

The Determinants of Domestic and Cross Border Bank Contagion Risk in South East Asia

Carlos Bautista, Philippe Rous, Amine Tarazi

► To cite this version:

Carlos Bautista, Philippe Rous, Amine Tarazi. The Determinants of Domestic and Cross Border Bank Contagion Risk in South East Asia. 2007. hal-00918555

HAL Id: hal-00918555 https://unilim.hal.science/hal-00918555

Preprint submitted on 13 Dec 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The determinants of domestic and cross border bank contagion risk in Southeast Asia^{*}

Carlos Bautista, Philippe Rous and Amine Tarazi**

Abstract

This paper addresses the issue of both domestic and cross border systemic risk for 8 countries in Southeast Asia (Hong Kong, Indonesia, Korea, Malaysia, The Philippines, Singapore, Taiwan and Thailand). We use weekly data on individual bank stock prices from 2000 to 2005 to construct bank contagion measures based on the exponential weighted average correlations of the residuals of the market model. Our results show that average pair-wise correlations significantly differ among countries and that the probability that a specific shock extends to other banks is better predicted by asset risk indicators and market based risk measures, such as systematic risk, for cross country contagion. In contrast, for domestic contagion, liquidity risk indicators and bank opaqueness proxies perform better. Our findings suggest that whereas illiquidity, but not insolvency, is a major concern at the domestic level the opposite result holds for cross country contagion.

Keywords: Bank contagion, systemic risk, Southeast Asia.

JEL classification: G21, G29

Correspondence:

Carlos C. Bautista College of Business Administration University of the Philippines Diliman, Quezon City 1101, Philippines	Tel Fax E-mail Web	+63 2 928 4571 +63 2 920 7990 bautista@up.edu.ph www.upd.edu.ph/~cba/bautista
Philippe Rous Laboratoire d'Analyse et de Prospective Économiques, Université de Limoges 5, rue Félix Eboué B.P. 3127 87 031 Limoges Cedex 1 - France	Tel Fax E-mail Web	+33 5 55 14 92 13 +33 5 55 14 90 01 rous@unilim.fr www.fdse.unilim.fr
Amine Tarazi** Laboratoire d'Analyse et de Prospective Économiques, Université de Limoges 5, rue Félix Eboué B.P. 3127 87 031 Limoges Cedex 1 - France	Tel Fax E-mail Web	+33 5 55 14 92 13 +33 5 55 14 90 01 amine.tarazi@unilim.fr www.fdse.unilim.fr

^{*} This paper was prepared for the ASIA-LINK human resource development project: Euro-Philippines Network on Banking and Finance, Safety and Soundness of the Financial System, coordinated by the University of Limoges (www.upd.edu.ph/~cba/asialink). ASIA-LINK is a Programme of the European Commission that seeks to promote regional and multilateral networking among higher education institutions in Europe and developing economies in Asia.

^{**} Corresponding author.

The determinants of domestic and cross border bank contagion risk in Southeast Asia

1 Introduction

The 1997 Asian financial crisis episode exposed the structural weaknesses of several East Asian economies. Structural reforms were initiated as soon as the effects of the crisis subsided to strengthen institutions that failed to protect the economy from the undesirable effects of the crisis. Crucial to these economies are their banking institutions which were at the forefront of the crisis. Attempts to correct these structural weaknesses especially in the banking sector of East Asian economies are currently being implemented especially in the area of bank regulation and supervision. It is hoped that with these changes, their economies are better prepared should similar systemic shocks hit the region in this post-crisis period.

Prior to the Mexican and the Asian crises, structural adjustment problems in one economy remained within its borders and no one ever thought that contagion was a possibility and that it can occur with surprising speed. Immediately after the Asian crisis episode, the literature on systemic risk and contagion grew at a rapid pace as researchers and analysts scrambled to explain the nature of the events that lead to the massive system breakdown. Close to a decade has past and a large literature on the Asian crisis has deepened the understanding of the causes of the crisis and how it was propagated (See for example, Kaminsky and Reinhart (2000)). All the more in an increasingly integrated world, these studies have alerted policymakers that a crisis in one economy can be contagious. Thus, in the post-crisis era, the threat of systemic risk both at the regional level and within borders remains, if it has not increased. An area of research on contagion that has not been fully explored is concerned with systemic risk at the banking sector level in Asia. While banking sector systemic risk analysis is flourishing in advanced economies (See De Nicolo and Kwast (2002) or Demirgüç-Kunt et al (2006, forthcoming) and their references), there are only a few studies on bank domestic contagion for the Asian region (See for example, Bystrom, (2004)).

This paper's task is to examine in detail, systemic risk in the banking sector of East Asia. In this study, the magnitude of banking sector systemic risk in each country is measured by the average correlation of bank equity returns, adjusted for market return movements (individual firm specific risk) using various techniques.¹

We focus on both domestic measures of potential systemic risk but also on cross-border indicators. Because our aim is to focus on the post-crisis period we consider the period 2000-2005. Further, we build a framework to assess the link between individual bank correlations and systemic (domestic or cross border) risk. To complete the analysis, the study attempts to explore the determinants of significant individual correlations using a large set of firm specific variables based on both accounting and market data.

The paper is organized as follows. The second section briefly reviews the literature on systemic risk and discusses the issue as regards Southeast Asia. The third section outlines the method used by the study. The fourth section describes the data set and discusses the empirical results. The final section gives the conclusion.

2 Systemic risks in the East Asian region

Because of the complexity of the problem arising from systemic events, a variety of explanations have been put forth in an abundant literature. This can be gleaned from De Bandt and Hartmann (2000) who have conducted an extensive survey of systemic risk in general,

¹ The dynamic conditional correlation model (DCC) of Engle (2002) and the rolling exponential weighted average correlations were the methods used in the estimation of the correlations. However because of computing constraints (missing observations for some banks in our sample and therefore incomplete series for DCC computations) and since the estimated correlations did not differ in terms of closeness to each other, the latter was chosen over the former.

covering both theory and empirical work.² Accordingly, systemic risk can be defined broadly or narrowly, depending on whether it is the result of single (second round effects of shocks affect only one entity) or wide (second round effects of shocks affect many entities) systemic events. Systemic risk arises when systemic events of either kind adversely affect a large number of institutions and prevent the financial system from performing normally.

The analysis of systemic risk in the empirical literature is conducted in several ways. For example, Schoenmaker (1996) makes use of autoregressive poisson regression on U.S. bank failure count data against macroeconomic variables and finds evidence of bank contagion. Worthington and Higgs (2004) use a multivariate GARCH model of the BEKK type and finds volatility spillovers in stock markets among some East Asian economies. Gropp and Vesala (2005) and Gropp and Moermann (2004), using a sample of European banks, have successfully used extreme value theory in isolating contagion in market data.

The most popular method, especially in the analysis of the Asian crisis, is to measure contagion effects of an event affecting one or more entity on other entities. This may be done through correlation analysis - the method chosen by the present study – of either the equity returns or the exchange rates. One of the first articles on Asian crisis contagion is by Baig and Goldfajn (1998) who show elevated levels of exchange rate correlation during the crisis period. They take this as an indicator of contagion. A particularly influential paper on contagion during the Asian crisis is by Forbes and Rigobon (2002) who showed that with appropriate adjustments to account for the increase in the volatility of variables during abnormal times, contagion cannot be detected and what is apparent is the usual interdependence of variables that are also present during normal periods. Recently, Corsetti et al (2005) showed that Forbes and Rigobon's tests for contagion are too restrictive and lead to a bias for the hypothesis of no contagion. They suggest

²One could notice that their work largely describes the extensive literature on bank systemic risk in Europe

caution in taking increased correlation as an indicator of contagion and propose to test contagion using correlations that have accounted for the influence of the data generating process from a simple factor model.

Attempts to explain the causes of the Asian crisis contagion itself have also been accomplished by researchers. It has been noted that prior to the crisis, the less developed economies embarked in financial and trade liberalization programs almost simultaneously in the early 1990s. Typically, these economies with wide savings investment gaps presented opportunities for investment in emerging market equities and encouraged cross border activities of developed country banks. The explanation of contagion hinges heavily on the notion of a common lender country. This in fact lead to the 'twin crisis' sub-literature that attempts to disentangle the currency crisis from the banking crisis. Kaminsky and Reinhart (2000) provide details on the common bank creditor as one of the transmission channels leading to the crisis aside from trade links and other liquidity channels. Sbracia and Zaghini (2001, 2003) expound on the role of both domestic and foreign banks in a country in the transmission of shocks during the Asian crisis. Complementing the results of Kaminsky and Reinhart, they list the stylized facts on the common lender channel that reflected a high degree of vulnerability of these economies. They then construct a vulnerability index for emerging market economies based on the common lender channel.

