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Abstract 

Barium titanate (BT) and microcrystalline cellulose (MCC) were used to improve the dielectric 

properties of a commercial vinylic resin. Using a green method, two binary composites (vinylic 

resin/BaTiO3, vinylic resin/MCC) and one ternary composite (vinylic resin/BaTiO3/MCC) were 

prepared. Results obtained for the MCC containing composite show an identical evolution of the 

relative permittivity compared to BaTiO3 composites with weak dielectric losses. In consequence, the 

feasibility of the substitution of BaTiO3 with MCC, an economical and biosourced material is 

demonstrated. 

 

Keywords: Polymer composites; Biocomposites; Dielectrics; Barium titanate; Microcrystalline 

cellulose. 

Introduction 

The actual trend toward miniaturization in the electronics industry has opened a wide research field 

for dielectric composites because they exhibit properties associated to both organic and inorganic 

materials.
1 
The main advantage of these composites comes from the possibility to obtain various 

properties according to the characteristics of the constituting materials. Among these characteristics, 

nature, inclusion shape, volume fraction, dispersion in the matrix and orientation under external 

constraints have a significant influence on the physical properties of the final material.
2,3

 For example, 

several studies have been published about the dispersion of polar particles in weakly polar polymeric 

matrices. In one of them, X. Zhao et al.
4
 have compared polydiacrylate-BaTiO3 composites prepared 



2 

 

by thermal treatments and electron beam. The second method gave the best particle dispersion and 

permittivity. 

Environment protection has oriented research efforts toward natural molecules. In the last decade, 

the use of polysaccharide-based products such as starch and cellulose derivatives has rapidly spread.
5
 

In this context, Bouthegourd et al.
6
 have elaborated a composite containing rubber and potato starch 

nanocrystals. The correlation between dielectric properties and conductivity was used to determine the 

agglomeration threshold of nanoparticles (15 wt.%). More recently, the addition of a third element (i.e. 

fiber glass, multi-walled carbon nanotubes, vapor-grown carbon fibers) to the binary mixture was 

shown to improve dielectric properties. This addition promoted the interconnection between dipoles 

thus helping the formation of micro-capacitors and the improvement of the dielectric permittivity of 

the material while minimizing dielectric losses.
7,8,9

 

In this paper, we describe the realization of three types of polymer/ferroelectric oxide composites: 

vinylic resin/barium titanate (VR/BT), vinylic resin/microcrystalline cellulose (VR/MCC) and vinylic 

resin/barium titanate/microcrystalline cellulose (VR/BT/MCC). Room temperature dielectric 

responses at different frequencies were measured for various concentrations of ferroelectric oxide, 

microcrystalline cellulose and combinations of both materials. Using the same preparation method for 

all binary and ternary composites allowed comparing the effect of BT and MCC on dielectric 

properties. 

Experimental 

Materials 

The vinylic resin emulsion (W301) was supplied by the Société Marocaine des Polymères (SMP) 

and consisted in an Ethylene Vinyl Acetate/VeoVa terpolymer (VeoVa is the vinyl ester of versatic 

acid). The solid content of the resin was 51.7 wt.% with a viscosity of 7600 mPa.s and a glass 

transition temperature of 34°C as indicated by the supplier. The microcrystalline cellulose (Avicel PH-

105) was received from FMC Europe NV (Brussels, Belgium). The average particle size was ~20μm. 

Barium titanate (BT) was custom-made by reacting stoichiometric amounts of solid TiO2 and BaCO3 

(both from Sigma Aldrich) at 1100°C for 2 hours in a laboratory oven. The average particle size of the 

obtained solid was ~600 nm as determined by a laser particle size analyzer (HORIBA Partica LA-

950V2). 

Composite preparation 
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Binary composites were prepared by adding predefined weight percentages (10, 20, 30, 40 and 50 

wt.%) of BT or MCC to the vinylic resin. The dispersion was kept under mechanical mixing at room 

temperature for 30 minutes. For ternary composites, the 80/20 VR/BT blend was used as the base 

material to which an additional amount of 1 to 4 wt.% MCC was added.
10

 The mixtures were left 

under mechanical mixing for 30 minutes at room temperature. Obtained dispersions were deposited on 

Teflon paper under a saturated atmosphere. After coalescence and water evaporation, composites were 

dried in a vacuum oven at 70C until a constant weight was reached (at least 24h).
11

 

Dielectric measurements 

Dielectric measurements were carried out at room temperature (27C) with an impedancemeter 

(Agilent 4294A) using a cell (Agilent 16451B) allowing direct measurements without any electroding 

of the samples. The frequency sweep was from 100 Hz to 1 MHz. 

Results and discussion 

Vinylic resin/BaTiO3 (VR/BT) and vinylic resin/MCC (VR/MCC) composites 

Figure 1 shows the variation of the relative permittivity (εr) and the loss factor (tan()) with BT and 

MCC loadings. The relative permittivity increases with the percentage of added particles and 

decreases with frequency. For a 50 wt.% BT loading, the εr value reaches 13.60 at 100Hz, which is 2.1 

times the value obtained for the vinylic resin alone. A similar result was obtained for the 50 wt.% 

