

pKa constant determination of two triazole herbicides: Tebuconazole and Penconazole

Eva Čadková, Michael Komárek, Jean Debord, Della Puppa Loïc, François

Bordas, Jean-Claude Bollinger

▶ To cite this version:

Eva Čadková, Michael Komárek, Jean Debord, Della Puppa Loïc, François Bordas, et al.. pKa constant determination of two triazole herbicides: Tebuconazole and Penconazole. Journal of Solution Chemistry, 2013, 42, pp.1075-1082. 10.1007/s10953-013-0012-z . hal-00929974

HAL Id: hal-00929974 https://unilim.hal.science/hal-00929974

Submitted on 20 Feb 2014 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 2	Paper published in <i>Journal of Solution Chemistry</i> <u>42</u> , 1075-1082 (2013) DOI: 10.1007/s10953-013-0012-z
3	
4	
6	
7	
8	pK _a Constant Determination of Two Triazole Pesticides: Tebuconazole and
9	Penconazole
10	
11	
12	Eva adková • Michael Komárek • Jean Debord • Loïc Della Puppa • François Bordas •
13	Jean-Claude Bollinger
14	
15	
16	
17	Eva Čadková
18	Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague,
19	Kamýcká 129, 165 21 Prague 6, Czech Republic; present address: Czech Geological Survey, Geologická 6, 152 00
20	Prague 5, Czech Republic
21	
22	Michael Komárek
23	Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences
24	Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic
25	
26	Jean Debord
27	Service de Pharmacologie-Toxicologie, Hôpital Dupuytren, 2 Avenue Martin Luther King, 87042 Limoges, France
28	
29	Loïc Della Puppa · François Bordas · Jean-Claude Bollinger (🖂)
30	Groupement de Recherche Eau, Sol, Environnement (GRESE), Université de Limoges, 123 avenue Albert Thomas,
31	87060 Limoges, France
32	e-mail: jean-claude.bollinger@unilim.fr
33	
34	

35	Abstract	We determined the acidity constants of tebuconazole and penconazole, two
36	fungicides fr	om the group of 1,2,4-triazoles. Potentiometric titrations were performed in a 20%
37	(v/v) acetoni	trile/water mixture at 25 °C and at a fixed ionic strength (KNO ₃ , 0.1 mol·dm ⁻³). The
38	pK_a values (1	representing thermodynamic constants) were determined to be 5.0 ± 0.1 and 5.2 ± 0.1
39	for tebucona	zole and penconazole, respectively. These values could be used in pure water
40	solutions to	consider the protonated or deprotonated forms when studying the field behavior of
41	these fungici	des. Molecular modeling calculations allowed identifying the N4 atom as the
42	protonation s	site.
43		
44		

- ⁴⁵ Keywords Triazole pesticides Potentiometric titrations Protonation constant Protonation
 ⁴⁶ site Molecular modeling

⁴⁸ **1 Introduction**

49

50 Agrochemicals include organic molecules, with various building blocks and functional groups. 51 When they are dispersed in the field, their physical, chemical and ecotoxicological properties, 52 mostly related to their structure, are of major importance for their environmental behavior. 53 Among those, the acid/base properties are of special interest, because they determine the present 54 chemical form: a neutral molecule or a charged ion (either a cation and/or an anion, depending on 55 the molecular structure). Because the soil and its main components (clays, Fe- and Mn-56 oxyhydroxides, humic substances, etc.) exhibit different surface charges according to the 57 environmental pH [1], the acidity constant K_a (or the p K_a) of the pesticides are crucial for 58 determining their behavior in the soil environment. 59 Here we focused on two pesticides of the (benzo)triazole family for which some quantitative 60 structure-properties relationships are already available [2]: tebuconazole and penconazole (Table 61 1, Fig. 1). They are known to behave as systemic fungicides, with both curative and protective 62 actions, mainly applied to orchards and vineyards [3] where the soil pH is commonly within the 63 range from 4 to 8. According to their structure (Fig. 1), both tebuconazole and penconazole can 64 be expected to behave as weak bases, the N4 nitrogen atom in the 1, 2, 4-triazole ring being the 65 most probable target for protonation (see section 3.1 below); unfortunately, their pK_a values are 66 unknown (tebuconazole) or of dubious value (penconazole) [4]. The knowledge of their correct 67 values is essential, in order to predict the nature of the species (neutral molecule or protonated 68 one) present in the environment. 69 These triazole molecules are poorly water-soluble, and require water-miscible co-solvents in 70 order to be solubilized. Acetonitrile is a very adequate cosolvent for use in RP-HPLC analysis of 71

