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ON THE CONVERGENCE OF THE SAKAWA-SHINDO ALGORITHM

IN STOCHASTIC CONTROL

J. FRÉDÉRIC BONNANS, JUSTINA GIANATTI, AND FRANCISCO J. SILVA

Abstract. We analyze an algorithm for solving stochastic control problems, based on Pontrya-
gin’s maximum principle, due to Sakawa and Shindo in the deterministic case and extended to
the stochastic setting by Mazliak. We assume that either the volatility is an affine function of the
state, or the dynamics are linear. We obtain a monotone decrease of the cost functions as well
as, in the convex case, the fact that the sequence of controls is minimizing, and converges to an
optimal solution if it is bounded.

1. Introduction

In this work we consider an extension of an algorithm for solving deterministic optimal control
problems introduced by Sakawa and Shindo in [19], and analyzed by Bonnans [7]. This algorithm
has been adapted to a class of stochastic optimal control problems in Mazliak [15]. We extend
here the analysis of the latter to more general situations appearing naturally in applications, and
obtain stronger results regarding the convergence of iterates.

We introduce now the problem and the algorithm. Let (Ω,F ,F,P) be a filtered probability
space on which an m-dimensional standard Brownian motion W (·) is defined. We suppose that
F = {Ft}t∈[0,T ] (T > 0) is the natural filtration, augmented by all the P-null sets in F , associated

toW (·) and we recall that F is right-continuous. Let us consider the following controlled Stochastic
Differential Equation (SDE):

(1.1)

{
dy(t) = f(y(t), u(t), t, ω)dt+ σ(y(t), u(t), t, ω)dW (t) t ∈ (0, T ),
y(0) = y0 ∈ Rn,

where f : Rn × Rr × [0, T ] × Ω → Rn and σ : Rn × Rr × [0, T ] × Ω → Rn×m are given maps. In
the notation above y ∈ Rn denotes the state function and u ∈ Rr the control. We define the cost
functional

(1.2) J(u) = E
{∫ T

0
`(y(t), u(t), t)dt+ g(y(T ))

}
.

where ` : Rn ×Rr × [0, T ]×Ω→ R and g : Rn ×Ω→ R are given. Precise definition of the state
and control spaces, and assumptions over the data will be provided in the next sections.

Let Uad be a non-empty closed, convex subset of Rr and

(1.3) U :=
{
u ∈ (H2)r; u(t, ω) ∈ Uad, for almost all (t, ω) ∈ (0, T )× Ω

}
,

where

H2 :=
{
v ∈ L2([0, T ]× Ω); the process (t, ω) ∈ [0, T ]× Ω 7→ v(t, ω) is F-adapted

}
.

The control problem that we will consider is

(1.4) Min J(u) subject to u ∈ U .
The Hamiltonian of the problem is defined by

(1.5)
H : Rn × Rr × Rn × Rn×m × [0, T ]× Ω → R,

(y, u, p, q, t, ω) 7→ `(y, u, t, ω) + p · f(y, u, t, ω) + q · σ(y, u, t, ω),
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where p · f(y, u, t, ω) is the scalar product in Rn and q · σ(y, u, t, ω) :=
∑m

j=1 q
j · σj(y, u, t, ω).

Finally, given (y, u) satisfying (1.1) let us define the adjoint state (p(·), q(·)) ∈ (H2)n ×
(
H2
)n×m

as the unique solution of the following Backward Stochastic Differential Equation (BSDE)

(1.6)

{
dp(t) = −∇yH(y(t), u(t), p(t), q(t), t, ω)dt+ q(t)dW (t) t ∈ (0, T ),
p(T ) = ∇yg(y(T )).

Given ε > 0, we define the augmented Hamiltonian as

(1.7)
Kε : Rn × Rr × Rr × Rn × Rn×m × [0, T ]× Ω → R,

(y, u, v, p, q, t, ω) 7→ H(y, u, p, q, t, ω) + 1
2ε |u− v|

2 .

We consider the following algorithm to solve (1.4).

Algorithm:

(1) Let some admissible control u0(·) and a sequence {εk} of positive numbers be given. Set
k = 0. Using (1.1), compute the state y0(·) associated to u0.

(2) Compute pk and qk, the adjoint state, solution of (1.6), associated to uk and yk.
(3) Set k = k + 1. Compute uk and yk such that yk is the state corresponding to uk and

(1.8) uk(t, ω) = argmin
{
Kεk(yk(t, ω), u, uk−1(t, ω), pk−1(t, ω), qk−1(t, ω), t, ω) ; u ∈ Uad

}
,

for almost all (t, ω) ∈ [0, T ] × Ω. We will see in Section 3 that uk is well defined if εk is
small enough.

