
HAL Id: hal-01661690
https://unilim.hal.science/hal-01661690v2

Preprint submitted on 15 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Block-Krylov techniques in the context of sparse-FGLM
algorithms

Seung Gyu Hyun, Vincent Neiger, Hamid Rahkooy, Éric Schost

To cite this version:
Seung Gyu Hyun, Vincent Neiger, Hamid Rahkooy, Éric Schost. Block-Krylov techniques in the
context of sparse-FGLM algorithms. 2019. �hal-01661690v2�

https://unilim.hal.science/hal-01661690v2
https://hal.archives-ouvertes.fr

Block-Krylov techniques in the context of
sparse-FGLM algorithms

Seung Gyu Hyun

Cheriton School of Computer Science, University of Waterloo

Vincent Neiger

Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France

Hamid Rahkooy

Cheriton School of Computer Science, University of Waterloo

Éric Schost

Cheriton School of Computer Science, University of Waterloo

Abstract

Consider a zero-dimensional ideal I in K[X1, . . . , Xn]. Inspired by Faugère and Mou’s Sparse
FGLM algorithm, we use Krylov sequences based on multiplication matrices of I in order to
compute a description of its zero set by means of univariate polynomials.

Steel recently showed how to use Coppersmith’s block-Wiedemann algorithm in this context;
he describes an algorithm that can be easily parallelized, but only computes parts of the output
in this manner. Using generating series expressions going back to work of Bostan, Salvy, and
Schost, we show how to compute the entire output for a small overhead, without making any
assumption on the ideal I other than it having dimension zero. We then propose a refinement
of this idea that partially avoids the introduction of a generic linear form. We comment on
experimental results obtained by an implementation based on the C++ libraries Eigen, LinBox
and NTL.

Keywords: Polynomial systems; Block-Krylov algorithms; Sparse FGLM.

1. Introduction

Computing the Gröbner basis of an ideal with respect to a given term ordering is an essential
step in solving systems of polynomials. Certain term orderings, such as the degree reverse lex-
icographic ordering (degrevlex), tend to make the computation of the Gröbner basis faster. This
has been observed empirically since the 1980’s and is now supported by theoretical results, at
least for some “nice” families of inputs, such as complete intersections or certain determinantal
systems (Faugère, 2002; Faugère et al., 2013; Bardet et al., 2015). On the other hand, other
orderings, such as the lexicographic ordering (lex), make it easier to find the coordinates of the
solutions, or to perform arithmetic operations in the corresponding residue class ring. For in-
stance, for a zero-dimensional radical ideal I in generic coordinates in K[X1, . . . , Xn], for some
Preprint submitted to Elsevier January 15, 2019

field K, the Gröbner basis of I for the lexicographic ordering with X1 > · · · > Xn has the form

{X1 − R1(Xn), . . . , Xn−1 − Rn−1(Xn),Rn(Xn)}, (1)

with all Ri’s, for i = 1, . . . , n − 1, of degree less than deg(Rn) (and Rn squarefree); this is known
as the shape lemma (Gianni and Mora, 1989). The points in the variety V(I) ⊂ Kn are then

{(R1(τ), . . . ,Rn−1(τ), τ) | τ ∈ K is a root of Rn}.

As a result, the standard approach to solve a zero-dimensional system by means of Gröbner basis
algorithms is to first compute a Gröbner basis for a degree ordering and then convert it to a more
exploitable output, such as a lexicographic basis. As pointed out in (Faugère and Mou, 2017),
the latter step, while of polynomial complexity, can now be a bottleneck in practice. This paper
will thus focus on this step; in order to describe our contributions, we first discuss previous work
on the question.

Let I be a zero-dimensional ideal in K[X1, . . . , Xn]. As input, we assume that we know a
monomial basis B of Q = K[X1, . . . , Xn]/I together with the multiplication matrices M1, . . . , Mn

of respectively X1, . . . , Xn in this basis. We denote by D the degree of I, which is the vector
space dimension of Q. We should stress that starting from a degree Gröbner basis of I, com-
puting the multiplication matrices efficiently is not a straightforward task. (Faugère et al., 1993)
showed how to do it in time O(nD3); more recently, algorithms have been given with cost bound
O˜(nDω) (Faugère et al., 2013; Faugère et al., 2014; Neiger, 2016), at least for some favorable
families of inputs. Here, the notation O˜ hides polylogarithmic factors and ω is a feasible expo-
nent for matrix multiplication over a ring (commutative, with 1). While improving these results
is an interesting question in itself, we will not address it in this paper.

Given such an input, including the multiplication matrices, the FGLM algorithm (Faugère
et al., 1993) computes the lexicographic Gröbner basis of I in O(nD3) operations in K. While the
algorithm has an obvious relation to linear algebra, lowering the runtime to O˜(nDω) was only
recently achieved (Faugère et al., 2013; Faugère et al., 2014; Neiger, 2016).

Polynomials as in Eq. (1) form a very useful data structure, but there is no guarantee that
the lexicographic Gröbner basis of I has such a shape (even in generic coordinates). When
it does, we will say that I is in shape position; some sufficient conditions for being in shape
position are detailed in (Becker et al., 1994). As an alternative, one may then use the Rational
Univariate Representation algorithm of Rouillier (1999) (see also (Alonso et al., 1996; Becker
and Wörmann, 1996) for related considerations). The output is a description of the zero-set V(I)
by means of univariate rational functions{

F(T) = 0, X1 =
G1(T)
G(T)

, . . . , Xn =
Gn(T)
G(T)

}
, (2)

where the multiplicity of a root τ of F coincides with that of I at the corresponding point
(G1(τ)/G(τ), . . . ,Gn(τ)/G(τ)) ∈ V(I). The fact that we use rational functions makes it possi-
ble to control precisely the bit-size of their coefficients, if working over K = Q.