It is clear from some papers that in the aftermath of the crisis, interest in the East Asian region is coming back. Hohl et al (2005) document the increase in cross border banking activity in Asia and warn anew of the dangers of systemic events, especially in light of reforms undertaken since the crisis of 1997. They describe how the Basel 2 framework can help address systemic risk in this regard. From this short review, it is clear that an analysis of systemic risk in Western banking (Europe and US) should be different from that of Asian banking sectors. There are a number of reasons for this. First, Western banks are quite sophisticated and mature enough such that their

and the U.S. and only a few citations on studies related to the Asian crisis.

role of translating savings to productive investments are well defined. Emerging market banks play the same role but more importantly, because of the wide savings - investment gap, it makes them ideal channels of foreign funds to fill in this gap. Thus while cross border banking activity in Europe is increasing because of more integration among national banks (primarily because savings-investment channels are being integrated across countries), cross border activity in the Asian region has more to do with the infusion of scarce funds to supplement domestic resources. Such cross border activities involves both foreign and domestic banks.³ As domestic banks mature and grow into sophistication in the post crisis period, the dangers of domestic systemic risk will surely rise aside from cross border systemic risk arising from common lender channels.

3 Method

In this paper, systemic risk potential is measured by correlations of stock returns which have proven to be suitable indicators in previous studies (De Nicolo and Kwast (2002)). We retain this type of approach because alternative measures based either on abnormal returns or on the correlations of Merton based distance to defaults are unable to reveal episodes of systemic risk during the post crisis period that we analyse (2000-2005)⁴.

To control for market movements and country specific factors we focus on the correlations of the residuals of a market model rather than on the correlations of the stock returns. Cross correlations between each pair of banks operating in the same country and cross correlations between each pair of banks operating in different countries are used to compute both domestic

³ One would suspect that the introduction of a common currency, the Euro, hastened this integration and growing interdependence among these European banks.

⁴ As a preliminary step we considered negative abnormal returns by estimating market models on moving estimation windows. A very low number of banks exhibit abnormal returns simultaneously (within a one week window) showing that unexpected shocks do not generally affect banks as a group (cluster effects). We also computed correlations on the basis of distance to defaults (Merton model) which exhibit relatively high and mostly stable values because of very low changes in individual default risks during the period 2000-2005. These results are available from the authors on request.

average correlations and cross-border⁵ average correlations. Correlations are estimated using exponential weighted average rolling correlations. The estimated average correlations are tested for their significance. We also compute a measure of the statistical contribution of each bank to average domestic country correlation or average cross border country correlation by regressing each average individual correlation time series on the average corresponding country correlation and test for significance. Next, significant contributions are introduced in a binary probit model to capture the determinants of systemic risk potential using a large set of accounting based and market based variables.

3.1 Measuring domestic and cross border potential systemic risk

Formally, let i(P) represent bank i of country P and $R_{i(P)t}$ the weekly stock return of this bank. The market adjusted return $r_{i(P)t}$ is the residual at time t of equation 1:

(1)
$$R_{i(P)t} = \alpha_i + \beta_i R M_{Pt} + r_{i(P)t}$$

estimated on the rolling one year window [t - 51, t] and where RM_{Pt} is the weekly market return for country *P*. Alternatively, we compute market adjusted returns using other specifications (e.g., residuals from a constant return model, from a two-index market model including the banking sector index, from a two-index GARCH model and standardised residuals from a two-index GARCH model). For simplicity, and because our aim is to focus on the determinants of comovements of returns rather than on their statistical properties we opted to use the standard single-index market model in the rest of our investigation. Nevertheless, we check that the residuals computed with the different methods have a similar profile except when they are standardised in which case they are much lower.

⁵ The cross border systemic risk that is considered here refers to risk arising from co-movements of Asian bank equity prices and not due to cross border activities referred to in the review in Section 2 which refer to foreign, i.e., non-Asian banks' activities in the region.

Denoting $\rho_t(i,j)$ as the moving exponentially weighted correlation evaluated at time *t* between r_{it} and r_{jt} ,⁶ the domestic mean correlation within country *P*, *DOMC*_{Pt}, at time *t* is calculated as:

(2)
$$DOMC_{P_t} = \frac{1}{N_{P_t}} \sum_{i \in P} \rho_t[i(P), j(P)] \quad ; \qquad i \neq j$$

where N_{Pt} is the number of (non redundant) domestic pair-wise correlations, at time *t*, within country *P*. Because we are concerned with how negative shocks affecting one bank might spread to other banks and not with the implications of positive shocks (unexpected increase in stock prices) we also compute correlations between simultaneously negative residuals solely. We further look at the correlations of sharp decreases in returns considering several thresholds (-3% and -10%). The series of domestic mean correlations that can be computed with these different definitions are highly correlated. We therefore retain the standard definition involving all the residuals (positive and negative). Another issue that arises when computing correlations is that higher volatility on the market is often associated to higher correlation (Forbes and Rigobon (2002)). To check that our measures are not sensitive to changes in market volatility we also compute volatility adjusted correlations that account for varying volatility in the series of returns⁷. Both methods yield very close results and we therefore focus in the rest of the study on the standard correlation measure that is adjusted for changes in market volatility.

$${}^{6} \rho_{t}(i,j) = \sum_{s=0}^{51} \lambda^{s} r_{i(P)t-s} r_{j(P)t-s} \left/ \sqrt{\left(\sum_{s=0}^{51} \lambda^{s} r_{i(P)t-s}^{2}\right) \left(\sum_{s=0}^{51} \lambda^{s} r_{j(P)t-s}^{2}\right)} \right|$$
 where $\lambda = 0.940$ as suggested in Engle [2002].

⁷ Volatility adjusted correlation at time t, ρ_{ijt}^* , as suggested by Forbes and Rigobon (1999), is calculated as :

$$\rho_{ijt}^{*} = \frac{\rho_{ijt}}{\sqrt{1 + \delta(1 - \rho_{ijt}^{2})}} \text{ where } \delta = 0.5 \left(\frac{\sigma_{it}^{2}}{\sigma_{i}^{2}} + \frac{\sigma_{jt}^{2}}{\sigma_{j}^{2}}\right), \sigma_{it}^{2} \text{ is the variance of returns } r_{it} \text{ evaluated on the}$$

sample [t-52, t] and σ_i^2 is the whole sample [1994, 2005] variance of r_{it}.

Similarly, because our aim is to focus on market adjusted return co-movements for banks operating in different countries, we also calculate the cross border mean correlations, $CBMC_{Ptr}$ involving each bank *i* of country *P* with any other bank *j* of other countries *P*', (*P*' \neq *P*):

(3)
$$CBMC_{p_l} = \frac{1}{N'^{p_l}} \sum_{P \neq P : e^P} \sum_{j \in P'} \rho_i [i(P), j(P')]$$

where N'_{Pt} is the number of cross border (non redundant) correlations for country P at time t.

We then test for the null of no domestic (respectively cross border) correlation for each country through the statistic:

(4)
$$TDO_{p_t} = \frac{DOMC_{p_t} \sqrt{N_{p_t}}}{DOSC_{p_t}}$$

where DOSC_{Pt} is the standard deviation of domestic correlations:⁸

(5)
$$DOSC_{Pt} = \sqrt{\frac{1}{N_{Pt}} \sum_{i \in P} \sum_{j \in P} \{\rho_t[i(P), j(P)] - DOMC_{Pt}\}^2} ; \quad i \neq j$$

The individual mean domestic ($DOMC_{i(P)}$) and cross border ($CBMC_{i(P)}$) correlations for bank i(P) are evaluated at time t as:

(6)
$$DOMC_{i(P)t} = \frac{1}{N_{i(P)t}} \sum_{j \in P} \rho_t[i(P), j(P)]; \quad CBMC_{i(P)t} = \frac{1}{N'_{i(P)t}} \sum_{P' \neq P} \sum_{j \in P'} \rho_t[i(P), j(P')]$$

where $N_{i(P)t}$ (resp. $N'_{i(P)t}$) stands for the number of domestic (respectively cross border) correlations involving bank i(P) at time t.

$$TCB_{Pt} = \frac{CBMC_{Pt}\sqrt{N'_{Pt}}}{CBSC_{Pt}} \text{ where } CBSC_{Pt} = \sqrt{\frac{1}{N'_{Pt}}\sum_{P' \neq P i \in P}\sum_{j \in P} \{\rho_t[i(P), j(P')] - CBMC_{Pt}\}^2}$$

⁸ Similarly, we define a statistic TCB_{Pt} for the null of no cross border correlation for country *P*:

3.2 Statistical contribution of individual banks to country systemic risk

We assess the statistical contribution of a given bank i(P) to its country P domestic systemic risk by regressing each individual mean correlation involving bank i(P) on country P average domestic correlation:

(7)
$$DOMC_{i(P)t} = \alpha_i + \lambda_i DOMC_{Pt} + \varepsilon_{it}$$

Equation (7) is estimated only for sub-periods where the country average correlation $DOMC_{Pt}$ is positive and significant.⁹ The statistical contribution of each bank to domestic systemic risk is, in this setting, given by the value and significance of the λ_i coefficient. In this sense when, for a given bank the value of λ_i is significantly greater than 1, we take this to mean that the bank overreacts in terms of co-movements of its stock price with other banks' stock prices and therefore in terms of contagion. In such a case, a bank's individual mean correlation is significantly higher than the country mean correlation.