(4) Stop if some convergence test is satisfied. Otherwise, go to (2).

The main idea of the algorithm is to compute at each step a new control that minimizes
the augmented Hamiltonian Kε which depends on H and on a quadratic term that penalizes the
distance to the current control. We can prove that this is a descent method and that the distance to
a gradient and projection step tends to zero. Consequently, in the convex framework the algorithm
is shown to be globally convergent in the weak topology of (H2)r. Step 3 in the algorithm reveals
its connection with the extension of the Pontryagin maximum principle [18] to the stochastic
setting. We refer the reader to Kushner and Schweppe [14], Kushner [12, 13], Bismut [4, 6],
Haussmann [11] and Bensoussan [2, 3] for the the initial works in this area. Afterwards, general
extensions were established by Peng [17] and by Cadenillas and Karatzas [10]. The stochastic
maximum principle usually involves two pairs of adjoint processes (see [17]). Nevertheless, the
gradient of the cost function depends only on one pair of adjoint processes and since we suppose
that U is convex, the first order necessary condition at a local optimum u∗ depends only on
∇J(u∗) (see [20, p. 119-120] for a more detailed discussion).

In this paper we work with two types of assumptions. The first one supposes that σ in (1.1)
does not depend on u and that the cost functions ` and g are Lipschitz. In the second assumption
we suppose that the functions f and σ involved in (1.1) are affine with respect to (y, u). Thus,
our results are a significant extension of those of [15]. Let us explain now our main improvements,
referring to Remark 2.1(i) for other technical differences. In [15] the author studies a restricted
form of our first assumption, he shows that if in addition σ is independent of the state y and
the problem is convex, then, except for some subsequence, the iterates uk converges weakly to a
solution of (1.4). If σ depends on the state y, it is proven in [15, Theorem 5] that given ε > 0,
the algorithm can be suitably modified in such a way that every weak limit point û of uk is an
ε-approximated optimal solution, i.e. J(û) ≤ J(u)+ε for all u ∈ U . We show in Theorem 4.6 that
such a modification is unnecessary as we prove that the sequence of iterates uk, generated by the
algorithm described above, satisfies that each weak limit point of uk solves (1.4). Moreover, as we
said before, in our second assumption we suppose that σ can depend in an affine manner on the
control u and the state y and the Lipschtiz assumption on the cost terms ` and g are removed.
This implies that the sequences of adjoint states pk are not bounded almost surely, which is the
basic ingredient in the proof of the main results in [15]. Finally, let us underline that in Corollary
4.4 we prove that some weak forms of optimality conditions are satisfied for both assumptions. In
the convex case, this allows us to prove that the iterates uk form a minimizing sequence, a result
that is absent in [15] and also in the deterministic case studied in [7]. Of course, this implies that
if in addition J is strongly convex, we have strong convergence of the sequence uk.
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The article is organized as follows: in Section 2 we state the main assumptions that we make
in the entire paper. In Section 3, we prove that the algorithm is well-defined. In the last section
we analyse the convergence of the method. We show that the sequence of costs generated by the
algorithm is decreasing and convergent. Finally, under some convexity assumptions, we can prove
that every weak limit point of the sequence of iterates solves (1.4).

2. Main assumptions

Let us first fix some standard notations. Endowed with the natural scalar product in L2([0, T ]×
Ω) denoted by (·, ·), H2 is a Hilbert space. We denote by ‖ · ‖ the L2([0, T ]× Ω) norm on (H2)l,
for any l ∈ N. As usual and if the context is clear, we omit the dependence on ω of the sto-
chastic processes. We set S2 for the subspace of H2 of continuous processes x satisfying that

E
(

supt∈[0,T ] |x(t)|2
)
<∞. Finally, given an Euclidean space Rl, we denote by | · | the Euclidean

norm and by B(Rl) the Borel sigma-algebra.

Let us now fix the standing assumptions that will be imposed from now on.

(H1) Assumptions for the dynamics:
(a) The maps ϕ = f, σ are B (Rn × Rr × [0, T ])⊗FT -measurable.
(b) For all (y, u) ∈ Rn × Rr the process [0, T ]× Ω 3 (t, ω) 7→ ϕ(y, u, t, ω) is F-adapted.
(c) For almost all (t, ω) ∈ [0, T ] × Ω the map (y, u) 7→ ϕ(y, u, t, ω) is C2 and there exist

a constant L > 0 and a process ρϕ ∈ H2 such that for almost all (t, ω) ∈ [0, T ] × Ω
and for all y, ȳ ∈ Rn and u, ū ∈ Uad we have

(2.1)


|ϕ(y, u, t, ω)| ≤ L [|y|+ |u|+ ρϕ(t, ω)] ,
|ϕy(y, u, t, ω)|+ |ϕu(y, u, t, ω)| ≤ L,
|ϕyy(y, u, t, ω)− ϕyy(ȳ, ū, t, ω)| ≤ L (|y − ȳ|+ |u− ū|) ,
|ϕyy(y, u, t, ω)|+ |ϕyu(y, u, t, ω)|+ |ϕuu(y, u, t, ω)| ≤ L.