The algorithms of Alonso et al. (1996); Becker and Wörmann (1996); Rouillier (1999) rely
on duality, which will be at the core of our algorithms as well. Indeed, these algorithms compute
sequences of values of the form vs = (trace(Xs))s≥0 and vs,i = (trace(XsXi))s≥0, where trace :
Q → K is the trace form and X = t1X1 + · · · + tnXn is a generic K-linear combination of the
variables. From these values, one may then recover the output in Eq. (2) by means of structured
linear algebra calculations.

2

A drawback of this approach is that we need to know the trace of all elements of the basis
B; while feasible in polynomial time, this is by no means straightforward. Bostan et al. (2003)
introduced randomization to alleviate this issue. They show that computing values such as `(Xs)
and `(XsXi), where X is as above and ` is a random K-linear form Q → K, allows one to deduce
a description of V(I) of the form

{Q(T) = 0, X1 = V1(T), . . . , Xn = Vn(T)}, (3)

where Q is a monic squarefree polynomial in K[T] and Vi is in K[T] of degree less than
deg(Q) for all i. The tuple ((Q,V1, . . . ,Vn), X) computed by such algorithms will be called a
zero-dimensional parametrization of V(I). In particular, it generally differs from the descrip-
tion in Eq. (2), since the latter keeps track of the multiplicities of the solutions (the algorithm
in (Bostan et al., 2003) actually computes the nil-indices of the solutions). Remark that starting
from such an output, we can reconstruct the local structure of I at its roots, using algorithms
from (Marinari et al., 1996), (Mourrain, 1997) or (Neiger et al., 2017).

The most costly part of the algorithm of (Bostan et al., 2003) is the computation of the
values `(Xs) and `(XsXi); the rest essentially boils down to applying the Berlekamp-Massey
algorithm and univariate polynomial arithmetic. Faugère and Mou (2017) pointed out that the
multiplication matrices M1, . . . , Mn can be expected to be sparse; for generic inputs, they gave
precise estimates on the sparsity of these matrices, assuming the validity of a conjecture by
Moreno-Socı́as (1991). On this basis, they designed several forms of sparse FGLM algorithms.
For instance, if I is in shape position, the algorithms in (Faugère and Mou, 2017) recover its
lexicographic basis, which is as in (1), by also considering values of a linear form ` : Q → K.
For less favorable inputs, these algorithms fall back either on the algorithm of Sakata (1990) or
on plain FGLM.

The ideas at play in these algorithms are essentially based on Krylov subspace methods, using
projections as well as Berlekamp-Massey techniques, along the lines of the algorithm of Wiede-
mann (1986) to solve sparse linear systems. These techniques have also been widely used in
integer factorization or discrete logarithm calculations, going back to (LaMacchia and Odlyzko,
1990). It has become customary to design block versions of such algorithms to parallelize their
bottleneck, as pioneered by Coppersmith (1994) in the context of integer factorization: it is then
natural to adapt this strategy to our situation. This was already discussed by Steel (2015), where
he showed how to compute the analogue of the polynomial Q in Eq. (3) using such techniques.
In that reference, one is only interested in the solutions in the base field K (K being a finite field
in that context): the algorithm computes the roots of Q in K and substitutes them in the input
system, before computing a Gröbner basis in n − 1 variables for each of them.

Our first contribution is to give a block version of the algorithm in (Bostan et al., 2003)
that extends the approach introduced in (Steel, 2015) to compute all polynomials in Eq. (3) for
essentially the same cost as the computation of Q. More precisely, the bottleneck of the algo-
rithm of (Steel, 2015) is the computation of a block-Krylov sequence; we show that once this
sequence has been computed, not only Q but also all other polynomials in the zero-dimensional
parametrization can be efficiently obtained. Compared with the algorithms of (Faugère and Mou,
2017), a notable difference is that our algorithm deals with any zero-dimensional ideal I (for
instance, we do not require shape position), but the base field must have sufficiently large char-
acteristic (and our output is somewhat weaker than a Gröbner basis, since multiplicities are not
computed). While we focus on the case where the multiplication matrices are sparse, we also
give a cost analysis for the case of dense multiplication matrices.

3

Our second contribution is a refinement of our first algorithm, where we try to avoid compu-
tations with a generic linear form X = t1X1 + · · · + tnXn to the extent possible (this is motivated
by the fact that the multiplication matrix of X is often denser than those of the variables Xi). The
algorithm first computes a zero-dimensional parametrization of a subset of V(I) for which we
can take X equal to (say) X1, and falls back on the previous approach for the residual part; if the
former set has large cardinality, this is expected to provide a speed-up over the general algorithm.

For experimental purposes, our algorithms have been implemented in C++ using the libraries
Eigen (Guennebaud et al., 2018), LinBox (The LinBox Group, 2018) and NTL (Shoup, 2018).

