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ABSTRACT: In this short paper, we recall the use of squared slacks used to nramséguality
constraints into equalities and several reasons why their introduction endsarinful in many
algorithmic frameworks routinely used in nonlinear programmifigmerical examples performed
with the sequential quadratic programming method illustrate those rea®womsresults are
reproducible with statef-the-art implementations of the methods concerned and mostlg serv
pedagogical purpose, which we believe will be useful not only to praeiscand students, but also
to researchers.
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1. Introduction
C onsider the nonlinear inequality constrained optimization problem

minimize f (x) subjecttoc(x)< 0 (1)
xeR"

where f and ¢ are C?functions from R" into R. To simplify, we assume that there is a single inequality
constraint, but our arguments still hold in the general case. A simplaigaehto convert the inequality
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constraint into an equality constraint is to add a new varigbdeR that appearsquared in the reformulation

minimize f (x) subjecttoc(x)+y2= 0 2)
XeRn,yeR

hence the namepuared slack. The two problems are equivalent in the sense ghagolves (1) if and only if

(x*,ir —c(x*)) solves (2). This transformation can be used to derive optimalitgitamms of an inequality

constrained problem, (see for example (Bertsekas, 1999, §8rRI2)n interesting discussion on this subject in
(Nash,1998). The use of squared slacks has also been advocated for algorithrposqsu(see for example
(Tapia, 1980)). In (Gilkt al., 1981, §7.4), the authors give theoretical reasons why convétinigto (2) may

be a bad idea, but the literature does not appear to state the numerical drawtiekppfoach clearly.

The purpose of this note is to demonstrate why many algorithmic frarkewf nonlinear programming
will fail on problems of the form (2), arising from a squared slagksformation or in their own right. Among
other reasons, we wish to communicate this fact to potential practitieviezsare not necessarily aware of the
arcane corners of optimization methods. We wish to show that suplesinnocuous-looking transformations
can be disastrous. This note is mainly motivated by the fact that sorsearstsome researchers, know that the
usage of squared slacks is discouraged in practice, but the reasomainsrenclear.

The frameworks that are concerned are the sequential quadratic proggarf®@f) method, the
augmented Lagrangian method, amhjugate-gradient-based methods, among others. It is importaedlizer
that (2) satisfies the same regularity conditions as (1) and does not tthefemonvergence theory of those
methods, but illustrates cases where things can, and do, go.Wverghow that the main difficulty comes from
the linearization of the first order conditions and a bad choice of the staoiimty

The rest of the paper is organized as follows. Section 2 presents a pdesahéver-dimensional problem
that illustrates the major shortcomings of SQP-type methods. Section 3tpnesererical experiments with a
standard implementation of the SQP method to illustrate our point. lowde results are reproducible with
stateef-the-art implementations. We elected to not choose a particular existing solt®o fmain reasons. The
first is to ensure that we are running the plain SQP method, witielf@and whistles often found in staie-
the-art software. The second is that the central point of this papeeros algorithms, not particular
implementations. We leave to the interested reader the possibility to makehbisown opinion by reproducing
the numerical tests performed in this paper with his or her favorite impition of the SQP method. Finally,
Section 4 describes other well-known families of algorithms subject to sishitatcomings. Conclusions are
discussed in Sectidh

We believe that the examples given in this note can serve as pedagogical toolsst thepsomewhat
surprising behavior of some minimization methods for the isoludf nonlinear problems. Hopefully, they will
also be useful to design better methods that do not suffer the same shagscom

2. Shortcomings of some current methods

In this section, we presentfaw example problems on which several of the most widely used eanlin
optimization algorithms are bound to fail. The reason for this failuteatsthe problems, without being complex
or artificial, cause a certain behaviour of the algorithm which correspondsglyeio a case that is usually
'ruled out' of the theory by means of assumptions. By wagxample, we cite Boggs and Tolle (1995), where
the authors mention various types of solution that an SQP algorithmraducp and that do not correspond to a
local constrained minimizer of (1). Those cases are when the iterates

1. are unboundedh(violation of Assumption C1 in (Boggs and Tolle, 1995))
2. have a limit point that is a critical point of (1) but not a local minimazer,

3. have a limit point that is a critical point of the measure of infeasilgiity ) |c(x)+y2 B

We will use the following simple parametrized example to expose those patidlerases. It is based on
the addition of squared slacks to convert an inequality constraint into anyqualit
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Example 1 Consider the problem
I Y
minimize =x
X,YyeR
wherea e R is a parameter. Various valuesaoWill illustrate each of the three shortcomings listed above.

subject toax —eX +y 2= 0 (3)

Figure 1. lllustration of problem (3) witla=0. The two solutions(0,+1)are indicated by black circles, and

correspond to global minimizers. Starting frdxg,0), we observex, ——o and yy =0 for all k. A typical
SQP method will stop and claim to have found an optimal solution, withetbeof a (very) large multiplier

L L L L
-1 -05 o o5 1 15

X
Figure 2. lllustration of problem (3) wita <0. The (global) minimizers aré0,1), indicated by black circles.