(H2) Assumptions for the cost:
(a) The maps ` and g are respectively B (Rn × Rr × [0, T ])⊗ FT and B (Rn)⊗ FT mea-

surable.
(b) For all (y, u) ∈ Rn × Rr the process [0, T ]× Ω 3 (t, ω) 7→ `(y, u, t, ω) is F-adapted.
(c) For almost all (t, ω) ∈ [0, T ]×Ω the map (y, u) 7→ `(y, u, t, ω) is C2, and there exists

L > 0 and a process ρ`(·) ∈ H2 such that for all y, ȳ ∈ Rn and u ∈ Uad

(2.2)


|`(y, u, t, ω)| ≤ L [|y|+ |u|+ ρ`(t, ω)]2 ,
|`y(y, u, t, ω)|+ |`u(y, u, t, ω)| ≤ L [|y|+ |u|+ ρ`(t, ω)] ,
|`yy(y, u, t, ω)|+ |`yu(y, u, t, ω)|+ |`uu(y, u, t, ω)| ≤ L,
|`yy(y, u, t, ω)− `yy(ȳ, u, t, ω)| ≤ L |y − ȳ| .

(d) For almost all ω ∈ Ω the map y 7→ g(y, ω) is C2 and there exists L > 0 such that for
all y, ȳ ∈ Rn and almost all ω ∈ Ω,

(2.3)


|g(y, ω)| ≤ L [|y|+ 1]2 ,
|gy(y, ω)| ≤ L [|y|+ 1] ,
|gyy(y, ω)| ≤ L,
|gyy(y, ω)− gyy(ȳ, ω)| ≤ L |y − ȳ| .

(H3) At least one of the following assumptions holds true:
(a) For all (y, u) ∈ Rn × Rr and almost all (t, ω) ∈ [0, T ]× Ω we have

(2.4) σu(y, u, t, ω) ≡ 0 and σyy(y, t, ω) ≡ 0.

Moreover, the following Lipschitz condition holds true: there exists L ≥ 0 such that
for almost all (t, ω) ∈ [0, T ]× Ω, and for all y, ȳ ∈ Rn and u, ū ∈ Uad,

(2.5)

{
|`(y, u, t, ω)− `(ȳ, ū, t, ω)| ≤ L(|y − ȳ|+ |u− ū|),
|g(y, ω)− g(ȳ, ω)| ≤ L |y − ȳ| .

(b) For ϕ = f, σ and for almost all (t, ω) ∈ [0, T ] × Ω the map (y, u) 7→ ϕ(y, u, t, ω) is
affine.
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Remark 2.1. (i) Our assumptions (H1)-(H2)-(H3)(a) are weaker than those in [15], where it is
supposed that ` and g are bounded and, in the statement of the main results, σy ≡ 0. In addition,
the data `, g, f , σ do not depend explicitly on ω and the set U is assumed to be bounded.

(ii) Under assumption (H1), for any u ∈ U the state equation (1.1) admits a unique strong
solution in (S2)n, see [16, Proposition 2.1]. Also, by the estimates in [16, Proposition 2.1] and
assumption (H2) the function J is well defined. Moreover, equation (1.6) can be written as

(2.6)

 dp(t) = −

[
∇y`(y(t), u(t), t) + fy(y(t), u(t), t)>p(t) +

m∑
j=1

σj
y(y(t), t)>qj(t)

]
dt+ q(t)dW (t)

p(T ) = ∇yg(y(T ))

and under (H1)-(H2), it has a unique solution (p, q) ∈ (S2)n×(H2)n×m (see [5] and [20, Theorem
2.2, p. 349]).

3. Well-posedness of the algorithm

The aim of this section is to prove that the iterates of the Sakawa-Shindo algorithm are well
defined. We need first the following lemma.

Lemma 3.1. Under assumptions (H1)-(H2) and (H3)-(a), there exists C > 0 such that the
solution (p, q) of (2.6) satisfies

(3.1) |p(t)| ≤ C, ∀t ∈ [0, T ], P− a.s.