The paper is organized as follows. The next section mainly reviews known results on scalar
and matrix recurrent sequences, and introduces a simple useful algorithm to compute a so-called
scalar numerator for such sequences. Section 3 describes sequences that arise in the context of
FGLM-like algorithms; we prove slightly refined versions of results from (Bostan et al., 2003)
that will be used throughout the paper. The main algorithm is given in Section 4, and the refine-
ment mentioned above is in Section 5. Finally, in appendix, we prove a few technical statements
on linearly recurrent matrix sequences.

Complexity model. We measure the cost of our algorithms by counting basic operations in K at
unit cost. Most algorithms are randomized; they involve the choice of a vector γ ∈ KS of field
elements, for an integer S that depends on the size of our input, and success is guaranteed if the
vector γ avoids a hypersurface of the parameter space KS .

Suppose the input ideal I is generated by polynomials F1, . . . , Ft. Given a zero-dimensional
parametrization ((Q,V1, . . . ,Vn), X) found by our algorithms, one can always evaluate F1, . . . , Ft

at X1 = V1, . . . , Xn = Vn, doing all computations modulo Q. This allows us to verify whether
the output describes a subset of V(F1, . . . , Ft), but not whether we have found all solutions. If
deg(Q) coincides with the dimension of Q = K[X1, . . . , Xn]/I, we can infer that we have all
solutions (and that I is radical), so our output is correct.

In what follows, we assume ω > 2, in order to simplify a few cost estimates. We use a time
function d 7→ M(d) for the cost of univariate polynomial multiplication over K, for which we
assume the super-linearity properties of (von zur Gathen and Gerhard, 2013, Section 8.4). Then,
two m × m matrices over K[T] whose degree is less than d can be multiplied using O(mωM(d))
operations in K.

Acknowledgments. We wish to thank Chenqi Mou, Dave Saunders, and Gilles Villard for several
discussions, and a reviewer of the first version of this paper for their useful remarks. This research
was partially supported by NSERC (Schost’s NSERC Discovery Grant) and by the CNRS-INS2I
Institute through its program for young researchers (Neiger’s project ARCADIE).

2. Linearly recurrent sequences

This section starts with a review of known facts on linearly recurrent sequences: we first dis-
cuss the scalar case, and then we show how the ideas carry over to matrix sequences. The main
results we will need from the first three subsections are Theorem 2.6 and Theorem 2.7, which
give cost estimates for the computation of a minimal matrix generator of a linearly recurrent
matrix sequence, as well as a degree bound for such generators, when the matrices we consider
are obtained from a Krylov sequence. These results are for the most part not new (see (Vil-
lard, 1997a,b; Kaltofen and Villard, 2001; Turner, 2002; Kaltofen and Villard, 2004)), but the
cost analysis we give uses results not available when those references were written. The fourth

4

and last subsection presents a useful result for our main algorithm that allows us to compute a
“numerator” for a scalar sequence from a similar object obtained for a matrix sequence.

2.1. Scalar sequences

Let K be a field and consider a sequenceL = (`s)s≥0 ∈ KN. We say that a degree d polynomial
P = p0 + · · · + pdT d ∈ K[T] cancels the sequence L if p0`s + · · · + pd`s+d = 0 for all s ≥ 0. The
sequenceL is linearly recurrent if there exists a nonzero polynomial that cancels it. The minimal
polynomial of a linearly recurrent sequenceL = (`s)s≥0 is the monic polynomial of lowest degree
that cancels it; the order of L is the degree of this polynomial P.

In terms of generating series, it is easier to work here with generating series in the variable
1/T . Let thus Z =

∑
s≥0 `s/T s+1 and P be any polynomial; then, P cancels the sequence L if

and only if Q = PZ is a polynomial, in which case Q must have degree less than deg(P). In
particular, given a scalar sequence and a polynomial that cancels it, there is a well-defined notion
of associated numerator. This is formalized in the next definition.

Definition 2.1. Let L = (`s)s≥0 ∈ KN be a sequence and P be a polynomial that cancels L.
Then, the numerator of L with respect to P is denoted by Ω(L, P) and defined as

Ω(L, P) = PZ, where Z =
∑
s≥0

`s

T s+1 .

In particular, Ω(L, P) is a polynomial of degree less than deg(P).

The numerators thus defined are related to the Lagrange interpolation polynomials; this will
explain why they play an important role in our main algorithm. Assuming that L is known to
have order at most d and that we are given `0, . . . , `2d−1, we can recover its minimal polynomial
P by means of the Berlekamp-Massey algorithm, or of Euclid’s algorithm (Brent et al., 1980).
Given P and `0, . . . , `d−1, we can deduce Ω(L, P) by a simple multiplication.

As an example, consider the Fibonacci sequence L = (1, 1, 2, 3, 5, 8, . . .), which is linearly
recurrent with minimal polynomial P = T 2 − T − 1. Defining Z =

∑
s≥0 `s/T s+1, we obtain

Ω(L, P) = (T 2 − T − 1)
(

1
T

+
1

T 2 +
2

T 3 +
3

T 4 + · · ·

)
= T.

2.2. Linearly recurrent matrix sequences

Next, we discuss the analogue of these ideas for matrix sequences; our main goal is to give a
cost estimate for the computation of a suitable matrix generator for a matrix sequence, obtained
by means of recent algorithms for approximant bases. A similar discussion, relying on the ap-
proximant basis algorithm in (Beckermann and Labahn, 1994), can be found in (Turner, 2002,
Chapter 4); as a result, in the body of the text, we indicate only the key definitions and results
(and in particular, an improved complexity analysis). Proofs of some statements are in appendix.