Similarly, we measure the contribution of bank i(P) to cross border correlation of country P using the same method but by regressing individual bank cross border correlations $CBMC_{i(P)}$, on country P average cross border correlation $CBMC_{Pi}$:

(8)
$$CBMC_{i(P)t} = \alpha_{i}' + \lambda_{i}'CBMC_{Pt} + \varepsilon_{it}$$

where the actual contribution or sensitivity of each bank is given by the value and significance of the λ'_i coefficient.

3.3 Econometric specification

Our aim is to investigate, within our sample of banks and countries, which type of banks are the most likely either to trigger systemic risk or to sharply react to events affecting other banks. Under the contagion hypothesis a higher share of interbank activities in the balance sheet is

⁹ We required TDO_{Pt} and TCB_{Pt} to be greater than 2.

assumed to increase the probability that a bank becomes illiquid and in turn spreads illiquidity among other banks in the industry. However, under the too-big-to-fail hypothesis this is less likely to happen to large banks which would immediately receive support from monetary and supervisory authorities. Under the asymmetric information hypothesis market participants are unable to discriminate among solvent and insolvent banks and particularly those with a high share of non-tradable and opaque loans in total assets. Such banks would therefore be more likely to suffer from a widespread panic within the banking industry. In order to investigate these hypotheses we build a multivariate regression framework based on the systemic risk potential measures and the individual contributions to average residual correlations we previously estimated.

3.3.1 Dependent variable

In our setting, domestic (respectively cross border) contribution of bank *i* to systemic risk is assumed to play a prominent role if λ_i (respectively, λ'_i) is greater than 1. In this sense the correlations (co-movements) of market adjusted stock returns of a given bank with those of other banks are on average higher than the mean correlation. Therefore on the basis of the estimated values and standard deviations of these coefficients λ_i and λ'_i , we define two binary variables DP_DOM_2_i and DP_CB_2_i such that DP_DOM_2_i (respectively DP_CB_2_i) equals 1 if we can reject the null " $\lambda_i \leq 1$ " (respectively " $\lambda'_i \leq 1$ ") at the 2% level and 0 otherwise.

Alternatively, we also consider for the dependent variable the values taken by individual bank mean correlations, i.e., for each bank either the domestic mean correlation with every other domestic bank or the cross border mean correlation with every bank from other countries. Such an approach is much less constraining and allows to capture the determinants of bank stock comovements without imposing a criterion to discriminate sharp and moderate stock price reactions.

3.3.2 Independent variables

To explain the probability of a relatively sharp reaction of bank i(P) with respect to the mean (domestic or cross border) correlation of country P we regress each of these two binary variables on a large set of accounting variables, capturing the size and the structure of bank balance sheets as well as bank risk and performance. We also consider market based risk indicators that are commonly used in the literature (see Table 1). The values taken by each variable are the mean values computed over the whole sample period.

Table 1 here

3.3.3 Model specification

As a first step, we consider the predictive power of each indicator by running probit regressions in which we introduce each explanatory variable separately. Then, on the basis of the results of this first step, within each category (size, capital adequacy, earnings, liquidity, etc.) we isolate the most significant variables (5% level). As a second step, we identify, within this restricted set of variables, the optimal set of explanatory variables by selecting them through a stepwise procedure.¹⁰ We check for possible collinearity among the independent variables by running a Farrar – Glauber test for the null of no collinearity. When required, to deal with collinearity, we introduce an additional constraint of quasi-orthogonality¹¹ in the stepwise process. As a third step, we test for the stability of this optimal set of explanatory variables with regard to several factors such as bank type, its nationality, its domestic and world rankings. For

¹⁰ P-values for introduction and rejection are 5%. To avoid estimating the model on an excessively small sample (because very few observations are available for some variables), we require that the introduction of an additional variable does not induce (1) an estimation sample with a size less than half of the potential sample size and (2) a loss of "Y = 1" instances exceeding 50%.

¹¹ This constraint allows us to exclude a variable if its introduction would induce a rejection of the null (no collinearity) with a p-value less than 50%.

this purpose, we introduce additional dummy variables in the estimations to test for the stability of the equation.¹² These dummy variables are presented in Table 2.

Table 2 here

4 Data set and Results

4.1 Data and independent variable definitions

For the purpose of our study which comprises 8 East Asian countries (Hong Kong (HK), Indonesia (ID), Korea (KO), Malaysia (MY), The Philippines (PH), Singapore (SG), Taiwan (TW) and Thailand (TH)), we use weekly stock prices that come from Datastream International and annual accounting data (balance sheet and income statement) that are extracted from Bankscope for the period 2000-2005.¹³ The values of the different regressors (prefixed with *M6_*) are averages from the whole sample period 2000 – 2005. To ensure that we use a clean sample, banks with non actively traded stocks (two subsequent identical quotes for, at least, 50% of the whole quotation sample) are omitted and to avoid the effects of outliers on the results, we eliminate extreme observations in each regressor that induce a variation coefficient (standard deviation/sample mean) greater than two. With these restrictions our sample is limited to 125 banks (See column 1 of Table 4). Descriptive statistics of accounting ratios and market based risk and default risk indicators are given in Table 3.

Table 3 here

¹² Assuming that the estimated model is (1) Prob{ $Y_i = 1$ } = $\Phi(\beta_1 + \beta_2 X_{2i} + ... + \beta_k X_{ki})$, we test for stability by comparing the likelihood of this equation and the augmented model (2) which is:

 $Prob\{Y_i = 1\} = \Phi(\beta_1 + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + \beta_1' + \beta_2' D_i \times X_{2i} + \dots + \beta_k' D_i \times X_{ki})$

where D_i is the dummy variable for bank characteristics. We compute a LR statistic for the null of stability: LR = 2 [Log L_2 – Log L_1]. Under the null, LR is distributed as a $\chi^2(k)$.

¹³ As mentioned in section 1, we focus on the post-crisis period but we also compute our correlation measures for the period 1996-1999. The results are available from the authors on request.

4.2 Potential systemic risk measures

Table 4 produces descriptive statistics for mean domestic and cross border market adjusted returns correlations for the whole set of banks and for each country specific set of banks:¹⁴

Table 4 here

Based on the domestic correlation estimates, we are able to distinguish two sets of countries, a relatively low domestic correlation category (Indonesia with an average correlation of 0.03, Malaysia, 0.09, Philippines, 0.05, Singapore, 0.08, Hong Kong, 0.13 and a high domestic correlation category (Korea with an average correlation of 0.24, Thailand, 0.20 and Taiwan 0.36. Cross border correlations are on average much lower and do not exhibit significant differences among countries.¹⁵

On the basis of estimations performed following equations (7) and (8) we construct two binary variables DP_DOM_2_i and DB_CB_2_i. Recall that DP_DOM_2_i (respectively DP_CB_2_i) equals 1 if bank *i*(*P*) overreacts or contributes to an increase in the domestic (respectively cross border) country (*P*) mean correlations during periods for which this country domestic (respectively cross border) correlations are significant. Table 5 shows the country distribution of these binary dependent variables and their cross distribution. One can note from the cross distribution that banks which highly contribute to domestic correlations are, on the whole, different from banks highly contributing to cross border correlations.

Table 5 here

¹⁴ These descriptive statistics are calculated on the basis of the two dimensions: through time (2000 – 2005 period) and through individuals.

¹⁵ We also apply the same method using Merton Distance to Default measures instead of market-adjusted returns (results available on request). In this case mean correlations are generally higher and the values are closer for the different countries in our sample except Singapore and the Philippines which exhibit much lower average values.

4.3 **Results of Probit model**

Tables 6 and 7 sum up the results obtained on the basis of simple probit estimations. For each variable, we check for the robustness of the results with regard to the estimation sample by bootstrapping it one thousand times. Each bootstrapped sample is built on random draws within the actual sample. We require that at least 50 observations are available whatever the value of the explained variable and that, at least, 10 observations are available for the binary variable Y = 1 at each step. At this preliminary stage we can notice that the variables that are most likely to increase individual bank i(P) contribution to the average domestic correlation level of country P are balance sheet structure variables (M6_ NL_TA_DEP_TA, M6_ NL_TEA_DEP_TA, M6_ NL_TEA_CSTF_TA, M6_NL_TEA), liquidity variables (M6_NL_CSTF) and variables reflecting the extent of non banking activities (M6_ NOIT_AVAS).¹⁶ When explaining contribution to cross border correlations, the most significant variables are "asset quality" variables (M6_ LLP_GL, M6_ LLP_TA, M6_LLR_IL), income structure variables (M6_ NMARG) or market based risk indicators (M6_ BETA). These results suggest that in the case of cross-country correlations (cross border spillovers) market participants rely only on asset risk and default risk indicators computed on the basis of either accounting information (asset quality and capital adequacy) or market information (systematic risk). However, for domestic correlations (risk within the domestic banking system) such variables have no explanatory power. Market based indicators are never significant and only liquidity risk and bank opaqueness variables tend to increase the correlation of a bank's unexplained performance with those of other banks. In particular, asset opaqueness as measured by the share of non-tradable loans, the reliance on deposits or short term funding and the extent to which the bank relies on traditional intermediation activities (transformation of short term deposits into loans) as measured by the interactive variables M6_NL_TA_DEP_TA, M6_ NL_TEA_DEP_TA, M6_ NL_TEA_CSTF_TA, play a significant role. The optimal multivariate

14

probit models presented in Tables 8 (domestic correlations) and 9 (cross border correlations) confirm these findings. Because there is a presumption of high collinearity between the stepwise selected regressors, we produce two estimates: first, no *a priori* condition is required with regard to collinearity among the selected variables; second, a low level of collinearity is required as mentioned above. The regressors that were pre-selected and introduced in our optimal models are shown at the bottom of Tables 8 and 9 along with their correlation matrix.