Proof. By Îto’s formula and (2.6), we have that
(3.2)

|p(t)|2 = 2
∫ T
t p(s) · [∇y`(y(s), u(s), s) + fy(y(s), u(s), s)>p(s) +

m∑
j=1

σjy(y(s), s)>qj(s)]ds

−
∫ T
t

m∑
j=1
|qj(s)|2 ds− 2

∫ T
t p(s) · q(s)dW (s) + |p(T )|2 , ∀t ∈ [0, T ], P− a.s.

Using that p(T ) = ∇yg(y(T )), our assumptions and the Cauchy-Schwarz and Young inequalities
imply that for any ε > 0 we have

(3.3)

|p(t)|2 ≤ 2
∫ T
t [L |p(s)|+ L |p(s)|2 +

m∑
j=1

L |p(s)| |qj(s)|]ds

−
∫ T
t

m∑
j=1
|qj(s)|2 ds− 2

∫ T
t p(s) · q(s)dW (s) + L2

≤ L2T +
∫ T
t (1 + 2L) |p(s)|2 +

m∑
j=1

[L
2

ε |p(s)|
2 + ε |qj(s)|2]ds

−
∫ T
t

m∑
j=1
|qj(s)|2 ds− 2

∫ T
t p(s) · q(s)dW (s) + L2

= L2 (T + 1) +
(

1 + 2L+ mL2

ε

) ∫ T
t |p(s)|

2 ds+ (ε− 1)
m∑
j=1

∫ T
t |qj(s)|

2 ds

−2
∫ T
t p(s) · q(s)dW (s)

Choosing ε < 1, we get

(3.4) |p(t)|2 ≤ C1 + C2

∫ T

t
|p(s)|2 ds− 2

∫ T

t
p(s) · q(s)dW (s).

for some constants C1, C2 > 0. Now fix t̄ ∈ [0, T ] and define r(t) := E
(
|p(t)|2 |Ft̄

)
≥ 0 for all

t ≥ t̄. Combining (3.4) and [1, Lemma 3.1] we have

(3.5) r(t) ≤ C1 + C2

∫ T

t
r(s)ds.

Thus, by Gronwall’s Lemma there exists C > 0 independent of (t, ω) and t̄ such that r(t) ≤ C for

all t̄ ≤ t ≤ T and so in particular |p(t̄)|2 = r(t̄) ≤ C for a.a. ω. Since t̄ is arbitrary and p admits
a continuous version, the result follows. �
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Lemma 3.2. Consider the mapping

(3.6) uε : Rn × P × Rn×m × Uad × [0, T ]× Ω → Rr

where P := B(0, C) (ball in Rn) in case (a), and P = Rn in case (b), defined by

(3.7) uε(y, p, q, v, t, ω) := argmin{Kε(y, u, v, p, q, t, ω) ; u ∈ Uad}.

Under assumptions (H1)-(H2) and (H3), there exist ε0 > 0, α > 0 and β > 0 independent
of (t, ω), with β = 0 if (H3)(a) is verified, such that, if ε < ε0, uε is well defined and for a.a.
(t, ω) ∈ [0, T ]× Ω and all (yi, pi, qi, vi) ∈ Rn × P × Rn×m × Uad, i = 1, 2:

(3.8) |uε(y2, p2, q2, v2, t)− uε(y1, p1, q1, v1, t)| ≤ 2 |v2 − v1|+α (|y2 − y1|+ |p2 − p1|)+β |q2 − q1| .

Proof. We follow [7, 15]. Setting w := (y, p, q, v), element of E := Rn × P × Rn×m × Uad, we can
rewrite Kε as Kε(u,w). We claim that for ε small enough:

(3.9) D2
uuKε(u,w)(u′, u′) ≥ (1/ε− 2C1)|u′|2 ≥ 1

2ε
|u′|2 for all w ∈ E and u′ in Rm.

This holds if (H3)(a) holds since p, fuu and `uu are bounded, and also if (H3)(b) since f and
σ are affine and `uu is bounded. By (3.9), Kε is a strongly convex function of u with modulus
1/(2ε), and hence, for all u1, u2 ∈ Uad:

(3.10) (DuKε(u2, w)−DuKε(u1, w)) (u2 − u1) ≥ 1

2ε
|u2 − u1|2 .

On the other hand, for i = 1, 2, take wi = (yi, pi, qi, vi) ∈ E and denote ui := uε(yi, pi, qi, vi).
Then

(3.11) DuKε(ui, wi) (u3−i − ui) ≥ 0.

