 triangles)

Time	 :	 5s
Memory	 :	 20	 MB	

Time	 :	 8s
32	 samples	

mardi 31 décembre 13

And at last, the soda hall model.

This is not a very interesting scene for shadows, but this is to illustrate that the whole
process is rather independant from the number of triangles in the scene, because we only
deal with visible triangles from the camera.

Results	 >	 comparison	 on	 equivalent	 quality

T-Rex

Sponza

Conf.

Soda.

0 30 60 90

38

24

23

82

5

6

7

6,5

Ours RT

512 samples

256 samples

256 samples

256 samples

x 12.6

x 3.3

x 4

x 7.6

mardi 31 décembre 13

Using the same scenes, this is the timings at equivalent quality.

Two hundred and fifty six samples are generally sufficient to avoid the noise in ray traced
shadows. Except for the T-Rex where the double is required.

At equivalent quality, the ray traced shadows are clearly more expensive.

Detailed timings and more tests can be found in the paper.

Conclusion	 >

What	 we	 have	 shown:

·•coherent	 from-polygon	 visibility	 representation

·•exact	 and	 analytic	 soft	 shadows

What	 we	 hope:

·•analytic	 (from	 polygon)	 visibility	 can	 be	 robust	 and	 efficient

·•may	 be	 useful	 for	 many	 other	 problems

What	 we	 plane

·•occlusion	 	 	 	 	 	 	 visibility	 ?	 (done)

mardi 31 décembre 13

To conclude, we have presented a new from polygon visibility algorithm which was used to
efficiently compute analytic soft shadows.

We hope this work shows that from-polygon visibility can be made robust and efficient. This
can be a solution to take advantage of the visibility coherence. Thus we think it may be
usefull for many other problems.

Actually our algorithm encodes occlusion rather than visibility. Therefore, the next step was
to add a depth information in order to really compute the visibility from a polygon. Since last
year we have done and published this work in a companion paper with an application to
ambiant occlusion.

We are now working on a GPU friendly version of this algorithm. Not only to be faster but
mainly because we think this would create new perspectives.

Questions	 ?

mardi 31 décembre 13

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40

M
em

or
y

O
cc

up
at

io
n

[M
B]

Light Number

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20 25 30 35 40

Ti
m

e
[s

]

Light Number

Results	 >	 increasing	 the	 number	 of	 lights

mardi 31 décembre 13

In this test we increase the light number to see how our method behave.

Since lights are handled one after another, the computation time increase linearly, an the
memory consumption remain stable.

We can notice a small increase from the twelth lights. This is because the twelve first light are
above the conference table while the following are abovethe chairs, casting more complex
shadows.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
[s

]

Light Area

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

O
cc

up
at

io
n

[M
B]

Light Area

Results	 >	 increasing	 the	 area	 light	 source

mardi 31 décembre 13

Here we test how our method behave when the area light source increases in size.
Obviously, time and memory consumption increase because more and more equivalence
classes are computed.
However, the method remains practicable even for the biggest light source.