⁷¹ this class of compounds [5, 6] due to its aprotic and polar nature and because it is fully miscible ⁷² with water. Therefore, a mixture of acetonitrile and water was chosen here for the potentiometric ⁷³ determination of the pK_a of the two fungicides.

74 75

⁷⁶ 2 Experimental

77

⁷⁸ 2.1 Reagents

⁸⁰ Analytical-grade tebuconazole was supplied by the Institute of Industrial Organic Chemistry ⁸¹ (Warsaw, Poland) with a purity of 99.9 \pm 0.1 %; analytical standard penconazole was purchased ⁸² from Fluka (Pestanal, 99.1 %). All reagents and acetonitrile (AN) were of analytical grade ⁸³ (Fluka), and dissolved in high purity de-ionized carbonate-free water (Milli-Q system: resistivity ⁸⁴ 18.2 M Ω ·cm, TOC < 10 µg·dm⁻³).

85

⁸⁶ 2.2 Potentiometric Measurements

87

88 The pK_a values of tebuconazole and penconazole were determined by potentiometric titration in a 89 20% (v/v) acetonitrile/water solvent mixture, according to a slight modification of the method 90 described by Fikri et al. [7]. Each triazole compound (0.01 g) was dissolved in 20% AN (100 91 cm^3 ; at a fixed 0.1 mol·dm⁻³ ionic strength using KNO₃), then sonicated (Bransonic model 200, power = 19 W, frequency = 40 Hz) during 20 min. Nitric acid (0.1 mol \cdot dm⁻³) was added in 92 93 equivalent amount to 20 cm³ of the triazole solution and this mixture of strong acid and 94 protonated weak base was subsequently titrated by 0.01 mol \cdot dm⁻³ KOH (in the 20% AN solvent) 95 in a thermostatted cell (25 °C) under nitrogen atmosphere (Linde, 5.0). The exact concentration of 96 the KOH solution was determined by titration with HNO_3 (0.1 mol·dm⁻³; Normadose Prolabo). 97 The titration was performed (Fig. 2) using the automatic titrator Metrohm 716 DMS Titrino 98 coupled to a Metrohm 727 Ti Stand, a Metrohm 722 stirrer and equipped with a glass/calomel pH 99 electrode (Metrohm, pH 0–14/0–80 °C; KCl 3 mol·dm⁻³). The set parameters are the dynamic 100 mode, a 1 mV·min⁻¹ signal drift and a 5 cm³·min⁻¹ maximal flow-rate. The titration started after 101 pH equilibrium was reached in the cell. The combined glass electrode was calibrated with pH 102 7.00 and 4.00 aqueous buffers and then with a 0.05 mol kg^{-1} potassium hydrogenophthalate 103 solution in the 20% AN solvent ($pH_8 = 4.58$ [8, 9]). All procedures were performed in triplicates. 104 The titration curves were fitted using the ProtoFit (version 2.1) software [10] to calculate the pK_a 105 values and using the Davies activity coefficient corrections calculated from the data in the mixed 106 solvent system [11]. According to Fikri et al. [7], such a calculated value can be considered as 107 numerically equal to the value in pure water, within the experimental uncertainties (± 0.05). 108