Summing these inequalities for i = 1, 2 with (3.10) in which we set w := w1, we obtain that

(3.12)
1

2ε
|u2 − u1|2 ≤ (DuKε(u2, w1)−DuKε(u2, w2)) (u2 − u1) ,

≤ |DuKε(u2, w1)−DuKε(u2, w2)| |u2 − u1| .

Since DuKε(u,w) = (1/ε)(u− v) +Hu(y, u, p, q),

(3.13) |u2 − u1| ≤ 2 |v2 − v1|+ 2ε |∇uH(y1, u2, p1, q1)−∇uH(y2, u2, p2, q2)| .

Inequality (3.2) easily follows from (3.13) and our assumptions. �

Theorem 3.3. Under assumptions (H1)-(H3), there exists ε0 > 0 such that, if εk < ε0 for all
k, then the algorithm defines a uniquely defined sequence

{
uk
}

of admissible controls.

Proof. Given u0, let us define f̄ : Rn × [0, T ]× Ω→ Rn and σ̄ : Rn × [0, T ]× Ω→ Rn×m as

(3.14)
f̄(y) := f(y, uε(y, p

0, q0, u0)),

σ̄(y) := σ(y, uε(y, p
0, q0, u0)).

Assumption (H1) and Lemma 3.2 imply that the SDE

(3.15)

{
dy(t) = f̄(y)dt+ σ̄(y)dW (t) t ∈ [0, T ],

y(0) = y0,

has a unique strong solution (e.g. [20, Theorem 6.16, p. 49]). Therefore u1 := uε(y, p
0, q0, u0) is

uniquely defined; so is uk by induction. �
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4. Convergence

In this section we prove our main results. If supk εk ≤ ε0 where ε0 is small enough, then the
cost function decreases with the iterates (see Theorem 4.2 and Theorem 4.3). Moreover, if the
problem is convex, then any weak limit point of the sequence uk solves the problem (see Theorem
4.6). We will need the following elementary Lemma.

Lemma 4.1. Under assumption (H1), there exists C > 0 such that

(4.1) E

[
sup

0≤t≤T

∣∣∣yk(t)− yk−1(t)
∣∣∣2] ≤ C ∥∥∥uk − uk−1

∥∥∥2
.

Proof. Define

δyk := yk − yk−1 and δuk := uk − uk−1.

By [16, Proposition 2.1] there exists C > 0 such that

E

[
sup

0≤t≤T

∣∣∣δyk(t)∣∣∣2] ≤ C

[
E
(∫ T

0

∣∣∣f(yk−1(t), uk(t), t)− f(yk−1(t), uk−1(t), t)
∣∣∣ dt)2

(4.2)

+E
∫ T

0

∣∣∣σ(yk−1(t), uk(t), t)− σ(yk−1(t), uk−1(t), t)
∣∣∣2 dt

]
.(4.3)

Assumption (H1)-(c) and the Cauchy-Schwarz inequality imply directly (4.1).
�

Theorem 4.2. Under assumptions (H1)-(H3), there exists α > 0 such that any sequence gen-
erated by the algorithm satisfies

(4.4) J(uk)− J(uk−1) ≤ −
(

1

εk
− α

)∥∥∥uk − uk−1
∥∥∥2
.

Proof. We drop the variable t when there is no ambiguity. We have,

(4.5)
J(uk)− J(uk−1) = E

[∫ T
0

[
H(yk, uk, pk−1, qk−1)−H(yk−1, uk−1, pk−1, qk−1)

−pk−1 · (f(yk, uk)− f(yk−1, uk−1))
−qk−1 · (σ(yk)− σ(yk−1))

]
dt+ g(yk(T ))− g(yk−1(T ))

]
.

Define δyk := yk − yk−1 and δuk := uk − uk−1. By Îto’s formula, almost surely we have

(4.6)

pk−1(T ) · δyk(T ) = pk−1(0) · δyk(0) +
∫ T

0

[
pk−1 ·

(
f(yk, uk)− f(yk−1, uk−1)

)
−Hy(y

k−1, uk−1, pk−1, qk−1)δyk

+qk−1 ·
(
σ(yk)− σ(yk−1)

)]
dt+∫ T

0

[
pk−1 ·

(
σ(yk)− σ(yk−1)

)
+ qk−1 · δyk

]
dW (t).

Then, replacing in (4.5) and using that δyk(0) = 0 we get

(4.7)

J(uk)− J(uk−1) = E
[∫ T

0

[
H(yk, uk, pk−1, qk−1)−H(yk−1, uk−1, pk−1, qk−1)

−Hy(y
k−1, uk−1, pk−1, qk−1, t)δyk(t)

]
dt

−pk−1(T ) · δyk(T ) + g(yk(T ))− g(yk−1(T ))
]
.