The point indicated by a red square is a local maximizer. Starting fxgn®), an SQP method will converge to
the local maximizer.

Figures 1, 2 and 3 show the various situations graphically. Notéothalt a € R, Example 1 satisfies the
linear independence constraint qualification at all feasible points. One dattsres is that the inequality
constraint is not active at the minimum of each inequality constrained problem
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Figure 3. lllustration of problem (3) with > 0. The (global) minimizers ar€0,+1), indicated by black circles.
The point indicated by a red square is a critical point of the infeasibility meddsing a starting point of the
form (Xg,0), an SQP method will converge towards the red square.

For the purpose of reference, note that the first-order optimality camsliio(1) are given by
Vf (x)+zVe(x
{ (x) ( )}0 and (z ~¢c(x))= 0 (4)
zc(x)
The main reason for the failure on Example 1 is the following. Aedinat Problem (1) is regular in the sense
that VC(X*)¢O at any critical pointx”. Problem (2) is then regular as well and the Karush-Kuhn-Tucker
conditions are necessary for first-order optimality. The Lagrarfgigoroblem (2) is
L(x,y,A)=f (x)+ﬁ(c(x)+y2),

where 4 is the Lagrange multiplier associated to the equality constraint, and at adigsteoitical point, we
must have

v (x)+AVe(x)
Ay =0. (5)
c(x)+ y?
Note that in (5), the complementarity condition of (4) is only apparent asqtradity Ay =0, so that the sign

restrictions on the multiplier and on the constraints in the second pgf} db not appear. As it turns out, the
sign of the multiplier can be recovered from the second-order optinwitgitions (see (Bertsekas, 1999,
83.3.2)). This pseudo-complementarity condition and the lossigof mestriction creates a difficulty in
linearization-based methods. Indeed, any method that linearizes conddjiaisa(point(x,y,A) will compute

astepd =(d, ,dy ,d;) satisfying
Ady +yd; +1y =0. (6)
Assume at some stage in the process we hawe0 and A= 0. The linearization (6) then necessarily implies

that dy =0. Thus, if every =0 it will always remain equal to zero at subsequent iterations. Of cou(d#,isf

such that the constraint is inactivexﬁ, any method based on a linearization of (5) is bound to fail. Such is the
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case with the examples of this section. A typical class of methodsutioig the step according to (6) is the class
of SQP methods.

3. Numerical experiments

In order to eliminate side effects sometimes found in sophisticatedrnraptations, we implemented a
basic SQP method for equality-constrained problems, as givitocedal and Wright, 1999, Algorithm 18.3),

for example. The method is globalized with a backtracking lineseartted.; -penalty merit function

0y) P f )+vIe)+y? ],
where v >0 is a penalty parameter, and the Lagrange multipliers are updatedhesieggt-squares estimates.
In all cases, the starting point is chosen as (0,0) with the initikipfier set to1/2. In the following tablesk is

the iteration number(X, ,Yy| ) is the current iteratejy, is the current Lagrange multiplier estimatd, is the

gradient of the Lagrangian evaluated(&j , Y ,4 ) and ¢ is the steplength computed from the backtracking
linesearch.