¹⁰⁹ 2.3 Molecular Modeling

111	For each compound, the geometries of the two enantiomers were optimized by molecular
112	mechanics (MM2 force field) with HyperChem [12] and further refined by the PM6 semi-
113	empirical molecular orbital method with MOPAC [13, 14] The gas phase formation enthalpies at
114	298 K were also computed from MOPAC
115	
116	
117	3 Results and Discussion
118	
119	3.1 Protonation Site
120	
121	Due to the presence of a single chiral center (asymmetric carbon atom) in both molecular
122	structures, each consists of two (R or S) enantiomers (Fig. 1), whose properties can be somewhat
123	different; the studied samples were racemic mixtures, however.
124	According to our molecular theoretical quantum calculations of gas phase formation enthalpies
125	(Table 3), the N4 protonation is favored by <i>ca</i> . 50–65 kJ·mol ⁻¹ , compared to N2 protonation,
126	whatever the studied fungicide and its enantiomer form. ¹
127	Any further protonation on the N2 atom of the triazole ring will be hindered, due to both steric
128	hindrance and electrostatic repulsion. Moreover, there are no other protonable or deprotonable
129	site on neither of these two molecules.
130	
131	3.2 Protonation Constants
132	
133	The acidity constants, pK_a , of the two triazole compounds were determined from potentiometric
134	titrations in a 20% (v/v) AN solvent mixture at 25 °C (Fig. 2). Due to the introduction of activity
135	coefficient corrections during data treatment, our calculated pK_a values can be considered as the
136	thermodynamic ones.
137	However it would be more useful to have information about the pK_a value in pure water. In order
138	to estimate the effect of the 20% AN solvent mixture, we refer to our previous study on amino-2

¹ We have also tested the new PM7 method in MOPAC 2012. This method, which is still under development, gave enthalpy values within 5.3% of the PM6 values. The relative stabilities of the protonated forms were unchanged.

139 pyridine derivatives [7]: it appeared that the values of aqueous pK_a would be ca. 0.02 unit higher 140 than those determined in the 20% AN solvent, what is within the experimental uncertainties (\pm 141 0.05). 142 This is why we consider that our values are a good estimate (better than ± 0.1 unit) of the 143 aqueous pK_a of these two fungicides, *i.e.* for the equilibrium between the protonated and the free 144 molecular triazole (± 0.1 ; at 25 °C): 145 ⇆ $Teb + H^+$ Teb•H⁺ $pK_a = 5.0$ 146 ⇆ Pen + H^+ $pK_a = 5.2$ $Pen \cdot H^+$ 147 Until now, there has been limited information about the dissociation constant of tebuconazole and 148 penconazole (Tables 1 and 2). According to the IUPAC Pesticides Properties Database [4], 149 tebuconazole is considered as a very weak base, without any numerical value; for penconazole, 150 the low value given (1.51, see Table 1) is not in accordance with the structure of the compound, 151 while it would correspond to a medium-strength acid. Few other data are cited in the literature 152 (see Table 2); in all cases, they are lower than our experimental values, indicating a somewhat 153 weaker basic behavior for the corresponding molecule, what is once more not coherent with its 154 structure. Furthermore, the SPARC-calculated values [15] are too low to be realistic, and should 155 be ignored. 156 157

¹⁵⁸ **4** Conclusion

159

¹⁶⁰ The aqueous pK_a values, determined for the first time in this study, allow predicting the ¹⁶¹ environmental behavior of either tebuconazole or penconazole according to the acid/base ¹⁶² properties of the soil solution and of the soil sorption complex. If stability constants data become ¹⁶³ available, their possible complexation with metal cations present in the soil solution or added as ¹⁶⁴ pesticides (*e.g.*, Cu [17, 18]) can now be estimated, for a better knowledge of the speciation of ¹⁶⁵ these triazole fungicides.