Moreover, we have

(4.8)

∆ := H(yk, uk, pk−1, qk−1)−H(yk−1, uk−1, pk−1, qk−1)

= H(yk, uk, pk−1, qk−1)−H(yk, uk − δuk, pk−1, qk−1)

+H(yk−1 + δyk, uk−1, pk−1, qk−1)−H(yk−1, uk−1, pk−1, qk−1)

= ∆y −∆u +Hy(y
k−1, uk−1, pk−1, qk−1)δyk +Hu(yk, uk, pk−1, qk−1)δuk,
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where

(4.9)
∆u := H(yk, uk − δuk, pk−1, qk−1)−H(yk, uk, pk−1, qk−1)

+Hu(yk, uk, pk−1, qk−1)δuk

and

(4.10)
∆y := H(yk−1 + δyk, uk−1, pk−1, qk−1)−H(yk−1, uk−1, pk−1, qk−1)

−Hy(y
k−1, uk−1, pk−1, qk−1)δyk.

Replacing in (4.7) we obtain

(4.11)
J(uk)− J(uk−1) = E

[∫ T
0

[
Hu(yk, uk, pk−1, qk−1)δuk −∆u + ∆y

]
dt

−pk−1(T ) · δyk(T ) + g(yk(T ))− g(yk−1(T ))
]
.

Since in both cases in (H3) we have σuu ≡ 0, we get
(4.12)

∆u =
∫ 1

0 (1− s)Huu(yk, uk + sδuk, pk−1, qk−1)(δuk, δuk)ds

=
∫ 1

0 (1− s)
[
`uu(yk, uk + sδuk)(δuk, δuk) + pk−1 · fuu(yk, uk + sδuk)(δuk, δuk)

]
ds.

If (H3)-(a) holds true, Lemma 3.1 and assumptions (H1)-(H2) imply

(4.13) ∆u ≥ −
L

2

∣∣∣δuk∣∣∣2 − CL

2

∣∣∣δuk∣∣∣2 .
On the other hand, if (H3)-(b) holds true, we have fuu ≡ 0, and so (H2) implies

(4.14) ∆u ≥ −
L

2

∣∣∣δuk∣∣∣2 .
Now, for both cases in (H3) we have σyy ≡ 0. Thus,

(4.15)

∆y =
∫ 1

0 (1− s)Hyy(y
k−1 + sδyk, uk−1, pk−1, qk−1)(δyk, δyk)ds

=
∫ 1

0 (1− s)[`yy(yk−1 + sδyk, uk−1)(δyk, δyk)

+pk−1 · fyy(yk−1 + sδyk, uk−1)(δyk, δyk)]ds.

If (H3)-(a) holds, Lemma 3.1 and (H1)-(H2) imply

(4.16) ∆y ≤
L

2

∣∣∣δyk∣∣∣2 +
CL

2

∣∣∣δyk∣∣∣2 .
If (H3)-(b) holds, then fyy ≡ 0 and so (H2) implies ∆y ≤ L

2

∣∣δyk∣∣2. In conclusion, there exists
C4 > 0 such that

(4.17) ∆u ≥ −C4

∣∣∣δuk∣∣∣2 and ∆y ≤ C4

∣∣∣δyk∣∣∣2 .
Then, combining (4.11), and (4.17), we deduce

(4.18)
J(uk)− J(uk−1) ≤ E

(∫ T
0

[
Hu(yk, uk, pk−1, qk−1)δuk + C4

∣∣δuk∣∣2 + C4

∣∣δyk∣∣2] dt

−pk−1(T ) · δyk(T ) + g(yk(T ))− g(yk−1(T ))
)
.

Since uk minimizes Kεk we have,

(4.19) DuKεk(yk, uk, uk−1, pk−1, qk−1)δuk ≤ 0, a.e. t ∈ [0, T ] , P-a.s.

then,

(4.20)
Hu(yk, uk, pk−1, qk−1)δuk = DuKεk(yk, uk, uk−1, pk−1, qk−1)δuk − 1

εk

∣∣δuk∣∣2
≤ − 1

εk

∣∣δuk∣∣2 , a.e. t ∈ [0, T ] , P-a.s.

By assumption (H2)-(d) and the definition of pk−1(T ), there exists C5 > 0 such that

(4.21) − pk−1(T ) · δyk(T ) + g(yk(T ))− g(yk−1(T )) ≤ C5

∣∣∣δyk(T )
∣∣∣2 .