Table 1. Iterations of the SQP method on problem (2) aithO

VL] [c(Xk Yk )| k1 Xk Yk Ak
5.00e-01  1.00et+ 00 0.00e+ 00 0.00er 00 5.00e— 01
0.00e+ 00  6.92e-01 3.68e-01 —3.68e-01 0.00e+00 —5.32e-01
0.00e+ 00  2.55e-01 1.00e+00 —1.37e+00 0.00er00 —5.37e+ 00
0.00e+ 00  9.36e-02 1.00e+00 —2.37e+00 0.00er00 —2.53e+01
0.00e+ 00  3.45e-02 1.00e+00 —3.37e+00 0.00er00 —9.78e+ 01
0.00e+ 00 1.27e-02 1.00e+ 00 —4.37e+ 00 0.00et+ 00 —3.45e+ 02
0.00e+ 00 4.66e-03 1.00e+ 00 —5.37e+ 00 0.00et+ 00 —1.15e+ 03
0.00e+ 00 1.72e-03 1.00e+ 00 —6.37e+ 00 0.00et+ 00 —3.71et+ 03
8.88e—16 6.31e-04 1.00e+ 00 —7.37e+ 00 0.00et+ 00 —1.17e+ 04
0.00e+ 00 2.32e-04 1.00e+ 00 —8.37e+ 00 0.00et+ 00 —3.60et+ 04
10 | 0.00e+00  8.54e-05 1.00e+00 —9.37e+00 0.00e+00 —1.10e+ 05
11 | 0.00e+00  3.14e-05 1.00e+00 —1.04e+01 0.00er00 —3.30et+ 05
12 | 0.00e+00  1.16e-05 1.00e+00 —1.14e+01 0.00er00 —9.84et+ 05
13 | 1.78e-15  4.25e-06 1.00e+00 —1.24e+01 0.00er00 —2.9let+ 06
14 | 1.78e-15  1.56e-06 1.00e+00 —1.34e+01 0.00er00 —8.55e+ 06
15 | 1.78e-15  5.75e-07 1.00e+00 —1.44e+01 0.00er00 —2.50e+ 07
16 0.00e+ 00 2.12e-07 1.00e+ 00 —1.54e+ 01 0.00et+ 00 —7.26e+ 07
17 0.00e+ 00 7.79e—-08 1.00e+ 00 —1.64e+ 01 0.00et+ 00 —2.10e+ 08
18 0.00e+ 00 2.86e—08 1.00e+ 00 —1.74e+ 01 0.00et+ 00 —6.06e+ 08
19 0.00e+ 00 1.05e-08 1.00e+ 00 —1.84e+ 01 0.00et+ 00 —1.74e+ 09
20 0.00e+ 00 3.88e—-09 1.00e+ 00 —1.94e+ 01 0.00et+ 00 —5.00e+ 09

©CoOoO~NOOUODMWNREFROXN

Table 1 gives the detail of the iterations in the case wherd®. As expected, we see thgf, =0 for all

k. Because the least-squares estimates happen to yield the exact multiplierpriestnt case, the gradient of
the Lagrangian always vanishes. In order to satisfy the firgranotimality conditions, there thus only remains

attainingfeasibility, which is achieved by having, converge to—c. Note also tha 4, |converges to+oo.
This behaviour is that of the first shortcoming of Section 2. Saawkttacking linesearch iterations were only
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necessary at the first iteration, the unit step was always accepted atethdestttions. Note that the fact that
Xy 'escapes'te-oo can be observed in practice by tightening the stopping tolerance.

Table 2 gives the detail of the iterations in the case where-1. The results are representative of any
value a< 0. Here, X, converges to a value which is a local maximizer. This illustrates thedgsbortcoming
of Section 2. Again, no backtracking was necessary on this pro&keept at the first iteration.

Table 2. Iterations of the SQP method on problem (2) with-1

k VL eyl k1 Xk Yk A

0 1.00e+ 00  1.00e+ 00 0.00e+00  0.00e+ 00 5.00e-01

1 2.78e—17 5.68e-01 4.56e-01 —2.28e-01 0.00e+00 —1.27e-01

2 0.00e+00 3.59e-02 1.00e+ 00 —5.44e-01 0.00e+00 —3.44e-01

3 0.00e+00 1.49e-04 1.00e+00 —5.67e—01 0.00e+00 —3.62e-01

4 0.00e+00 2.56e-09 1.00e+00 —5.67e-01 0.00e+00 —3.62e-01

Table 3. Iterations of the SQP method on problem (2) with2

k VL] lc(Xk .Yk a1 Xk Yk A
0 5.00e-01 1.00e+ 00 0.00et+ 00 0.00et+ 00 5.00e-01
1 0.00e+ 00 7.55e-01 2.93e-01 2.93e-01 0.00e+ 00 —4.43e-01
2 0.00e+ 00 6.39e-01 2.06e-01 5.29e-01 0.00e+00 —1.74e+00
3 0.00e+ 00 6.16e-01 1.00e-01 7.39e-01 0.00e+ 00 7.82e+ 00
4 0.00e+ 00 6.15e-01 1.26e-02 6.57e-01 0.00e+00  —9.23e+ 00
5 1.11e-16 6.14e-01 4.12e-03 6.92e-01 0.00e+ 00  —5.18e+ 02
6 0.00e+ 00 6.14e-01 1.46e-06 6.93e-01 0.00e+00  —4.33e+05
7 0.00e+ 00 6.14e-01 2.09e-12 6.93e-01 0.00e+ 00 7.55e+ 10
8 0.00e+ 00 6.14e-01 1.00e-19 6.93e-01 0.00e+ 00 —5.19e+ 07

Finally, Table 3 gives the detail of the iterations in the case wher®, but again, the results are
representative of any valuae (0,e). This situation is that given in the third shortcoming of Section 2.