Tables 8 and 9 here

In each case, we test further for the null of adequacy between theoretical and estimated

probabilities by conducting the Hosmer Lemeshow goodness-of-fit-test¹⁷ (Tables 8-A and 9-A).

Tables 8-A and 9-A here

When we account for collinearity among the regressors, in both cases (domestic and cross

border equations) the null of adequacy between estimated and theoretical probabilities is not

rejected at the 5% risk level. The stability tests results18 are shown in Table 8-B (domestic

correlations equation) and Table 9-B (cross border correlations equation).

Tables 8-B and 9-B here

¹⁸ We test for the stability of our last models through a LR test based on the comparison of the respective performances of two models:

Model 1: $Y_i = \alpha + \beta X_i + \gamma Z_i + \varepsilon_I$ Model M2: $Y_i = \alpha + \beta X_i + \gamma Z_i + \alpha' D_i + \beta' X_i * D_i + \gamma' Z_i * D_i + \varepsilon_I$

where D_i is a dummy variable that enables us to account for the possible influence of the size of the bank (domestic or world ranking of assets), support of authorities, specialisation (commercial or investment bank), individual rating, country... (see Table 7 for D_i definitions).

Under the null (H₀: stability of coefficients { α , β , γ }), the LR statistic is distributed as a $\chi(2k)$ where k is the number of estimated coefficients in model 1.

¹⁶ Non operating items = Non Operating Incomes (net profit on value adjusted of financial assets, share in net income of equity accounted affiliates...) - Non Operating Expenses (write downs of goodwills...) - Income Tax.

¹⁷ The Hosmer Lemeshow Test enables to test for the null of adequacy between theoretical and estimated probabilities of $Y_i = 1$. To implement this test, one's has to group the N individuals of the sample in J groups on the basis of increasing estimated probabilities. Under the null, the HL statistic is distributed as a $\chi^2(J-2)$.

On the whole one or three variables survive the stepwise process defined above to optimally predict significant correlations. Default risk variables accounting for risk exposure, profitability and the amount of equity that serves as a cushion against failure have been rejected from the optimal models (capital adequacy variables and Z scores). For domestic correlations (Table 8), the highest predictive power is obtained with the interactive variable capturing the extent of traditional intermediation activity M6_NL_TEA_DEP_TA. Therefore, a higher proportion of deposits on the liability side of the balance sheet combined with a larger share of loans in total assets increases bank exposure or contribution to systemic risk (higher probability). For cross border correlations, when we account for collinearity among regressors, the highest predictive power is obtained with the market based systematic risk indicator (M6_ BETA) and to a lesser extent with the ratios of loan loss reserves to impaired loans (M6_LLR_IL) and loan loss provisions to gross loans (M6_LLP_GL). Therefore, for cross border spillover effects that can be captured through the linkages between bank stock returns, market participants seem to rely more on market risk indicators such as the beta and to a lesser extent on bank asset risk (asset quality) as reflected by loan loss reserves or loan loss provisions. For cross border contagion the market does not seem to value liquidity risk, asset opaqueness and default risk (probability of failure). In contrast, at the domestic level, co-movements of market-adjusted returns are not driven by asset risk considerations but solely by illiquidity and asset opaqueness.

5 Conclusion

Previous studies on systemic risk in Southeast Asia focus on macroeconomic factors of bank contagion neglecting the information contained in bank stock prices. The aim of this paper is to propose a view based on a market model approach to assess the determinants of bank contagion at both the domestic and the cross border level in Southeast Asia. Our findings show that potential systemic risk measured as the correlation of the residuals of the market model significantly differs between two groups of countries. Indonesia, Malaysia, the Philippines, Singapore and Hong Kong, exhibit lower systemic risk than Korea, Thailand, and Taiwan. Our results also show that cross border contagion risk is better predicted by asset risk indicators whereas domestic contagion risk is better predicted by illiquidity and the extent of traditional intermediation activities (non tradable loans) which are opaque. Our findings suggest that whereas illiquidity , but not insolvency, is a major concern at the domestic level the opposite is true for cross-country contagion.

References

Baig, T. and I. Goldfajn (1998), Financial market contagion in the Asian crisis, IMF working paper no. 98/155.

Boyd, J. and S. Graham (1986), Risk, regulation, and bank holding company expansion. *Federal Reserve Bank of Mineapolis, Quaterly Review*, spring.

Bystrom, H. (2004) The market's view on the probability of banking sector failure: cross-country comparisons, *Journal of International Financial Markets, Institutions and Money* 14, 419-438

Corsetti, G., Pericoli, M., and M. Sbracia (2005), Some contagion, some interdependence: More pitfalls in tests of financial contagion, *Journal of International Money and Finance* 24, 1177-1199.

De Bandt, O., and P. Hartmann (2000), Systemic risk: A survey, CEPR discussion paper 2634.

De Nicolo, G. and M. Kwast (2002), Systemic risk and financial consolidation. Are they related ? *Journal of Banking and Finance* 26, 861-880.

Demirgüç-Kunt A., Detragiache E., and P. Gupta (2006, forthcoming), Inside the crisis: An empirical analysis of banking systems in distress, *Journal of International Money and Finance*.

Engle, R., 2002. Dynamic conditional correlation: a simple class of multivariate GARCH. Journal of Business and Economic Statistics 17 (5), 425-446.

Forbes, K. and R. Rigobon (2002), No contagion, only interdependence: measuring stock market comovements, *Journal of Finance* 57 (5), 2223-2261.

Gropp, R. and G. Moermann (2004), Measurement of contagion in banks' equity prices, *Journal of International Money and Finance* 23(3), 405-459.

Gropp and Vesala (2005), Measuring bank contagion using market data, unpublished manuscript.

Gropp, R., Vesala, J., and G. Vulpes (2004), Market indicators, bank fragility, and indirect market discipline, *FRBNY Economic Policy Review*, 53-62.

Hohl, S., McGuire, P., and E. Remolona (2005), Cross-border banking in Asia: Basel 2 and other prudential issues, BIS working paper.

Kaminsky, G. and C. Reinhart (2000), On crisis, contagion and confusion, *Journal of International Economics* 51, 145-168.

Sbracia, M. and A. Zaghini (2001), Crisis and contagion: The role of the banking system, BIS paper no. 1.

Sbracia, M. and A. Zaghini (2003), The role of the banking system in the international transmission of shocks, *The World Economy* 26(5), 727-754.

Schoenmaker, D. (1996), Contagion risk in banking, LSE FMG discussion paper no 239.

Worthington, A., and H. Higgs (2004), Transmission of equity returns and volatility in Asian developed and emerging markets: A multivariate GARCH analysis, *International Journal of Finance and Economics* 9, 71-80.

Accounting and market based regressors in Probit Models					
Size	ТА	Total Assets - th USD			
CapitalAdequacy	KP_A	total equities / total assets			
	KP_LIAB	total equities / total liabilities			
	KP_NL	total equities / net loans			
	TCR	total capital ratio			
	TIER1	tier 1 ratio			
Assets Quality	IL_GL	impaired loans / gross loans			
	LLP_GL	LLP / gross loans			
	LLP_NETIR	loans loss provision / net interest revenue			
	LLP_TA	LLP / total assets			
	LLR_GL	loans loss reserve / gross loans (GL = net loans + LLR)			
	LLR_IL	loan loss res / impaired loans			
	LLR_TA	LLR / total assets			
	NCO_AGL	net charge off / average gross loans			
	NCO_NIBLLR	net charge off / net inc bef LLP			
	RWA_TA	risk weighted assets / total assets			
Earnings	DIVPO	Dividend Pay-Out			
	NIR_EA	net interest revenue / total earning assets			
	NIR_TA	net interest revenue / total assets			
	ROAA	return on average total assets			
	ROAE	return on average total equities			
	TXOPI_AVAS	Pre-Tax Op Inc / Avg Assets			
Liquidity	GL_DSTF	gross loans / deposits & short term funding			
	NL_CSTF	net loans / customer & ST funding			
	LIQASS_DSTF	liquid assets / deposits & short term funding			
	LIQASS_TOTDB	liquid assets / (total deposits + total borrowed funds)			
Interbank Activity	BKSDEP_ASS_TA	banks deposits (assets)/ total assets			
	INTBKDEP_TA	(banks deposits (liab.) + banks deposits (ass.) / total assets			
	INTBKDUE_TA INTERBK	(due to banks + due from banks) / total assets due from banks / due to banks			

