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Pulsed gate bias control of GaN HEMTs to
improve pulse-to-pulse stability in radar
applications

J. Delprato, A. Delias, P. Medrel, D. Barataud,
M. Campovecchio™, G. Neveux, A. Martin, P. Bouysse,
J.M. Nebus, C. Tolant and P. Eudeline

A significant improvement is demonstrated in the measured
pulse-to-pulse stability of an S-band 6 W GaN high electron mobility
transistor (HEMT) power amplifier by generating an appropriate pulse
of the gate bias and thus a warm-up drain current just before each radio-
frequency (RF) pulse of a periodic and coherent radar burst. The ampli-
tude and the width of this gate bias pulse preceding each periodic RF
pulse of the burst are experimentally varied to investigate the trade-off
between the improvement of pulse-to-pulse stability and the total
power-added efficiency. Finally, this technique of synchronised
warm-up gate bias pulse demonstrated a 10 dB improvement of
measured amplitude pulse-to-pulse stabilities to meet the critical stab-
ility requirement below —55 dB for the RF power amplifier.

Introduction: Pulse-to-pulse (P2P) stability is a critical figure of merit
of radar transmitters, which quantifies the variations of envelope ampli-
tude and phase over time between consecutive radio-frequency (RF)
pulses of a radar burst [1, 2]. The P2P stability is a key requirement
for the suppression of unwanted radar echoes, called clutter [1]. For
GaN high electron mobility transistor (HEMT) power amplifiers (PAs)
of radar transmitters, it has already been observed that the P2P stability
is mainly affected by low-frequency dispersive effects such as self-
heating and traps [1]. Indeed, typical radar sequences may integrate
long silence durations between the successive bursts of RF pulses,
which lead to exacerbating the thermal effects [3] across the pulsed
RF signals. Therefore, to enhance the P2P stability of a PA, this
Letter investigates a pulsed bias control that consists in applying a
short gate bias pulse before each RF pulse of the periodic burst to gen-
erate a warm-up drain current in the GaN HEMT. The idea is to impose a
quasi-steady-state operation of the device during all the RF pulses. In
this Letter, the trade-off between P2P stability and efficiency is exper-
imentally characterised for different widths and amplitudes of the
warm-up gate bias pulse.

Definition of P2P stability: Typical radar applications make use of
irregular RF pulse trains. However, the P2P stability of these complex
pulse trains can be analysed through a periodic test signal [1] shown
in Fig. la, which consists of N periodic RF pulses followed by a long
silence duration Topr (i.e. off-time). Each of the N periodic RF pulses
has a pulse width PWgy and a pulse-repetition-period PRPgg, thus defin-
ing the on-time Ty of the periodic RF burst Tgyrst. The P2P stability
is defined at each time #; along PWgrp by the variations between the
envelopes at 7, of the N consecutive RF pulses of the burst. The sampling
point #;, corresponds to the same time position within each RF pulse. In
the case of M successive bursts, the root mean square method is used to
calculate the amplitude or phase P2P stability at #;, which is defined as
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where X stands for the envelope amplitude or phase in the case of ampli-
tude or phase P2P stability, respectively. The indices of X;,, refer to the
ith pulse of the mth burst. For the sake of clarity, the stability levels
reported in this Letter correspond to the worst-case values measured
in the first 10 ps of RF pulses (0 <#, <10 ps) [1].

Stability measurement setup for pulsed gate bias control: With the aim
to mitigate thermal and trapping effects that degrade the P2P stability
after long silence duration [1], a gate bias pulse is applied to warm up
the GaN HEMT prior to each RF pulse. Fig. la shows the ideal (i.e.
without instabilities) time-domain envelope of the RF burst with
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warm-up gate bias pulses. Eight periodic RF pulses (N=28) of 50 us
pulse width PWgr and 250 us pulse period PRPry constitute the RF
pulse train with a total duration 7oy of 2 ms. The silence Topr between
each RF pulse train is 8 ms long. Fig. 15 shows the ideal envelope of
the resulting drain bias current with its warm-up value /yam.up due to
the gate bias pulse and its operation value /pgo due to the RF level.
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Fig. 1 Ideal time-domain envelopes generated for P2P stability control

a Periodic coherent burst made of silence Togr that follows N periodic RF pulses
(PWgg), each one being preceded by its gate bias pulse (PWgare)
b ldeal envelope of drain bias current during warm-up and RF pulses

The total power-added efficiency PAEror of the PA including the
gate bias pulses can be expressed as a function of its initial PAE, as
follows:

PAEror = Prr,, — Prr,  PAE with y = PWaae |
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where y is the pulse-width ratio and f is the drain-current ratio between
the gate bias pulse (PWgate, Jwarm-up) and the RF pulse (PWgg, Ipso).