We first define linear recurrences for matrix sequences over a field K as in (Kaltofen and
Villard, 2001, Section 3) or (Turner, 2002, Definition 4.2), hereby extending the above notions
for scalar sequences. We only discuss the square case, since this is what we need below; the
whole discussion can be generalized to rectangular matrices.

Definition 2.2. Let F = (Fs)s≥0 be a sequence of matrices in Km×m. Then,

5

• a polynomial vector p = p0 + · · · + pdT d ∈ K[T]1×m is a left vector relation for F if
p0Fs + · · · + pd Fs+d = 0 holds for all s ≥ 0;

• the sequence F is linearly recurrent if the set of left vector relations for F is a K[T]-
submodule of K[T]1×m of rank m.

Note that the set of left vector relations is always a free K[T]-module, but its rank may be
less than m. The following equivalent characterization of linearly recurrent sequences can be
found for example in (Villard, 1997a; Kaltofen and Villard, 2001; Turner, 2002).

Lemma 2.3. Let F = (Fs)s≥0 be a sequence of matrices in Km×m. Then F is linearly recurrent
if and only if it admits a nonzero scalar relation, that is, if there exists a non-zero polynomial
P = p0 + · · · + pdT d ∈ K[T] such that the identity p0Fs + · · · + pd Fs+d = 0 holds for all s ≥ 0.

Definition 2.4. Let F = (Fs)s≥0 be a linearly recurrent sequence of matrices in Km×m. A matrix
P in K[T]m×m is

• a left matrix relation if its rows are all left vector relations for F ;
• a left matrix generator if its rows form a basis of the module of left vector relations for F .

In the latter case, P is a minimal generator if it is in row reduced form.

We refer to (Wolovich, 1974; Kailath, 1980) for a definition of reduced forms. The following
proposition, which can be proved by a direct examination of the terms in the product PZ, shows
that matrix relations are denominators in a fraction description of the generating series of the
sequence. As suggested in the previous subsection, working with generating series in 1/T turns
out to be the most convenient choice here.

Proposition 2.5. Let F = (Fs)s≥0 be a sequence of matrices in Km×m and let P be a nonsingular
matrix in K[T]m×m. Then, P is a left matrix relation forF if and only if the generating series Z =∑

s≥0 Fs/T s+1 ∈ K[[T−1]]m×m can be written as a matrix fraction Z = P−1Q, with Q ∈ K[T]m×m.
In this case, the ith row of Q has degree less than the ith row of P, for 1 ≤ i ≤ m.

Given a nonsingular matrix relation P for F , we will thus write Ω(F , P) = PZ ∈ K[T]m×m,
generalizing Definition 2.1. By the previous proposition, this is a polynomial matrix, whose ith
row has degree less than the ith row of P for 1 ≤ i ≤ m. As in the scalar case, if P has degree d,
we only need to know F0, . . . , Fd−1 to recover Ω(F , P) as

Ω(F , P) =

P ·
d−1∑
s=0

Fd−1−sT s

 div T d, (4)

where “div T d” means we keep the quotient of each entry by T d. Given P and F0, . . . , Fd−1, the
cost of computing Ω(F , P) is then O(mωM(d)) operations in K.

Given a linearly recurrent sequence, our goal will be to find a minimal left matrix generator
of it (from which we will easily deduce the corresponding numerator). In order to do this, we
will assume that we know bounds on the degree of this left generator, but also on that of a right
generator. Indeed, in all the previous discussion, we may also consider vector relations operating
on the right. In particular, Lemma 2.3 shows that if a sequence is linearly recurrent, these right
relations form a submodule of K[T]m×1 of rank m, so that a linearly recurrent sequence also
admits right generators.

As it turns out, all minimal left generators have the same degree (by property of reduced
forms); the same remark holds for minimal right generators. Knowing bounds (d`, dr) on these

6

degrees allows us to control the number of terms of the sequence we will access during the
algorithm (the bounds (d`, dr) correspond to (γ1, γ2) in (Turner, 2002, Definitions 4.6 and 4.7)
and (δl, δr) in (Villard, 1997b, Section 4.2)). In concrete terms, the fast computation of minimal
matrix generators is usually handled via minimal approximant basis algorithms (see for example
Villard, 1997a; Turner, 2002; Giorgi and Lebreton, 2014). The runtime below is obtained by
using the divide and conquer approximant basis algorithm in (Giorgi et al., 2003).

Theorem 2.6. Let F = (Fs)s≥0 be a linearly recurrent sequence of matrices in Km×m and let
d = d` + dr + 1, where (d`, dr) ∈ N2 are such that the minimal left (resp. right) matrix generators
of F have degree at most d` (resp. at most dr). Then, given F0, . . . , Fd−1, one can compute a
minimal left matrix generator of F in O(mωM(d) log(d)) operations in K.

2.3. Application to the block Wiedemann algorithm
We next apply the results seen above to a particular class of matrix sequences, namely the

Krylov sequences used in Coppersmith’s block Wiedemann algorithm (Coppersmith, 1994). Let
M be in KD×D and U,V ∈ KD×m be two blocking matrices for some m ≤ D. We can then define
the Krylov sequence FU,V = (Fs,U,V)s≥0 ⊂ Km×m by

Fs,U,V = UT MsV, s ≥ 0.