Then, by (4.20) and (4.21) we obtain

(4.22) J(uk)− J(uk−1) ≤ E
[∫ T

0

[(
C4 −

1

εk

) ∣∣∣δuk(t)∣∣∣2 + C4

∣∣∣δyk(t)∣∣∣2]dt+ C5

∣∣∣δyk(T )
∣∣∣2] .
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Then, the conclusion follows from Lemma 4.1. �

Now we consider the projection map PU : (H2)r → U ⊂ (H2)r, i.e. for any u ∈ (H2)r,

PU (u) := argmin {‖u− v‖ ; v ∈ U} .
By [9, Lemma 6.2],

(4.23) PU (u)(t, ω) = PUad
(u(t, ω)), a.e. t ∈ [0, T ], P− a.s.,

where PUad
: Rr → Uad ⊂ Rr is the projection map in Rr. We have the following result:

Theorem 4.3. Assume that J is bounded from below and that assumptions (H1)-(H3) hold true.
Then there exists ε0 > 0 such that, if εk < ε0, any sequence generated by the algorithm satisfies:

(1) J(uk) is a nonincreasing convergent sequence,
(2)

∥∥uk − uk−1
∥∥→ 0,

(3)
∥∥uk − PU (uk − εk∇J(uk))

∥∥→ 0.

Proof. The first two items are a consequence of Theorem 4.2 and the fact that J is bounded from
below. Since uk minimizes Kεk we have

(4.24) DuKεk(yk, uk, uk−1, pk−1, qk−1)(v − uk) ≥ 0, ∀v ∈ Uad, a.e. t ∈ [0, T ], P− a.s.

then,

(4.25)
(
uk − uk−1 + εk∇uH(yk, uk, pk−1, qk−1), v − uk

)
≥ 0, ∀v ∈ Uad, a.e. t ∈ [0, T ], P− a.s.

and so

(4.26) uk = PU

(
uk−1 − εk∇uH(yk, uk, pk−1, qk−1)

)
.

By [9, Proposition 8] we know that

(4.27) ∇J(uk−1) = ∇uH(yk−1, uk−1, pk−1, qk−1) in H2,

then, by (4.26),
(4.28)

uk−1 − PU (uk−1 − εk∇J(uk−1)) = uk−1 − uk + PU
(
uk−1 − εk∇uH(yk, uk, pk−1, qk−1)

)
−PU

(
uk−1 − εk∇uH(yk−1, uk−1, pk−1, qk−1)

)
.

As PU is non-expansive in H2, we obtain

(4.29)

∥∥uk−1 − PU
(
uk−1 − εk∇J(uk−1)

)∥∥ ≤ ∥∥uk−1 − uk
∥∥

+εk
∥∥∇uH(yk, uk, pk−1, qk−1)−∇uH(yk−1, uk−1, pk−1, qk−1)

∥∥ .
Now, let us estimate the last term in the previous inequality. By (H3), considering any of the
two cases, we have σuy ≡ σuu ≡ 0. Therefore, for a.e. t ∈ [0, T ] there exist (ŷ, û) ∈ Rn×Uad such
that
(4.30)∣∣∇uH(yk, uk, pk−1, qk−1)−∇uH(yk−1, uk−1, pk−1, qk−1)

∣∣
=
∣∣Huy(ŷ, û, p

k−1, qk−1)(yk − yk−1) +Huu(ŷ, û, pk−1, qk−1)(uk − uk−1)
∣∣

=
∣∣∣(`uy(ŷ, û) + pk−1>fuy(ŷ, û)

)
(yk − yk−1) +

(
`uu(ŷ, û) + pk−1>fuu(ŷ, û)

)
(uk − uk−1)

∣∣∣
≤ C

(∣∣yk − yk−1
∣∣+
∣∣uk − uk−1

∣∣) ,
where in the last inequality, if (H3)-(a) holds we use Lemma 3.1 and assumptions (H1)-(H2),
and if (H3)-(b) holds we use the fact that fuy ≡ fuu ≡ 0 and (H2). We conclude that

(4.31)

∥∥∇uH(yk, uk, pk−1, qk−1)−∇uH(yk−1, uk−1, pk−1, qk−1)
∥∥2

≤ 2C2
(∥∥uk − uk−1

∥∥2
+
∥∥yk − yk−1

∥∥2
)
.

Using (4.29)-(4.31), Lemma 4.1 yields the existence of C > 0 such that

(4.32)
∥∥∥uk−1 − PU

(
uk−1 − εk∇J(uk−1)

)∥∥∥ ≤ C ∥∥∥uk−1 − uk
∥∥∥ ,

which proves the last assertion. �
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Corolary 4.4. Assume that the sequence generated by the algorithm uk is bounded, εk < ε0 and
lim inf εk ≥ ε > 0. Then, for every bounded sequence vk ∈ U we have that

(4.33) lim inf
k→∞

(
∇J(uk), vk − uk

)
≥ 0.