MCC loading with a value of 13.20. Results for VR/BT are in accordance with those obtained with 

resins having a similar permittivity. For example, F.J. Wang et al.
12

 found permittivity values in the 

range of 4 (pure resin) to 12.5 for a polyethersulfone-BT (50wt.%) composite at 100 kHz. For both BT 

and MCC composites, dielectric losses are almost constant at high frequencies. In the low frequency 

range, very high values are obtained due to the polarization mechanism: the contribution of added 

particles (BT and MCC) to the increase of the dielectric permittivity is due to the apparition of space 

charges (or interfacial polarization) in the polymeric matrix. The combination of space charges and 

orientation polarization give a high relative permittivity with a unique relaxation. The same effect was 

observed by N.J.S. Sohi et al.
13

 by adding carbon black, short carbon fibers or carbon nanotubes to an 

Ethylene Vinyl Acetate resin. In our case, the contribution of MCC is caused by local movements of 

polysaccharide chains
11

 and by the increase in dipolar moment of composites due to hydroxyl groups 

present on MCC particles.
14

 Also, strong MCC-VR interactions are responsible for the high 

permittivity at 50wt.% MCC (13.20). This value is higher than those reported by M. Beztout et al.
14 

for 

the addition of 30 wt.% MCC in PVC-MCC (εr=3.76 to 4.19). D. M. Panaitescu et al.
15

 also studies the 
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addition of MCC to PE, but the effect of MCC on the permittivity was marginal: 3.3 for PE alone and 

3.8 for a 20wt.% loading of MCC. 

Other recent studies have used nanoparticles, with or without modification or coupling, to insure an 

improvement of the dielectric permittivity of composites.
16,17

 It was shown that this improvement is 

observed only when large amounts of particles are added, generally over 40 wt.%. This high loading 

adversely affects the mechanical properties of the film. To overcome this drawback, a third constituent 

is necessary.
8,10,18

 This third constituent improves the connectivity between dipoles and makes it 

possible to decrease the amount of incorporated particles. In our case, and considering previous 

results, MCC was chosen as the third constituent to improve the relative permittivity by creating 

bridges between polymeric chain dipoles. 

Vinylic resin/BaTiO3/MCC (VR/BT/MCC) hybrid composites 

Figure 2 shows the effect of the MCC loading (from 1 to 4 wt.%) on εr and tan(δ) for the hybrid 

composite (VR/BT/MCC). The relative permittivity (Figure 2.a) increases with the mass fraction of 

MCC. It reaches a value of 13.24 at 100Hz at the maximum MCC loading (4 wt.%). This value is 1.5 

times larger to the one obtained for the base composite VR/BT 80/20 (~8.75). Y. C. Li et al.
10 

have 

found a similar effect by adding nanographite (GN) particles to a polyvinylidene fluoride (PVDF)/BT 

composite. Dielectric losses (Figure 2.b) exhibit a remarkable decrease with increasing MCC loading. 

For a 100Hz frequency, the base composite has a tan(δ) of 0.53 compared to 0.17 for the 4 wt.% MCC 

hybrid composite. Both RV/BT/MCC 80/20/4 and RV/BT 50/50 composites have similar relative 

permittivities (~13.60), but different dielectric losses (0.17 vs. 0.38). In consequence, we can conclude 

that by adding 4 wt.% MCC to the composite, the BaTiO3 loading can be reduced from 50 wt.% to 20 

wt.% while keeping the same relative permittivity and reducing the losses. The high permittivity 

obtained with MCC is generally associated to the charge spacing polarization between MCC-VR and 

MCC-BT.
8
 This leads to an interfacial polarization which adds to other types of polarization: polymer 

chain orientation and VR-BT interface. According to the percolation theory, this increase of 

polarization can be attributed to the existence of several micro-capacitors formed by the separation of 

charges in the neighborhood a polymer/ceramic insulating layer as it is the case for ternary 

composites, PVDF/BT/GN and PS/BT/GNs(Graphite Nanosheets).
10,18

 

The introduction of MCC with the resin alone or containing BT has promoted the improvement of 

dielectric properties of the composite compared to BT alone. MCC has a much lower specific gravity 

and a better dispersibility than BT in the initial emulsion and in the dried film. This contributes to the 

good dispersion of BT in the case of the ternary composite (Figure 3). In consequence, it is possible to 

imagine the formation of micro-capacitors, in which crystalline area of MCC act as electrodes and BT 
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together with the VR matrix serve as medium, in the same manner as in the case PI/BT/graphene.
19

 In 

consequence, charges accumulate in the micro-capacitors, and the dielectric permittivity subsequently 

increases.
19

 As dielectric losses are linked to charge movements (radical or chain segment relaxations), 

the steadiness, or reduction, of losses can be explained by the immobilization of charges caused by the 

presence of strong hydrogen bonds in the system. This would confirm the formation of macro-dipoles 

by the introduction of MCC. 

Conclusions 

In conclusion, on the one hand, MCC proved to be a very good replacement for BaTiO3 to improve 

dielectric properties (εr and tanδ) of polymeric materials. On the other hand, using MCC instead of 

graphite nanosheets, as the third phase of a RV/BT 80/20 composite, illustrated the potentiality of this 

biosourced compound in polymeric dielectric materials. These first results open the way for new 

possibilities in composite green chemistry for applications in the electronic industry.   
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Figure 1: Dielectric constants (a) and (c) and loss factors (b) and (d) for VR/BT and VR/MCC 

composites. 
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Figure 2: Dielectric constants (a) and loss tangents (b) with MCC content for VR/BT/MCC 

(80/20/x wt.%) hybrids. 
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Figure 3: SEM micrographs of (a) binary composite VR/BT 80/20, and (b) ternary composite 

VR/BT/MCC 80/20/4 (white: BaTiO3; black: Polymer and MCC). 
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