This sequence is linearly recurrent, since the minimal polynomial of M is a scalar relation for it.
The following theorem states some useful properties of any minimal left generator of FU,V , with
in particular a bound on its degree, for generic choices of U and V; we also state properties of
the invariant factors of such a generator. These results are not new, as all statements can be found
in (Villard, 1997b) and (Kaltofen and Villard, 2004) (see also (Kaltofen, 1995) for an analysis of
the block Wiedemann algorithm).

We let s1, . . . , sr be the nontrivial invariant factors of T ID − M, ordered such that si divides
si−1 for 2 ≤ i ≤ r, and let di = deg(si) for all i; for i > r, we let si = 1, with di = 0. We define
ν = d1 + · · · + dm ≤ D and δ = dν/me ≤ dD/me.

Theorem 2.7. For a generic choice of U and V in KD×m, the following holds. Let PU,V be a
minimal left generator for FU,V and denote by σ1, . . . , σk the invariant factors of PU,V , for some
k ≤ m, ordered as above, and write σk+1 = · · · = σm = 1. Then,

• PU,V is a minimal left generator for the matrix sequence LU = (UT Ms)s≥0;
• PU,V has degree δ;
• si = σi for 1 ≤ i ≤ m.

In particular, combining Theorem 2.6 and Theorem 2.7, we deduce that for generic U,V,
given the first 2dD/me+1 terms of the sequenceFU,V , we can recover a minimal matrix generator
PU,V of it using O(mω−1M(D) log(D)) ⊂ O˜(mω−1D) operations in K.

Besides, the theorem shows that for generic U and V, the largest invariant factor σ1 of PU,V
is the minimal polynomial P = s1 of M. Given PU,V , P can thus be computed by solving a linear
system PU,V x = y, where y is a vector of m randomly chosen elements in K: for a generic choice
of y, the least common multiple of the denominators of the entries of x is P. Thus, both P and x
can be computed using high-order lifting (Storjohann, 2003, Algorithm 5) on input PU,V and y;
by (Storjohann, 2003, Corollary 16), this costs

O(mω−1M(D) log(D) log(m)) ⊂ O˜(mω−1D) (5)
7

operations in K. The latter algorithm is randomized, since it chooses a random point in K to com-
pute (parts of) the expansion of the inverse of PU,V . An alternative solution would be to compute
the Smith form of PU,V using an algorithm such as that in (Storjohann, 2003, Section 17), yet the
cost would be slightly higher on the level of logarithmic factors.

2.4. Computing a scalar numerator

Let us keep the notation of the previous subsection. The main advantage of using the block
Wiedemann algorithm is that it allows one to distribute the bulk of the computation in a straight-
forward manner: on a platform with m processors (or cores, . . .), one would typically compute
the D × m matrices Ls = UT Ms for s = 0, . . . , 2dD/me by having each processor compute a
sequence ui Ms, where ui is the ith row of UT. From these values, we then deduce the matrices
Fs,U,V = UT MsV = LsV for s = 0, . . . , 2dD/me. Note that in our description, we assume for sim-
plicity that memory is not an issue, so that we can store all needed elements from e.g. sequence
Ls; we discuss this in more detail in Section 4.1.

Our main algorithm will also resort to scalar numerators of the form Ω((ui Msw)s≥0, P), where
w is a given vector in KD×1 and P is the minimal polynomial of M. Since P may have degree D,
and then Ω((ui Msw)s≥0, P) itself may have degree D−1, the definition of Ω suggests that we may
need to compute up to D terms of the sequence ui Msw, which we would of course like to avoid.
We now present an alternative solution which involves solving a univariate polynomial linear
system and computing a matrix numerator, but only uses the sequence elements Ls = UT Ms for
s = 0, . . . , dD/me − 1 which have already been computed.

Fix i in 1, . . . ,m and let ai be the row vector defined by

ai = [0 · · · 0 P 0 · · · 0](PU,V)−1,

where the minimal polynomial P appears at the ith entry of the left-hand row vector.

Lemma 2.8. For generic U,V, the row vector ai has entries which are polynomials of degree at
most deg(P) ≤ D.

Proof. For generic U,V, we saw that P is the largest invariant factor of PU,V ; thus, the product
P (PU,V)−1 has polynomial entries. Since ai the ith row of this matrix, ai has polynomial entries.
Now, since PU,V is reduced, the predictable degree property (Kailath, 1980, Theorem 6.3-13)
holds; it implies that each entry of ai has degree at most the maximum of the degrees of the
entries of ai PU,V . This maximum is deg(P).

To compute ai, we use again Storjohann’s high-order lifting; according to Eq. (5), the cost
is O(mω−1M(D) log(D) log(m)) ⊂ O˜(mω−1D) operations in K. Once ai is known, the following
lemma shows that we can recover the scalar numerator Ω((ui Msw)s≥0, P) as a dot product.

Lemma 2.9. For a generic choice of U and V, and for any w in KD×1, PU,V is a nonsingular
matrix relation for the sequence E = (es)s≥0, with es = UT Ms w for all s, and we have

[Ω((ui Msw)s≥0, P)] = ai ·Ω(E, PU,V) (6)

with ai in K[T]1×m and Ω(E, PU,V) ∈ K[T]m×1.