Table 1 Accounting and market based regressors in Probit Model

Acco	ounting and marke	t based regressors in Probit Models
Balance Sheet Structure	CAPF_DEPST	cap funds / dep & ST funding
	CAPF_LIAB	capital funds / liabilities
	CAPF_NL	cap funds / net loans
	CAPF_TA	cap funds / tot assets
	CSTF_TA	customer & ST funding / total assets
	DEP_TA	total deposits / total assets
	EQ_DEPST	equity / dep & ST funding
	NL_TA	net loans / total assets
	NL_TDBor	net loans / tot dep.& bor.
	NL_TEA	net loans / total earning assets
	SUBD_LIAB	subd. debt / total liabilities
	SUBD_TA	subordinated debt / total assets
	TBF_CAP	total borrowed funds / total capital
	TOEA_TEA	total other earning assets / total earning assets
	NL_TA_DEP_TA	NL_TA * DEP_TA
	NL_TEA_DEP_TA	NL_TEA * DEP_TA
	NL_TA_CSTF_TA	NL_TA * CSTF_TA
	NL_TEA_CSTF_TA	NL_TEA * CSTF_TA
Income Statement Structur	e com_opinc	(commission income - commission expenses) / operating income
	COST_INC	cost to income ratio
	FEE_OPINC	(fee income - fee expenses) / operating income
	NETINC_AVEQ	inc net of dist / avg equity
	NIE_AVAS	non int exp / avg assets
	NIIR_AVAS	net int rev / avg assets
	NIR_NINC	net interest revenue / net income
	NMARG	net interest margin
	NOI_NETINC	non op items / net income
	NOIT_AVAS	non op items & taxes / avg assets
	OOI_AVAS	oth op inc / avg assets
	OVHD_OPINC	overhead / operating income
	PERS_OPINC	personnal expenses / operating income
	RER	recurring earning power
	TRAD_OPINC	(trading income - trading expenses) / operating income
Mkt Risk Ind.	BETA (1)	beta annual mean
	RISK_SPEC	annual mean of specific risk
	RISK_TOT	annual mean of total risk
	Z	z score annual mean

Table 1, Continued

	Table 2				
Stability Test of the optimal equation: definition of dummy variables					
Dummy	Equals one if (zero elsewhere):				
D_COM	Commercial bank				
D_INV	Investment bank				
D_HK	Nationality = Hong Kong				

D_HK	Nationality = Hong Kong
D_ID	Nationality = Indonesia
D_MY	Nationality = Malaysia
D_SG	Nationality = Singapore
D_PH	Nationality = Philippines
D_TA	Nationality = Taïwan
D_TH	Nationality = Thailand
D_KO	Nationality = Korea
D_CRK10	Country Rank ≤ 10
D_WRLDRK500	World Rank ≤ 500

	Mean	Median	Maximum M	Ainimum	Std. Dev.	Observations
M6_TA ¹⁹	10906739	3980695	146000000	26386	20521751	123
<i>M6</i> _KP_A	19.066	9.776	94.282	0.114	20.255	123
M6_KP_LIAB	20.751	10.845	112.975	5.513	23.108	99
M6_KP_NL	51.543	21.538	423.753	7.777	77.127	97
M6_TCR	15.538	15.129	29.845	9.732	4.661	68
M6_TIER1	19.654	10.982	146.4	5.6	28.439	59
M6_IL_GL	9.019	6.152	45.962	-2.286	8.402	87
M6_LLP_GL	1.411	1.217	13.699	-2.522	1.846	95
M6_LLP_NETIR	24.122	19.665	76.037	-4.441	21.066	84
M6_LLP_TA	0.745	0.546	4.887	-0.841	0.86	106
M6_LLR_GL	8.624	5.586	67.321	0.704	10.254	100
M6_LLR_IL	70.334	69.512	339.004	-475	87.907	86
M6_LLR_TA	3.902	2.494	30.203	0.221	4.806	100
M6_NCO_AGL	3.197	1.475	31.296	-0.472	5.568	63
M6_NCO_NIBLLR	59.025	51.682	212.062	5.033	50.572	41
M6_RWA_TA	66.148	67.022	93.596	39.838	12.965	39
M6_DIVPO	49.6	38.887	243.732	-3.262	40.65	64
M6_NIR_EA	2.716	2.581	5.325	1.33	1.027	95
M6_NIR_TA	2.576	2.206	31.281	-17.458	4.425	119
M6_ROAA	0.965	0.966	3.074	-0.863	0.868	98
M6_ROAE	7.282	6.764	19.517	-13.076	6.404	98
M6_TXOPI_AVAS	1.036	0.984	3.013	-0.866	0.977	74
M6_GL_DSTF	72.749	73.002	130.347	39.058	17.942	77
M6_NL_CSTF ²⁰	59.315	63.426	96.096	-1.385	23.056	100
M6_LIQASS_DSTF	45.994	31.7	182.933	12.331	36.881	94
M6_LIQASS_TOTDB	41.067	27.875	250.005	1.01	38.087	102
M6_BKSDEP_ASS_TA	10.59	6.795	50.904	0.176	10.983	88
M6_INTBKDEP_TA	13.961	9.384	66.885	2.463	12.523	71
M6_INTBKDUE_TA	21.76	17.137	70.831	4.535	13.554	54
M6_INTERBK	764.846	381.862	4099.456	119.634	918.808	36
M6_CAPF_DEPST	20.019	12.64	111.278	6.553	19.735	77
M6_CAPF_LIAB	39.202	11.487	429.675	1.809	75.742	99
M6_CAPF_NL	30.06	20.604	193.189	8.475	29.51	76
M6_CAPF_TA	19.21	10.355	94.283	0.114	20.3	100
M6_CSTF_TA	75.433	81.843	92.229	5.206	18.19	93
M6_DEP_TA	66.942	77.473	92.186	0.577	25.356	116
M6_EQ_DEPST	24.997	11.856	228.18	5.904	35.443	92
M6_NL_TA	46.364	48.284	94.147	-0.458	22.23	121

 Table 3

 Statistical properties of the regressors

 Observations that induced a standard deviation / sample mean ratio greater than two were ruled out

 $^{^{\}rm 19}$ Thousand of US\$.

 $^{^{\}rm 20}$ For this variable, we have also ruled out 15 observations greater than 100%.

<i>M6</i> _NL_TDBOR	74.94	62.385	752.257	-1.04	88.068	110
M6_NL_TEA	54.53	55.912	100	-1.318	24.118	121
M6_SUBD_LIAB	3.677	2.488	26.041	0.028	4.785	67
M6_SUBD_TA	2.952	2.073	14.737	0.026	2.971	67
M6_TBF_CAP	60.836	43.481	243.21	0.016	64.047	37
M6_TOEA_TEA	46.605	45.253	101.318	0.2	24.52	122
M6_NL_TA_DEP_TA	3535.611	3743.405	6819.55	6.257	2042.047	114
M6_NL_TEA_DEP_TA	4046.926	4270.138	8229.203	18.607	2215.36	114
M6_NL_TA_CSTF_TA	3899.952	4116.232	6820.052	-15.116	2006.485	93
M6_NL_TEA_CSTF_TA	4433.504	4504.436	8220.851	-43.524	2147.106	93
M6_COM_OPINC	34.352	33.106	48.676	16.877	11.416	8
M6_COST_INC	70.639	60.131	419.444	24.965	46.054	117
M6_FEE_OPINC	75.671	57.841	307.005	-75.927	82.376	48
M6_NETINC_AVEQ	6.47	5.092	18.715	-3.064	5.382	59
M6_NIE_AVAS	5.783	3.611	31.297	0.704	6.398	120
<i>M6</i> _NIIR_AVAS	2.739	2.296	32.496	-14.416	4.587	119
<i>M6</i> _NIR_NINC	266.806	191.474	960.165	-2.545	216.566	95
M6_NMARG	2.805	2.687	5.211	0.938	1.052	95
M6_NOI_NETINC	10.594	6.097	45.783	-17.236	15.448	73
M6_NOIT_AVAS	-0.188	-0.163	0.245	-0.973	0.26	77
M6_OOI_AVAS	4.52	1.406	35.299	-3.594	7.794	120
M6_OVHD_OPINC	202.433	155.63	620.328	-55.5	148.892	96
M6_PERS_OPINC	92.57	69.097	238.904	6.672	59.864	84
M6_RER	2.016	1.567	15.915	-18.447	3.735	122
M6_TRAD_OPINC	9.718	6.423	44.602	-6.569	12.465	25
M6_BETA	0.971	0.957	2.038	0.11	0.374	124
M6_RISK_SPEC	0.055	0.051	0.167	0.018	0.024	124
M6_RISK_TOT	0.067	0.065	0.177	0.02	0.025	124
M6_Z	19.229	17.659	49.319	6.048	7.991	124