In particular

(4.34) lim inf
k→∞

(
∇J(uk), v − uk

)
≥ 0 ∀ v ∈ U

and in the unconstrained case U = (H2)r

(4.35) lim
k→∞

∥∥∥∇J(uk)
∥∥∥ = 0.

Proof. We define for each k,

(4.36) wk := PU (uk − εk∇J(uk)),

then we have

(4.37) 0 ≤
(
wk − uk + εk∇J(uk), vk − wk

)
, ∀vk ∈ U .

By Theorem 4.3(3), we know
∥∥uk − wk∥∥→ 0. Using the fact that ∇J(uk) = ∇uH(yk, uk, pk, qk),

and the boundedness of uk, which in particular yields the boundedness of (pk, qk) in (S2)n ×
(H2)n×m (see e.g. [16, Proposition 3.1] or [20, Chapter 7]), we can deduce that ∇J(uk) is a
bounded sequence in (H2)r. Finally, since the sequence vk is bounded by assumption, we can
conclude

(4.38) 0 ≤ lim inf
k→∞

(
wk − uk + εk∇J(uk), vk − wk

)
= ε lim inf

k→∞

(
∇J(uk), vk − uk

)
,

which proves (4.33). Inequality (4.34) follows from (4.33) by taking vk ≡ v, for any fixed v ∈ U ,
and identity (4.35) follows by letting vk = uk −∇J(uk), which is bounded in (H2)r.

�

Remark 4.5. From (4.36) and the fact that ‖uk − wk‖ → 0, it follows that in the unconstrained
case, (4.35) holds true even if uk is not bounded.

Under convexity assumptions we obtain a convergence result.

Theorem 4.6. Assume that J(u), defined as above, is convex and bounded from below. Moreover,
suppose that εk < ε0, where ε0 is given by Theorem 4.3, and lim inf εk > 0. Then any weak limit
point ū of

{
uk
}

is an optimal control.

As a consequence, if {uk}k∈N has bounded subsequence, then J(uk)→ minu∈U J(u).

Proof. Consider a subsequence
{
uk1
}

that converges weakly to ū, then
{
uk1
}

is bounded. By the
convexity of J , and the previous Corollary, for all v ∈ U we obtain

(4.39) J(v) ≥ lim inf
k1→∞

{
J(uk1) +

(
∇J(uk1), v − uk1

)}
≥ lim inf

k1→∞
J(uk1) ≥ J(ū),

by the weak lower semi-continuity of J , which is implied by the convexity and continuity of J .
This proves the first assertion. In order to prove the second one, take û ∈ U and a subsequence
{uk2} such that uk2 converges weakly to û as k2 →∞. Then, by the first assertion

min
u∈U

J(u) = J(û) ≥ lim inf
k2→∞

{
J(uk2) +

(
∇J(uk2), û− uk2

)}
≥ lim inf

k2→∞
J(uk2) ≥ J(û).

Theorem 4.3(1) implies that limk→∞ J(uk) = lim infk2→∞ J(uk2) = minu∈U J(u). The result
follows. �

Remark 4.7. The fact that any weak limit point is an optimal control can also be obtained with
Theorem 4.3(3) and the arguments in [7].

If J is strongly convex in (H2)r we obtain strong convergence of the iterates.

Corolary 4.8. If in addition J(u) is strongly convex, then the whole sequence converges strongly
to the unique optimal control.
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Proof. Since J is strongly convex, classical arguments imply the existence of a unique u∗ such that
J(u∗) = minu∈U J(u). Moreover, since Theorem 4.3(1) implies that J(uk) ≤ J(u0), for all k ∈ N,
the strong convexity of J implies that the whole sequence uk is bounded and is a minimizing
sequence. The result follows from the classical argument that a minimizing sequence of a strongly
convex problem converge strongly (see e.g. [8, Proof of Lemma 2.33(ii)]). �
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[18] L. Pontryagin, V. Boltyanskĭı, R. Gamkrelidze, and E. Mishchenko. The mathematical theory of optimal pro-

cesses. Gordon & Breach Science Publishers, New York, 1986. Reprint of the 1962 English translation.
[19] Y. Sakawa and Y. Shindo. On global convergence of an algorithm for optimal control. IEEE Trans. Automat.

Control, 25(6):1149–1153, 1980.
[20] J. Yong and X. Zhou. Stochastic controls, Hamiltonian systems and HJB equations. Springer-Verlag, New York,

Berlin, 2000.
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