8

Proof. The first item in Theorem 2.7 shows that for a generic choice of U and V, PU,V cancels
the sequence (UT Ms)s≥0, and thus the sequence E as well; this proves the first point. Then, the
equality in Eq. (6) directly follows from the definitions:

[Ω((ui Msw)s≥0, P)] = [P]
∑
s≥0

ui Msw
T s+1

= [0 · · · 0 P 0 · · · 0]
∑
s≥0

UT Msw
T s+1

= [0 · · · 0 P 0 · · · 0] (PU,V)−1 PU,V

∑
s≥0

UT Msw
T s+1

= ai ·Ω(E, PU,V).

The algorithm to obtain the scalar numerator Ω((ui Msw)s≥0, P) follows; in the algorithm, we
assume that we know PU,V , P, ai and the matrices Ls = UT Ms ∈ Km×D for s = 0, . . . , dD/me − 1.

Algorithm 1 ScalarNumerator(PU,V , P,w, i, ai, (Ls)0≤s<dD/me)
Input:
• a minimal generator PU,V of (UT MsV)s≥0

• the minimal polynomial P of M
• w in KD×1

• i in {1, . . . ,m}
• ai = [0 · · · 0 P 0 · · · 0](PU,V)−1 ∈ K[T]1×m where P appears at the ith entry
• Ls = UT Ms ∈ Km×D, for s = 0, . . . , dD/me − 1

Output:
• the scalar numerator Ω((ui Msw)s≥0, P) ∈ K[T]

1. compute es = Lsw ∈ Km×1 for s = 0, . . . , dD/me − 1
2. use these values to compute the matrix numerator Ω(E, PU,V) ∈ K[T]m×1 by Eq. (4)
3. return the entry of the 1 × 1 matrix ai ·Ω(E, PU,V)

Computing the first dD/me values of the sequence E = (es)s≥0 is done by using the equal-
ity es = Lsw and takes O(D2) field operations. Then, applying the cost estimate given after
Eq. (4), we see that we have enough terms to compute Ω(E, PU,V) ∈ K[T]m×1 and that it takes
O(m2M(D/m)) ⊂ O(mM(D)) operations in K. Then, the dot product with ai takes O(mM(D))
operations, since both vectors have size m and entries of degree at most D. Thus, the runtime is
O(D2 + mM(D)) ⊂ O˜(D2) operations in K.

3. Sequences associated to a zero-dimensional ideal

We now focus on our main question: computing a zero-dimensional parametrization of an
algebraic set of the form V = V(I), for some zero-dimensional ideal I in K[X1, . . . , Xn]. We write
V = {α1, . . . ,ακ}, with αi = (αi,1, . . . , αi,n) ∈ Kn for all i. We also let D be the dimension of
Q = K[X1, . . . , Xn]/I, so that κ ≤ D, and we assume that char(K) is greater than D.

In this section, we recall and expand on results from the appendix of (Bostan et al., 2003),
with the objective of computing a zero-dimensional parametrization of V . These results were

9

themselves inspired by those in (Rouillier, 1999), the latter being devoted to computations with
the trace linear form tr : Q → K. At this stage, we do not discuss data structures or complex-
ity (this is the subject of the next section); the algorithm in this section simply describes what
polynomials should be computed in order to obtain a zero-dimensional parametrization.

3.1. The structure of the dual
For i in {1, . . . , κ}, let Qi be the local algebra at αi, that is Qi = K[X1, . . . , Xn]/Ii, with Ii the

mαi -primary component of I. By the Chinese Remainder Theorem, Q ⊗K K = K[X1, . . . , Xn]/I
is isomorphic to the direct product Q1 × · · · ×Qκ. We let Ni be the nil-index of Qi, that is, the
maximal integer N such that mN

αi
is not contained in Ii; for instance, Ni = 0 if and only if Qi is

a field, if and only if αi is a nonsingular root of I. We also let Di = dimK(Qi), so that we have
Di ≥ Ni and D = D1 + · · · + Dκ.

The sequences we consider below are of the form (`(Xs))s≥0, for ` a K-linear form Q → K
and X in Q (we will often write ` ∈ homK(Q,K)). For such sequences, the following standard
result will be useful (see e.g. (Bostan et al., 2003, Propositions 1 & 2) for a proof).

Lemma 3.1. Let X be in Q and let P ∈ K[T] be its minimal polynomial. For a generic choice
of ` in homK(Q,K), P is the minimal polynomial of the sequence (`(Xs))s≥0.

The following results are classical; they go back to (Macaulay, 1916), and have been used in
computational algebra since the 1990’s (Marinari et al., 1996; Mourrain, 1997). Fix i in 1, . . . , κ.
There exists a basis of the dual homK(Qi,K) consisting of linear forms (λi, j)1≤ j≤Di of the form

λi, j : f 7→ (Λi, j(f))(αi),

where Λi, j is the operator

f 7→ Λi, j(f) =
∑

µ=(µ1,...,µn)∈S i, j

ci, j,µ
∂µ1+···+µn f

∂Xµ1
1 · · · ∂Xµn

n
,

for some finite subset S i, j of Nn and nonzero constants ci, j,µ in K. For instance, when αi is
nonsingular, we have Di = 1, so there is only one function λi, j, namely λi,1; we write it λi,1(f) =

f (αi). More generally, we can always take λi,1 of the form λi,1(f) = f (αi); for j > 1, we can
then also assume that S i, j does not contain µ = (0, . . . , 0) (that is, all terms in Λi, j have order
1 or more). Thus, introducing new variables (Ui, j) j=1,...,Di , we deduce the existence of nonzero
homogeneous linear forms Pi,µ in (Ui, j) j=1,...,Di such that for any ` in homK(Qi,K), there exists
ui = (ui, j) ∈ KDi such that we have