	Descriptive	per country sta	itistics for retur	ns correlations		
	Mean Individual Dor	nestic Correlat	ions; [2000 - 200)5] Descriptive S	Statistics	
Set of banks	Number of banks	Mean	StDev	Min	Max	Median
Full Set	125	0.184	0.167	-0.354	0.717	0.167
Hong Kong	12	0.132	0.121	-0.232	0.520	0.123
Indonesia	16	0.030	0.067	-0.191	0.254	0.029
Korea	20	0.242	0.156	-0.147	0.717	0.228
Malaysia	9	0.091	0.116	-0.354	0.372	0.087
Philippines	13	0.055	0.089	-0.176	0.353	0.045
Singapore	4	0.079	0.127	-0.240	0.373	0.086
Taiwan	22	0.361	0.142	-0.186	0.687	0.376
Thailand	29	0.203	0.126	-0.289	0.516	0.208
	Mean Individual Cross	Border Correl	ations; [2000 - 2	005] Descriptive	e Statistics	
Set of banks	Number of banks	Mean	StDev	Min	Max	Median
Full Set	125	0.005	0.037	-0.155	0.163	0.005
Hong Kong	12	0.002	0.041	-0.136	0.132	0.003
Indonesia	16	0.000	0.040	-0.155	0.117	0.000
Korea	20	0.009	0.037	-0.116	0.163	0.008
Malaysia	9	0.012	0.040	-0.104	0.135	0.013
Philippines	13	0.006	0.035	-0.121	0.141	0.005
Singapore	4	0.014	0.035	-0.066	0.130	0.015
Taiwan	22	0.003	0.032	-0.118	0.121	0.003
Thailand	29	0.001	0.038	-0.135	0.130	0.002

Table 4 Descriptive per country statistics for returns correlations

Distribution	of the binary variab	les DP_DOM_2_a	nd et DP_CB_2 (re	eturns based co	orrelations)
Set of Banks	Nb of Banks DP_D	OM Tot. Obs. DP	_DOM = 1 DP_CH	3 Nb Tot. Obs.	$DP_CB = 1$
Full Set	125	117	40	113	36
Hong Kong	12	12	5	12	3
Indonesia	16	14	2	13	5
Korea	20	20	7	20	5
Malaysia	9	9	3	9	3
Philippines	13	11	4	11	1
Singapore	4	4	1	4	0
Taïwan	22	21	7	20	7
Thailand	29	26	11	24	12

 Table 5

 Distribution of the binary variables DP_DOM_2_and et DP_CB_2 (returns based correlations)

Cross distribution			DP_CB_2	
Count		0	1	Total
	0	50	23	73
DP_DOM_2	1	27	13	40
	Total	77	36	113

M6_TA 2.55E-09 0.448 0.000 0 M6_KP_A -0.00768 -1.165 -0.009 0	tdev .000	Z	H0 Reject.	N	N = 1
M6_TA 2.55E-09 0.448 0.000 0 M6_KP_A -0.00768 -1.165 -0.009 0	.000		Reject		
<i>M6</i> _KP_A -0.00768 -1.165 -0.009 0					
		0.319		115	38
M6_KP_LIAB -0.00622 -1.137 -0.007 0	.008	-0.928]	115	38
	.007	-0.949		93	26
	.004	-0.861		90	28
—	.043	-0.373		63	26
M0_11LK1 -0.0244 -2.000 -0.035 0	.023	-1.045		55	21
	.019	0.430		80	30
	.088	-0.807		88	31
	.007	1.086		78	27
	.170	0.166		99	36
	.019	-0.242		92	33
	.003	0.475		80	30
	.040	0.732		92	33
	.055	0.009		59	22
M6_NCO_NIBLLR Insuf. Obs.					
Nb. Insuf. Obs.					
M6_RWA_TA Nb.					
	.005	0.000		59	18
	.139	-0.345		91	34
	.054	0.789	1	111	38
	.166	-1.517		92	35
—	.023	-0.512		93	35
-	.189	-1.952	*	70	26
	.010	-0.245		71	28
	.006	2.054	**	93	33
	.005	-1.471		87	30
-	.005	-1.360		95	32
	.000	-1.034		82	27
	.010	-0.661		65	23
	.023	-0.905		51	29 19
Incut Obs	.025	-0.905		51	1)
M6_INTERBK Nb.					
M6_CAPF_DEPST -0.0052 -0.705 -0.006 0	.011	-0.474		73	26
M6_CAPF_LIAB -0.00461 -2.165 ** -0.006 0	.003	-1.344		94	32
	.010	-0.998		72	25
<i>M</i> 6_CAPF_TA -0.0106 -1.511 -0.012 0	.008	-1.280		95	32
M6_CSTF_TA 0.0118 1.449 0.013 0	.010	1.228		93	33
	.006	1.477	1	108	36
	.006	0.053		86	27
	.006	1.830	* 1		36
	.002	-1.051		103	32
	.005	2.067			36
	.050	-0.570		63	26
	.070	-0.389		63	26
Insuf Obs	.070	-0.507		05	20
M6_TBF_CAP Nb.					
	.005	-1.471	1	114	38
	.000	2.511	**	106	34
	.000	2.680	***	106	34
M6_NL_TA_CSTF_TA 0.000129 1.924 * 0.000 0	.000	1.854	*	93	33

Table 6 Simple Model*: DP_DOM_2 (returns based correlations)

	Simple M			2 (returns based	/			
Variable	Smpl.Est.Coef.	Smpl.Est.Z	H0 Reject.	Mean Bootst. Est. Coef.	Bootst. Coef. Stdev	Bootst. Z	H0 Reject. N	N = 1
M6_ NL_TEA_CSTF_TA	0.00013	2.140	**	0.000	0.000	2.025	** 93	33
M6_COM_OPINC	Insuf. Obs. Nb.							
M6_COST_INC	-0.0014	-0.590		-0.001	0.004	-0.390	110	38
M6_FEE_OPINC	Insuf. Obs. Nb.							
M6_NETINC_AVEQ	0.0119	0.360		0.011	0.037	0.325	55	16
M6_NIE_AVAS	-0.0161	-0.710		-0.024	0.036	-0.442	112	38
M6_NIIR_AVAS	0.0398	1.565		0.027	0.051	0.782	111	38
M6_NIR_NINC	0.000887	1.420		0.001	0.001	1.287	89	29
M6_NMARG	-0.126	-0.961		-0.132	0.136	-0.929	91	33
M6_NOI_NETINC	0.0127	1.266		0.013	0.011	1.129	68	20
M6_NOIT_AVAS	1.69	2.484	**	1.831	0.768	2.205	** 73	25
M6_OOI_AVAS	-0.0258	-1.367		-0.033	0.028	-0.913	112	38
M6_OVHD_OPINC	0.000559	0.625		0.000	0.001	0.596	89	29
M6_PERS_OPINC	0.000419	0.171		0.000	0.003	0.149	79	26
M6_RER	-0.0181	-0.622		-0.025	0.037	-0.491	114	38
M6_TRAD_OPINC	Insuf. Obs. Nb.							
M6_BETA	0.532	1.609		0.530	0.347	1.536	117	40
M6_RISK_SPEC	-4.78	-1.009		-4.923	5.094	-0.939	117	40
M6_RISK_TOT	-2.48	-0.542		-2.528	4.976	-0.497	117	40
M6_Z	0.00695	0.445		0.006	0.017	0.420	117	40

Table 6 Simple Model* DP DOM 2 (returns based correlations)

*Model: Prob{DP_DOM_2_i = 1} = $\Phi(\alpha + \beta X_i)$ $\Phi(.)$ is the cumulated frequency function of the Normal distribution

 $DP_DOM_{2i} = 1$ if coefficient λ_i in equation 7/ is significantly greater than 1 (risk level for the test = 2%) Method: ML - Binary Probit (Newton-Raphson) - QML (Huber/White) standard errors & covariance We required at least 50 observations and 10 observations such that the explained variable equals one.

Bootstrapped coefficients and standard deviation are based on 1000 bootstrapping replications.