Backtracking was used in this case and the algorithm stopped clalmairite steplength was too small.
As a side note, we remark that whar-e, there is a unique feasible point for (2) that lyas 0. The SQP

algorithm converge®wards that point, which is in fact a saddle point. &ore, the feasible set is made of two
disconnected curves. Each one intersects the ywag). One of those intersection points is a local maximizer

while the other one is a local minimizer, but neither of themas). Depending on the value of the starting
point, the SQP algorithm converges to one or the other. We decided &padtthose results here since they do
not add new elements to the present analysis.

Finally, the above numerical results hold not only for an initigy=0 but of course, also foiyg
sufficiently close to 0. This is an effect of finite precision howeard not a shortcoming of the SQP method.

4, Other algorithmic frameworks

As we showed in (6), any traditional SQP-type method will necessarilgrateniterates of the form
(X ,0) when started from(Xxg,0) with a nonzero Lagrange multiplier. In this section, we show thatasim
conclusions hold for a variety of families of algorithms for nonlinagramming.
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Augmented-Lagrangian-based methods fail for a reason similar to thet igivSection 2. Note that the
squared slacks transformation can again be used to derive the fmopesf the augmented Lagrangian for
inequality-constrained problems (Bertsekas, 1996, §3.1-3.2; Berts&®89, §4.2). Minimization of the
augmented Lagrangian with squared slacks with respect to the slacksedadythe usual form for inequality-
constrained problems. As we illustrate below, the direct application of the ateghieagrangian algorithm to
the formulation involving the slacks suffers the same pitfalls as then&god.

Consider the augmented Lagrangian for (2)

. 2 1 2 2
L(x,y,4;p)=f (x)+ﬂ(c(x)+y )+§p(c(x)+y ) , (7
where p >0 is a penalty parameter and wheteis the current estimate of the Lagrange multiplier. The step is
computed from the Newton equations for, (#here

VL(X,y,/I;p)z{Vf (X)+0(X,y)VC(x)}

8
2yo(x,y) ®)

and

.
VZL(X,y,A;p):[VZf (x)+a(x.y)V2c(x)+Tch(x)Vc(x) 2pyVve(x) ]

2pyVe(x) 25(x.y)+ 4py?
where o(x,y) = A+ pc(x)+Yy?). In particular, the Newton equations yield

pyVe(x)Tdy +(a(x,y)+20y* )Xy =-yoX.y)
where dy and dy are the search directions ir and y respectively. Whenevely =0, the latter equation
becomes
(A+pc(x))dy =0,
SO thatdy =0 provided thati+ pc(x) =0, or equivalently, provided that(x,0)= 0. Note, in the second

component of (8)a 'complementarity’ expression similar to that in the second compon@nt of
The iterative minimization of (7) using the truncated conjugate gradient edserpesy =0. Indeed,

when started from(Xg,0), the first search directiorpy is the steepest descent direction and has the form
(09,0) for somedgy € R. The initial residualrg = —pg thus will havethe same form and so will the next iterate
(X1, Y1) = Xg+a@o0) and the residual;. A property of the conjugate gradient method is that atkitre
iteration, the search directiopy € spanfo,_4 fx } (Golub and Loan1996 Corollary 10.2.4). Thereforg,
necessarily shares the same foft},0). A recursion argument thus shows that ¥ath conjugate-gradient
iterate has the fornfé, ,0). This method will therefore also be unable to depart from the hyperplan@.

5. Discussion

When the constraint of (1) is inactive, the optimal multiplieflis 0. However, in (2) we will frequently
observe| A |+ when startingwith Yo =0 to reach dual feasibility. Looking for instance at the results of
Table 1, the final iteratg(—19.4,0) is feasible to within the prescribed tolerance. To compensate in dual

feasibility, we need to have a large multiplier. In this sense, the additisquared slacks has created a critical
point at infinity.

For lack of a better initial value, implementations often set their variables to zerot@rstarting the
optimization, provided the objective and constraints are well defined at the Migfileling languages also often
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set the variables to zero unless the user specifies otherwise. The diffievjtiesed in this paper thus certainly
occur in practice and illustrate another reason why starting points stailié chosen to be zero.

Unfortunately, the problem is difficult to avoid. Of course, it seeraswe should not add squared slacks
to convert inequality constraints into equality constraints. Howevdslgms having the form (2) where the
variable y does not appear in the objective may arise in their own right. If at albfeaiiis recommended that

equality constraints involving squared slack variables be converiedquality constraints.
It is worth noting that any problem of the form

minimize f (x) subjecttac(x)+g(y)= 0
X,y

where g(0)=0, g'(0)=0 and g”(0)=0 will exhibit a similar behavior. For instance, the functions
g(y)=coshf ),and g(y) = [arctany )y have the desired properties. The objective may also have the form
f (x,y) and the same conclusions holdff (x,0) /oy =0.
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