166

169 170 171	Acknowledgments M. Komárek is grateful for the support obtained from the internal grant of the Faculty of Environmental Sciences, Czech University of Life Sciences (42900/1312/3166). Research at GRESE, University of Limoges, is supported by the 'Conseil Régional du Limousin'.				
172					
173	_				
175	Re	ferences			
176	1	Stumm W. Morgon, I.I.: Aquatic Chamistry: Chamical Equilibria and Pates in Natural			
177	1.	Stumm, w., Morgan, J.J.: Aquatic Chemistry. Chemical Equinona and Kates in Natural Waters, Wiley, New York (1996)			
178	2	Representation B. Gramatica B. Modelling physico-chemical properties of (henzo)triazoles and			
179	4.	servering for environmental partitioning. Water Bes 45 , 1463, 1471 (2011).			
180	3	Komárek M Čadková E Chrastný V Bordas E Bollinger I.C. Contamination of			
181	yinevard soils with fungicides: A review of environmental and toxicological aspects				
182	Environ Int 36 138–151 (2010)				
183	4.	IUPAC (International Union of Pure and Applied Chemistry): Pesticide properties database;			
184		online available: <u>http://pesticides.iupac.org/</u>			
185	5.	Noga, S., Michel, M., Buszewski, B.: Effect of functionalized stationary phases on the			
186		mechanism of retention of fungicides in RP-LC elution. Chromatographia 73, 857-864			
187		(2011)			
188	6.	Qiu, J., Dai, S., Zheng, C., Yang, S., Chai, T., Bie, M.: Enantiomeric separation of triazole			
189	fungicides with 3-µm and 5-µm particle chiral columns by reverse-phase high-performance				
190	liquid chromatography. Chirality 23, 479–486 (2011)				
191	7.	Fikri, K., Debord, J., Bollinger, J.C., Clédat, D., Pénicaut, B., Robert, J.M.H.: RP-HPLC			
192		lipophilicity studies for some (hetero)arylamides derived from 2-amino 4,6-dimethyl			
193		pyridine: Introduction of an hydrogen-bond descriptor. J. Liq. Chrom. Rel. Technol. 34,			
194		1356–1366 (2011)			
195	8.	Longhi, P., Mussini, T., Rondinini, S.: Predicting standard pH values for reference buffer			
196		solutions in solvent mixtures with water. Anal. Chem. 58, 2290–2292 (1986)			
197	9.	Rosés, M., Rafols, C., Bosch, E.: Autoprotolysis in aqueous organic solvent mixtures. Anal.			
198		Chem. 65 , 2294–2299 (1993)			

- ¹⁹⁹ 10. Turner, B.F., Fein, J.B.: ProtoFit: A program for determining surface protonation constants
 ²⁰⁰ from titration data. Comput. Geosci. **32**, 1344–1356 (2006); ProtoFit v.2.1 rev.1 (November
 ²⁰¹ 2005) available free at: http://protofit.sourceforge.net/protofit_download.html
- ²⁰² 11. Gagliardi, L.G., Castells, C.B., Rafols, C., Rosés, M., Bosch, E.: Static dielectric constants of
 ²⁰³ acetonitrile/water mixtures at different temperatures and Debye-Hückel *A* and a₀*B* parameters
 ²⁰⁴ for activity coefficients. J. Chem. Eng. Data **52**, 1103–1107 (2007)
- ²⁰⁵ 12. HyperChem version 8, HyperCube Inc., Gainesville, Florida, USA: <u>http://www.hyper.com</u>
- ²⁰⁶ 13. Stewart, J.J.P.: Optimization of parameters for semiempirical methods, V: Modification of
 ²⁰⁷ NDDO approximations and application to 70 elements. J. Mol. Model. 13, 1173–1213 (2007)
- ²⁰⁸ 14. Stewart, J.J.P.: MOPAC2009, Stewart Computational Chemistry, Colorado Springs, CO,
 ²⁰⁹ USA: http://OpenMOPAC.net
- ²¹⁰ 15. Hilal, S.H., Karickhoff, S.W., Carreira, L.A.: A rigorous test for SPARC's chemical reactivity
 ²¹¹ models: Estimation of more than 4300 ionization pKa's. Quant. Struct. Act. Relat. 14, 348–
 ²¹² 355 (1995). SPARC online calculator (v. 4.6, October 2011) available free at:
- ²¹³ <u>http://archemcalc.com/sparc/</u>
- ²¹⁴ 16. Chimuka, L., Michel, M., Cukrowska, E., Buszewski, B.: Influence of temperature on mass
 ²¹⁵ transfer in an incomplete trapping supported liquid membrane extraction of triazole
 ²¹⁶ fungicides. J. Separ. Sci. **32**, 1043–1050 (2009)
- ²¹⁷ 17. Arias, M., Paradelo, M., López, E., Simal-Gándara, J.: Influence of pH and soil copper on
 ²¹⁸ adsorption of metalaxyl and penconazole by the surface layer of vineyard soils. J. Agric.
 ²¹⁹ Food Chem. 54, 8155–8162 (2006)
- ²²⁰ 18. Čadková, E., Komárek, M., Kaliszová, R., Száková, J., Vaněk, A., Bordas, F., Bollinger, J.C.:
 ²²¹ The influence of copper on tebuconazole sorption onto soils, humic substances and
 ²²² ferrihvdrite, Environ, Sci. Pollution Res., in press, (2012).
- 223
- 224