	I	Smpl.Est.		<u> </u>	D () C (/			
Variable	Smpl.Est.Coef.		H0 Reject	Est. Coef.	Bootst. Coef. Stdev	Bootst. Z H) Reject.	N	N = 1
<i>M6</i> _TA	-4.13E-09	-0.693		0	0.000	-0.427		111	35
<i>M6</i> _KP_A	0.00107	0.181		0.001	0.007	0.161		111	35
M6_KP_LIAB	0.00123	0.192		0.001	0.008	0.148		89	28
M6_KP_NL	0.00366	1.950	*	0.004	0.002	1.485		86	30
M6_TCR	-0.0108	-0.35		-0.009	0.034	-0.316		63	17
M6_TIER1	0.011	1.696	*	0.021	0.026	0.418		54	20
M6_IL_GL	0.00785	0.470		0.008	0.019	0.406		80	28
M6_LLP_GL	-0.413	-2.522	**	-0.457	0.186	-2.228	**	87	29
M6_LLP_NETIR	-0.00135	-0.184		-0.001	0.008	-0.175		75	27
M6_LLP_TA	-0.633	-2.677	***	-0.684	0.246	-2.572	**	96	31
M6_LLR_GL	0.0131	0.899		0.018	0.019	0.698		91	29
M6_LLR_IL	0.00632	2.419	**	0.007	0.003	2.101	**	80	28
M6_LLR_TA	0.0614	1.855	*	0.071	0.047	1.298		91	29
M6_NCO_AGL	0.0297	0.958		0.040	0.053	0.564		59	18
M6_NCO_NIBLLR	Insuf. Obs. Nb.								
M6_RWA_TA	Insuf. Obs. Nb.								
M6_DIVPO	-0.00749	-1.448		-0.009	0.006	-1.158		59	13
M6_NIR_EA	-0.246	-1.641		-0.263	0.165	-1.488		89	30
M6_NIR_TA	-0.0281	-0.854		-0.058	0.080	-0.35		108	35
M6_ROAA	0.0449	0.267		0.047	0.182	0.247		89	30
M6_ROAE	0.00704	0.320		0.009	0.024	0.294		90	31
M6_TXOPI_AVAS	0.0747	0.461		0.081	0.174	0.429		68	24
M6_GL_DSTF	0.00426	0.443		0.004	0.010	0.412		71	22
M6_NL_CSTF	0.00467	0.768		0.005	0.007	0.711		91	27
M6_LIQASS_DSTF	-0.00163	-0.415		-0.002	0.004	-0.368		85	27
M6_LIQASS_TOTDB	0.00157	0.467		0.001	0.004	0.372		93	30
M6_BKSDEP_ASS_TA	-0.00996	-0.748		-0.011	0.014	-0.688		82	25
M6_INTBKDEP_TA	0.00566	0.459		0.005	0.015	0.376		65	22
M6_INTBKDUE_TA	0.00101	0.070		-0.002	0.018	0.055		51	14
M6_INTERBK	Insuf. Obs. Nb.								
M6_CAPF_DEPST	0.00366	0.493		0.004	0.010	0.372		72	25
M6_CAPF_LIAB	0.000441	0.257		0.000	0.002	0.182		93	29
M6_CAPF_NL	0.00383	0.734		0.005	0.008	0.509		71	25
M6_CAPF_TA	-0.000651	-0.102		-0.001	0.007	-0.091		94	29

Table 7: Simple Model: DP_CB_2 (returns based correlations)

Variable	Smpl.Est.Coef.			Mean Bootst.		Bootst. Z H0 Reje	ct. N	N = 1
M6_CSTF_TA	0.00559	0.784		0.006	0.008	0.688	91	27
M6_DEP_TA	-0.000197	-0.038		0	0.006	-0.034	104	32
M6_EQ_DEPST	-0.00277	-0.732		-0.003	0.006	-0.432	83	24
M6_NL_TA	0.00239	0.437		0.002	0.006	0.410	109	35
M6_NL_TDBor	0.000241	0.181		0.001	0.003	0.087	100	33
M6_NL_TEA	0.00264	0.525		0.003	0.005	0.524	109	35
M6_SUBD_LIAB	0.0105	0.326		0.009	0.055	0.191	63	24
M6_SUBD_TA	-0.00162	-0.031		0.003	0.067	-0.024	63	24
M6_TBF_CAP	Insuf. Obs. Nb.							
M6_TOEA_TEA	-0.0027	-0.56		-0.003	0.005	-0.524	110	34
M6_NL_TA_DEP_TA	-1.19E-05	-0.187		0	0.000	-0.177	102	32
M6_NL_TEA_DEP_TA	-5.65E-06	-0.095		0	0.000	-0.089	102	32
M6_NL_TA_CSTF_TA	3.94E-05	0.568		0.000	0.000	0.518	91	27
M6_NL_TEA_CSTF_T	A 4.47E-05	0.691		0.000	0.000	0.668	91	27
M6_COM_OPINC	Insuf. Obs. Nb.							
M6_COST_INC	-0.00153	-0.637		-0.001	0.004	-0.403	107	34
M6_FEE_OPINC	Insuf. Obs. Nb.							
M6_NETINC_AVEQ	0.0244	0.664		0.025	0.039	0.625	55	9
M6_NIE_AVAS	-0.0103	-0.481		-0.014	0.027	-0.378	108	35
M6_NIIR_AVAS	-0.0336	-0.966		-0.052	0.073	-0.459	108	35
<i>M6_</i> NIR_NINC	-0.00128	-1.954	*	-0.001	0.001	-1.738	* 86	29
M6_NMARG	-0.342	-2.361	**	-0.354	0.154	-2.218	** 89	29
<i>M6_</i> NOI_NETINC	0.0083	0.794		0.008	0.012	0.715	66	24
<i>M6</i> _NOIT_AVAS	0.0154	0.025		0.023	0.692	0.022	71	24
<i>M6</i> _OOI_AVAS	0.0129	0.843		0.013	0.017	0.751	108	35
M6_OVHD_OPINC	-0.000501	-0.573		0	0.001	-0.552	86	29
M6_PERS_OPINC	-0.00144	-0.637		-0.001	0.002	-0.593	76	26
M6_RER	0.0659	1.832	*	0.070	0.044	1.500	110	35
M6_TRAD_OPINC	Insuf. Obs. Nb.							
M6_BETA	0.715	2.038	**	0.736	0.359	1.995	** 113	36
M6_RISK_SPEC	4.32	0.863		5.255	5.726	0.754	113	36
M6_RISK_TOT	5.89	1.207		6.326	5.253	1.122	113	36
<i>M6</i> _Z	-0.0224	-1.219		-0.026	0.020	-1.095	113	36

Table 7: Simple Model*: DP_CB_2 (returns based correlations)

*Model: Prob{DP_CB_2_i = 1} = $\Phi(\alpha + \beta X_i); \Phi(.)$ is the cumulated frequency function of the Normal distribution

We required at least 50 observations and 10 observations such that the explained variable equals one.

Bootstrapped coefficients and standard deviation are based on 1000 bootstrapping replications.

 $DP_CB_2_i = 1$ if coefficient λ_i in equation /8/ is significantly greater than 1 (risk level for the test = 2%) Method: ML - Binary Probit (Newton-Raphson) - QML (Huber/White) standard errors & covariance

Table 8	
Optimal Multivariate Model for Domestic Contributions (returns based correlations)

Dependent Variable: DP_DOM_2				
Variable	Coefficient	Std. Error	z-Statistic	Prob.
M6_NL_TEA_DEP_TA	0.000165**	5.65E-05	2.911642	0.0036
С	-1.173837***	0.269240	-4.359815	0.0000
LR statistic (1 df)	7.191470	McFado	den R-squared	0.054064
Probability(LR stat)	0.007325			
Obs with Dep=0	72		Total obs	106
Obs with Dep=1	34			

Model: $DP_DOM_2_i = \Phi(\alpha + \beta_I X_{1i} + ... + \beta_k X_{ki})$

 Φ (.) is the cumulated frequency function of the Normal distribution

 $DP_DOM_{2_i} = 1$ if coefficient λ_i in equation /7/ is significantly greater than 1 (risk level for the test= 2%)

DP_DOM_2; = 1 if coefficient x, in equation /// is significantly greater than 1 (risk level for the test= 2%) Method: ML - Binary Probit (Newton-Raphson) - QML (Huber/White) standard errors & covariance We required at least 50 observations and 10 observations such that the explained variable equals one. ***, ** and * indicate significance respectively at the 1%, 5% and 10% levels. 9 regressors were pre-selected : M6_TXOPI_AVAS, M6_NL_CSTF, M6_NL_TA, M6_NL_TEA, M6_NOIT_AVAS, M6_ NL_TA_CSTF_TA, M6_NL_TA_DEP_TA, M6_NL_TEA_CSTF_TA, M6_NL_TEA_DEP_TA. Because the selection process yields only one regressor, collinearity is not a concern.

Correlations matrix of pre-selected regressors

	M6_TXOPI_AVAS	M6_NL_CSTF	M6_NL_TA	M6_NL_TEA	M6_NOIT_AVAS	M6_NL_TA_CSTF_TA	M6_NL_TA_DEP_TA	M6 NL_TEA_CSTF_TA	M6_ NL_TEA_DEP_TA
M6_TXOPI_AVAS	1.00	-0.44	-0.49	-0.52	-0.62	-0.53	-0.56	-0.56	-0.58
M6_NL_CSTF	-0.44	1.00	0.94	0.86	0.44	0.91	0.86	0.90	0.84
M6_NL_TA	-0.49	0.94	1.00	0.90	0.44	0.99	0.92	0.97	0.89
M6_NL_TEA	-0.52	0.86	0.90	1.00	0.49	0.88	0.82	0.93	0.86
M6_NOIT_AVAS	-0.62	0.44	0.44	0.49	1.00	0.43	0.46	0.47	0.49
M6_NL_TA_CSTF_TA	-0.53	0.91	0.99	0.88	0.43	1.00	1.00	0.98	0.97
M6_NL_TA_DEP_TA	-0.56	0.86	0.92	0.82	0.46	1.00	1.00	0.98	0.98
M6_NL_TEA_CSTF_TA	-0.56	0.90	0.97	0.93	0.47	0.98	0.98	1.00	1.00
M6_NL_TEA_DEP_TA	-0.58	0.84	0.89	0.86	0.49	0.97	0.98	1.00	1.00