` : f 7→ `(f) =

Di∑
j=1

ui, jλi, j(f)

=

Di∑
j=1

ui, j
(
Λi, j(f)

)
(αi)

=

Di∑
j=1

ui, j

∑
µ=(µ1,...,µn)∈S i, j

ci, j,µ
∂µ1+···+µn f

∂Xµ1
1 · · · ∂Xµn

n
(αi)

=
∑

µ=(µ1,...,µn)∈S i

Pi,µ(ui)
∂µ1+···+µn f

∂Xµ1
1 · · · ∂Xµn

n
(αi), (7)

10

where S i is the union of S i,1, . . . , S i,Di , with in particular Pi,(0,...,0) = Ui,1 and where Pi,µ de-
pends only on (Ui, j) j=2,...,Di for all µ in S i, µ , (0, . . . , 0). Explicitly, we can write Pi,µ =∑

j∈{1,...,Di} | µ∈S i, j
ci, j,µUi, j.

Fix ` nonzero in homK(Qi,K), written as in Eq. (7). We can then define its order w and
symbol π. The former is the maximum of all |µ| = µ1 + · · · + µn for µ = (µ1, . . . , µn) in S i such
that Pi,µ(ui) is nonzero; by (Mourrain, 1997, Lemma 3.3) we have w ≤ Ni − 1. Then, we let

π =
∑

µ∈S i, |µ|=w

Pi,µ(ui)X
µ1
1 · · · X

µn
n

be the symbol of `; by construction, this is a nonzero polynomial.
Finally, we say a word about global objects. Fix a linear form ` : Q → K. By the Chinese

Remainder Theorem, there exist unique `1, . . . , `κ, with `i in homK(Qi,K) for all i, such that the
extension `K : Q ⊗K K → K decomposes as `K = `1 + · · · + `κ. Note that formally, we should
write `K = `1 ◦ φ1 + · · · + `κ ◦ φκ, where for all i, φi is the canonical projection Q → Qi; we will
however omit these projection operators for simplicity.

We call support of ` the subset S of {1, . . . , κ} such that `i is nonzero exactly for i in S. As a
consequence, for all f in Q, we have

`(f) = `1(f) + · · · + `κ(f) =
∑
i∈S

`i(f). (8)

For i in S, we denote by wi and πi respectively the order and the symbol of `i. For such a subset
S of {1, . . . , κ}, we also write QS =

∏
i∈SQi and VS = {αi | i ∈ S}.

3.2. A fundamental formula

Let X be in Q and ` in homK(Q,K). The sequences (`(Xs))s≥0, and more generally the
sequences (`(vXs))s≥0 for v in Q, are the core ingredients of our algorithm. This is justified by the
following lemma, which gives a description of generating series of the form

∑
s≥0 `(vXs)/T s+1.

A slightly less precise version of it is in (Bostan et al., 2003); the more explicit expression given
here will be needed in the last section of this paper.

Lemma 3.2. Let ` be in homK(Q,K), with support S, and let {πi | i ∈ S} and {wi | i ∈ S} be the
symbols and orders of {`i | i ∈ S}, for {`i | i ∈ S} as in Section 3.1.

Let X = t1X1 + · · · + tnXn, for some t1, . . . , tn in K and let v be in K[X1, . . . , Xn]. Then, we
have the equality ∑

s≥0

`(vXs)
T s+1 =

∑
i∈S

v(αi) wi! πi(t1, . . . , tn) + (T − X(αi))Av,i

(T − X(αi))wi+1 , (9)

for some polynomials {Av,i ∈ K[T] | i ∈ S} which depend on the choice of v and are such that
Av,i has degree less than wi for all i in S.

Proof. Take v and X as above. Consider first an operator of the form f 7→ ∂|µ| f
∂Xµ1

1 ···∂Xµn
n

, where we
write |µ| = µ1+· · ·+µn. Then, we have the following generating series identities, with coefficients

11

in K(X1, . . . , Xn):∑
s≥0

∂|µ|(vXs)
∂Xµ1

1 · · · ∂Xµn
n

1
T s+1 =

∑
s≥0

∂|µ|(vXs/T s+1)
∂Xµ1

1 · · · ∂Xµn
n

=
∂|µ|

∂Xµ1
1 · · · ∂Xµn

n

∑
s≥0

vXs

T s+1

=

∂|µ|

∂Xµ1
1 · · · ∂Xµn

n

(v
T − X

)
=

v |µ|! 1
(T − X)|µ|+1

∏
1≤k≤n

(
∂X
∂Xk

)µk
 +

P|µ|
(T − X)|µ|

+ · · · +
P1

(T − X)

=

v |µ|! 1
(T − X)|µ|+1

∏
1≤k≤n

tµk
k

 +
H

(T − X)|µ|
,

for some polynomials P1, . . . , P|µ|,H in K[X1, . . . , Xn,T] that depend on the choices of µ, v and
X, with degT (Pi) < i for all i and thus degT (H) < |µ|.