²²⁶ **Table 1** Physico-chemical properties of the fungicides tebuconazole and penconazole,

- ²²⁷ according to IUPAC Pesticides Properties Database [4]
- 228

	Tebuconazole	Penconazole
Chemical name	(R,S)-1- <i>p</i> -chlorophenyl-4,4- dimethyl-3-(1 <i>H</i> -1,2,4-triazol-1-	(<i>R</i> , <i>S</i>)-1-[2-(2,4- dichlorophenyl)pentyl]-1 <i>H</i> -1 2 4-
Chennear hame	ylmethyl)pentan-3-ol	triazole
CAS Number	107534-96-3	66246-88-6
SMILES	Clc1ccc(cc1)CCC(O)(C(C)(C)C) Cn2ncnc2	Clc1ccc(c(Cl)c1)C(CCC)Cn2ncnc2
Chemical formula	$C_{16}H_{22}CIN_3O$	$C_{13}H_{15}Cl_2N_3$
Molecular mass	307.82	284.18
pK _a	not available 'very weak base'	1.51 (at 25 °C) 'very weak base'
Water solubility (g· dm ⁻³ at 20 °C)	0.036	0.073
Melting point (°C)	105	60.3
log K _{ow} ^a	3.7 (at pH 7 and 20 °C)	3.72 (at pH 7 and 20 °C)
$K_{oc} (dm^3 \cdot kg^{-1})^{b}$	769	2205
Degradation in soils (d) ^c	55.8	90.0
GUS leaching potential index ^d	2.00	1.51
BCF ^e	78	320

229

²³⁰ a K_{ow} is the octanol/water partition coefficient

³¹ b Partition coefficient normalized to organic carbon content, Freundlich model

²³² c Aerobic soil half-life, field conditions (days)

²³³ d Groundwater Ubiquity Score (estimated)

e BioConcentration Factor

	Experimental results ^a	Estimated value ^b	Literature data
Tebuconazole	5.0 ± 0.1	1.56	3.39 °
Penconazole	5.2 ± 0.1	1.36	$2.83 \pm 0.12^{\text{ d}}$
a Potentiometric; 25 °b According to SPAR	°C .C [15]		
a Potentiometric; 25	С ГС [15]		
c Cited by Chimuka e	et al. [16]		
d Cited by Arias et al.	. [17]		

²³⁶ **Table 2** pK_a values for the two fungicides

Neutral molecule	N2 protonated	N4 protonated
- 54.17	612.16	547.23
- 46.90	602.16	551.14
181.15	854.37	793.08
183.27	850.82	795.17
	Neutral molecule - 54.17 - 46.90 181.15 183.27	Neutral moleculeN2 protonated- 54.17612.16- 46.90602.16181.15854.37183.27850.82

²⁴⁴ **Table 3** Gas phase formation enthalpies ($kJ \cdot mol^{-1}$) calculated with MOPAC/PM6

- Fig. 1 Structures of Tebuconazole (a, b) and Penconazole (c, d) enantiomers (sticks and balls
 presentation).

(b) Tebuconazole S

(c) Penconazole *R*

²⁶⁰ (d) Penconazole *S*

Fig. 2 Titration curves for 2 mg Tebuconazole (×) and Penconazole (+) with 0.01 mol \cdot dm⁻³ KOH in the 20% (v/v) AN/Water, 0.1 mol \cdot dm⁻³ KNO₃ medium, after acidification with an equimolar amount of HNO₃.

- 265
- 266

267