Table 9
Optimal Multivariate Model for Cross Border Contributions (returns based correlations)
No <i>a priori</i> collinearity restriction

Dependent Variable: DP_CB_2							
Variable	Coefficient	Std. Error	z-Statistic	Prob.			
M6_LLR_IL	0.009257	0.004301	2.152453	0.0314			
M6_BETA	1.261574	0.534145	2.361857	0.0182			
M6NMARG	-0.373183	0.166449	-2.242030	0.0250			
С	-1.253237	0.809196	-1.548743	0.1214			
LR statistic (3 df)	13.78436 Mc	Fadden R-squared		0.144988			
Probability(LR stat)	0.003214 Tot	al obs		73			
Obs with Dep=0	47 Far	47 Farrar Glauber Stat					
Obs with Dep=1	26 Far	rar PVal for rejectio	n	38.54%			

A priori collinearity restriction²¹

Dependent Variable: DP_CB_2				
Variable	Coefficient	Std. Error	z-Statistic	Prob.
M6_LLR_IL	0.007309**	0.003228	2.264309	0.0236
M6_BETA	1.670992***	0.476487	3.506899	0.0005
M6_LLP_GL	-0.382435**	0.185744	-2.058938	0.0395
С	-2.129443***	0.601612	-3.539563	0.0004
LR statistic (3 df)	21.93437	McFadden R-squared		0.237225
Probability(LR stat)	6.73E-05	Total obs		73
Obs with Dep=0	49	Farrar Glauber Stat		2.36
Obs with Dep=1	24	Farrar PVal for rejection		88.35%

 $Model: DP_CB_2_i = \varPhi(\alpha + \beta_1 X_{1i} + ... + \beta_k X_{ki})$

 Φ (.) is the cumulated frequency function of the Normal distribution

 $DP_CB_2_i = 1$ if coefficient λ'_i in equation /8/ is significantly greater than 1 (risk level for the test = 2%) Method: ML - Binary Probit (Newton-Raphson) - QML (Huber/White) standard errors & covariance We required at least 50 observations and 10 observations such that the explained variable equals one.

***, ** and * indicate significance respectively at the 1%, 5% and 10% levels. 6 regressors were pre-selected: M6_LLP_GL, M6_LLP_TA, M6_LLR_IL, M6_NIR_NINC, M6_NMARG, M6_BETA.

0 1				1	1	• 1	1
(OTTO	atione	matriv	Of.	nro co	loctod	173113	nine
COLLER	auous	matrix	OI.	DIC-SCI	ιστισμ	vana	UICS.

	M6_LLP_GL	M6_LLP_TA	M6_LLR_IL	M6_NIR_NINC	M6_NMARG	M6_BETA
M6_LLP_GL	1.00	0.61	0.06	0.21	0.11	0.10
M6_LLP_TA	0.61	1.00	-0.05	0.13	-0.03	0.04
M6_LLR_IL	0.06	-0.05	1.00	-0.03	0.11	-0.09
M6_NIR_NINC	0.21	0.13	-0.03	1.00	0.30	-0.22
M6_NMARG	0.11	-0.03	0.11	0.30	1.00	-0.15
M6_BETA	0.10	0.04	-0.09	-0.22	-0.15	1.00

Table 8 A
Goodness of Fit Test (Hosmer Lemeshow) for the Table 8 equation.

²¹ To that purpose we render the introduction of a variable impossible if its introduction would induce a rejection of the null (no collinearity) with a p-value less than 50%.

Quantile of Risk		Dep=0		Dep=1	Total	H-L		
	Low	High	Actual	Expect	Actual	Expect	Obs	Value
1	0.1208	0.1896	20	18.0769	1	2.92311	21	1.46980
2	0.2010	0.2923	14	15.6373	7	5.36270	21	0.67132
3	0.2958	0.3538	11	14.2387	10	6.76129	21	2.28804
4	0.3594	0.4162	15	12.9446	6	8.05538	21	0.85080
5	0.4190	0.5718	12	11.2346	10	10.7654	22	0.10657
		Total	72	72.1321	34	33.8679	106	5.38653
H-I	L Statistic:		5.3865			Prob. Chi-	Sq(3)	0.1456

The null of adequacy between theoretical and estimated probabilities cannot be rejected for a risk level less than 14.5%.

Table 9 A
Goodness of Fit Test (Hosmer Lemeshow) for the Table 9 equation.
No a priori collinearity restriction

	Quantile of Risk			Dep=0		Dep=1	Total	H-L
	Low	High	Actual	Expect	Actual	Expect	Obs	Value
1	3.E-08	0.1903	11	12.7574	3	1.24262	14	2.72747
2	0.1998	0.2795	12	11.3086	3	3.69135	15	0.17175
3	0.2891	0.4053	12	9.24862	2	4.75138	14	2.41175
4	0.4075	0.5013	5	8.18649	10	6.81351	15	2.73053
5	0.5054	0.9135	7	5.37202	8	9.62798	15	0.76863
	Total		47	46.8732	26	26.1268	73	8.81012
H-L Statistic: 8.8101			8.8101		1	Prob. Chi-So	q(3)	0.0319

The null of adequacy between theoretical and estimated probabilities cannot be rejected for a risk level less than 3.2%.

A priori collinearity restriction

	Quantile of Risk			Dep=0		Dep=1	Total	H-L
	Low	High	Actual	Expect	Actual	Expect	Obs	Value
1	0.0002	0.1054	13	13.1702	1	0.82975	14	0.03713
2	0.1154	0.2156	11	12.5634	4	2.43656	15	1.19775
3	0.2228	0.3065	12	10.3064	2	3.69356	14	1.05481
4	0.3179	0.4999	10	8.74135	5	6.25865	15	0.43435
5	0.5005	0.9597	3	4.11073	12	10.8893	15	0.41342
		Total	49	48.8922	24	24.1078	73	3.13746
H-I	Statistic:		3.1375			Prob. Chi-Sc	q(3)	0.3709

The null of adequacy between theoretical and estimated probabilities cannot be rejected for a risk level less than 37.1%.

			N.Obs	PVal for
Dummy	LR Stat N	J.Obs	1	rej.
d_crk10	2.71	98	31	25.85
d_wrldrk500	1.73	95	30	42.11
d_com	1.35	104	33	51.03
d_inv	5.02	104	33	8.14
dum_id	1.14	106	34	56.47
dum_hk	0.69	106	34	70.78
dum_ko	0.82	106	34	66.33
dum_my	0.27	106	34	87.34
dum_ph	0.55	106	34	75.78
dum_sg	5.50	106	34	6.40
dum_ta	2.50	106	34	28.60
dum_th	0.92	106	34	63.04

Table 8-BStability test for optimal stepwise selected equation of DP_DOM_2 $Prob{DP_DOM_2 = 1} = \Phi(\beta_1 + \beta_2 M_6_NL_TEA_DEP_TA)$

The null of stability cannot be rejected for a 5% risk level

We compare the likelihoods of the stepwise selected equation and the augmented model: f(x) = f(x) + f(x)

Stepwise Selected Model 1: Prob{ $DP_DOM_2_i = 1$ } = $\Phi(X_i \beta)$

Augmented model 2: Prob{DP_DOM_2_i = 1} = $\Phi(X_i \beta, X_i \times D_i \times \beta')$ where D_i is a dummy variable defined hereafter (X = M6_NL_TEA_DEP_TA)

We compute a LR statistic for the null of stability: $LR = 2 [Log L_2 - Log L_1]$. Under the null, LR is distributed as a $\chi^2(2)$.

Dummy	LR Stat	N.Obs	N.Obs 1	PVal for rej.
d_crk10	1.02	69	26	90.61
d_wrldrk500	7.08	66	25	13.18
d_com	1.89	72	28	75.58
d_inv	1.24	72	28	87.22
dum_id	10.93	73	28	2.73 **
dum_hk	2.29	73	28	68.26
dum_ko	-	-	-	-
dum_my	-	-	-	-
dum_ph	1.92	73	28	75.09
dum_sg	-	-	-	-
dum_ta	5.98	73	28	20.04
dum_th	3.52	73	28	47.43

Table 9-BStability test for optimal stepwise selected equation of DP_CB_2Prob{DP_VB_2 = 1} = $\Phi(\beta_1 + \beta_2 M6_LLR_IL + \beta_3 M6_BETA + \beta_4 M6_LLP_GL)$

** indicate significance at the 5% level

We compare the likelihoods of the stepwise selected equation and the augmented model: Stepwise Selected Model 1: Prob{DP_CB_2_i = 1} = \Phi(X_i \beta)

Augmented model 2: Prob{DP_CB_2_i = 1} = $\Phi(X_i \beta, X_i \times D_i \times \beta')$ where D_i is a dummy variable defined hereafter (X = M6_LLR_IL, M6_BETA, M6_LLP_GL)

We compute a LR statistic for the null of stability: $LR = 2 [Log L_2 - Log L_1]$. Under the null, LR is distributed as a $\chi^2(2)$.