A heterodyne measurement setup of time-domain envelopes was pre-
viously developed to characterise the P2P stability of a PA [1] under
constant bias conditions. As shown in Fig. 2, the coherent generation
and capture of time-domain envelopes for periodic pulsed RF signals
are performed by a pulsed RF generator with an internal IQ modulator
and an RF heterodyne receiver, respectively. The signal coherence is
ensured by a 10 MHz reference clock and the envelope trigger syn-
chronises signal generation and data acquisition. To synthesise the
pulsed gate bias proposed in this Letter, the initial setup was modified
by connecting an arbitrary waveform generator (AWG) to the gate
access of the PA under test. All P2P measurements reported here were
performed on a 6 W GaN HEMT test board (CGH4006P-TB) [4] at
an RF frequency of 3 GHz.
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Fig. 2 Heterodyne measurement setup of time-domain envelopes and P2P
stability with capability of pulsed gate bias control

P2P stability improvement: First, P2P stabilities were measured under
constant bias. Figs. 3¢ and b show that the reference levels (dashed
lines) of amplitude/phase P2P stabilities were measured at —47 and
—62.8 dB, respectively. Then, to improve the amplitude stability
below the required level of —55 dB, the pulsed gate bias control was
implemented with a gate voltage varying in amplitude and pulse
width. Figs. 3a and b plot the measured stabilities against y and S ratios.
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Fig. 3 Measured P2P stabilities and PAE with and without gate bias pulse
against pulse-width ratio y and drain-current ratio

a Amplitude P2P stability

b Phase P2P stability

The value of PWgy was limited to 10 us (y=0.2) because of the
AWG capability while the minimum value of Zyamm.up Was set to Ipgg
(B=1) below which the stability requirement of —55 dB was never
achieved.

Figs. 3a and b show that the gate bias pulse enables achievement of
the required level of amplitude P2P stability below —55 dB for different
combinations of y and f ratios. However, due to the impact of gate bias
pulses on the total PAE, the best combination of PWg,e and Zyarm-up that
meets the critical P2P stability requirement while also limiting the
decrease of PAE corresponds to ¥ and j ratios of 0.2 and 1.7, respect-
ively. The resulting stability performances are given in Table 1.

Table 1: Comparison of measured P2P stabilities and PAE between
reference bias and optimum gate bias pulse to meet
stability requirement

Gate bias Amplitude stability (dB) | Phase stability (dB) | PAE (%)
Reference DC bias —47 —62.8 42
Gate bias pulse
(¢ =02,8=17) -57 —63.4 32
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Fig. 4 Normalised envelope amplitudes of first and eighth RF pulses along
PWgr that were measured with and without gate bias pulses

To illustrate the relative impact of gate bias pulses along the RF burst,
the measured time-domain envelopes of the first and eighth RF pulses
with or without gate bias control are superimposed in Fig. 4.

First, it can be observed that the gate bias pulses limit the envelope
variation along PWgy for both RF pulses, but much more for the
first RF pulse. This leads to a more constant level of amplitude
P2P stability along PWgE, but the maximum value of stability
levels along PWgp remains the main issue to meet the P2P stability
requirement.

However, the level of P2P stability at #, (1) is directly linked to the
envelope variation between RF pulses at the same time #; of PWgg. In
this regard, Fig. 4 shows that the most positive impact of the gate bias
pulse on P2P stability levels is observed for the eighth RF pulse.
Indeed, in the first 10 us of PWgg which correspond to the worst case
of stability levels [1], the comparison between envelope amplitudes of
the first RF pulse (with or without gate bias pulse) and the eighth RF
pulse with the gate bias pulse shows that the stability level would
have been equally improved without the gate bias pulse preceding the
first RF pulses, and thus without its consumption. Accordingly, an ad-
aptive control using non-systematic gate bias pulses can be implemented
for actual radar signals to meet the required stability level while limiting
the impact on PAE predicted by (3) in the worst case of systematic gate
bias pulses.

Conclusion: This Letter investigates the impact of a gate bias pulse
which is applied before each RF pulse of a periodic radar burst to
improve its P2P stability degraded by a long silence. All measurements
were performed on a 6 W GaN HEMT test board at an RF carrier
frequency of 3 GHz for a worst-case radar burst of 10 ms integrating
a silence of 8 ms. This control technique of systematic gate bias
pulses demonstrated a 10 dB improvement of amplitude P2P stabilities
for this worst-case radar burst to meet the critical stability requirement
below —55 dB without any degradation of phase stability. Therefore,
depending on the required level of P2P stability, and on the time-
domain characteristics of the radar signal, these results open the way
to adaptive bias control techniques of an RF PA for improving their
P2P stabilities.
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