Take now a K-linear combination of such operators, such as f 7→
∑
µ∈R cµ

∂|µ| f
∂Xµ1

1 ···∂Xµn
n

for some
finite subset R of Nn. The corresponding generating series becomes

∑
s≥0

∑
µ∈R

cµ
∂|µ|(vXs)

∂Xµ1
1 · · · ∂Xµn

n

1
T s+1 = v

∑
µ∈R

cµ|µ|! 1
(T − X)|µ|+1

∏
1≤k≤n

tµk
k

 +
∑
µ∈R

Hµ

(T − X)|µ|
,

where each Hµ ∈ K[X1, . . . , Xn,T] has degree in T less than |µ|. Let w be the maximum of all |µ|
for µ in R. We can rewrite the above as

v w!
∑

µ∈R,|µ|=w

cµ 1
(T − X)w+1

∏
1≤k≤n

tµk
k

 +
A

(T − X)w ,

for some polynomial A ∈ K[X1, . . . , Xn,T] of degree less than w in T . Then, if we let π =∑
µ∈R, |µ|=w cµXµ1

1 · · · X
µn
n , this becomes∑

s≥0

∑
µ∈R

cµ
∂|µ|(vXs)

Xµ1
1 · · · X

µn
n

1
T s+1 = v w! π(t1, . . . , tn)

1
(T − X)w+1 +

A
(T − X)w .

Applying this formula to the sum ` =
∑

i∈S `i from Eq. (8), and taking into account the expression
in Eq. (7) for each `i, we obtain the claim in the lemma.

3.3. Computing a zero-dimensional parametrization
As a corollary, we recover the following result, that shows how to compute a zero-dimensional

parametrization of VS (see Algorithm 2). Our main usage of it will be with S = {1, . . . , κ}, in
which case VS = V , but in the last section of the paper, we will also work with strict subsets.

Lemma 3.3 ((Bostan et al., 2003, Proposition 3)). Let ` be a generic element of homK(QS,K)
and X = t1X1 + · · · + tnXn be a generic linear combination of X1, . . . , Xn. Then the output
((Q,V1, . . . ,Vn), X) of Parametrization(`, X) is a zero-dimensional parametrization of VS.

12

Algorithm 2 Parametrization(`, X)

Input:
• a linear form ` over QS
• X = t1X1 + · · · + tnXn

Output:
• polynomials ((Q,V1, . . . ,Vn), X), with Q,V1, . . . ,Vn in K[T]

1. let P be the minimal polynomial of the sequence (`(Xs))s≥0
2. let Q be the squarefree part of P
3. let C1 = Ω((`(Xs))s≥0, P)
4. for i = 1, . . . , n do

let CXi = Ω((`(XiXs))s≥0, P)
5. return ((Q,CX1/C1 mod Q, . . . ,CXn/C1 mod Q), X)

The proof in Bostan et al. (2003) is written for S = {1, . . . , κ}, but works equally as well for
the more general case; it uses a weaker form of the previous lemma, that is sufficient in this case.
We demonstrate how this algorithm works through a small example, in which we already know
the coordinates of the solutions. Let

I = 〈(X1 − 1)(X2 − 2), (X1 − 3)(X2 − 4)〉 ⊂ F101[X1, X2].

Then, V(I) = {α1,α2}, with α1 = (1, 4) and α2 = (3, 2); we take X = X1, which separates the
points of V(I). We choose the linear form

` : F101[X1, X2]/I → F101, f 7→ `(f) = 17 f (α1) + 33 f (α2);

then, S = {1, 2}, and the symbols π1 and π2 are respectively the constants 17 and 33. We have

`(Xs
1) = 17 · 1s + 33 · 3s,

`(X2Xs
1) = 17 · 4 · 1s + 33 · 2 · 3s.

We associate a generating series to each sequence:

Z1 =
∑
s≥0

`(Xs
1)

T s+1 =
17

T − 1
+

33
T − 3

=
17(T − 3) + 33(T − 1)

(T − 1)(T − 3)
,

ZX2 =
∑
s≥0

`(X2Xs
1)

T s+1 =
17 · 4
T − 1

+
33 · 2
T − 3

=
17 · 4(T − 3) + 33 · 2(T − 1)

(T − 1)(T − 3)
.

These generating series have for common denominator P = (T − 1)(T − 3), whose roots are the
coordinates of X1 in V(I); their numerators are respectively

C1 = Ω((`(Xs
1))s≥0, P) = 17(T − 3) + 33(T − 1),

CX2 = Ω((`(X2Xs
1))s≥0, P) = 17 · 4(T − 3) + 33 · 2(T − 1).

Now, let

V2 =
CX2

C1
mod P =

17 · 4(T − 3) + 33 · 2(T − 1)
17(T − 3) + 33(T − 1)

mod P = 100T + 5.

Then, V2(1) = 4 and V2(3) = 2, as expected.
13

4. The main algorithm

In this section, we extend the algorithm of (Bostan et al., 2003) to compute a zero-dimensional
parametrization of V(I), for some zero-dimensional ideal I of K[X1, . . . , Xn], by using blocking
methods. Our input is a monomial basis B = (b1, . . . , bD) of Q = K[X1, . . . , Xn]/I, together with
the multiplication matrices M1, . . . , Mn of respectively X1, . . . , Xn in this basis; for definiteness,
we suppose that the first basis element in B is b1 = 1. As above, D denotes the dimension of Q.

The first subsection presents the main algorithm. Its main feature is that after we compute
the Krylov sequence used to find a minimal matrix generator, we recover all entries of the output
for a minor cost, without computing another Krylov sequence. We make no assumption on I
(radicality, shape position, . . .), except of course that it has dimension zero; however, we assume
(as in the previous subsection) that the characteristic of K is greater than D.

Then, in the second subsection we present a simple example, and in the third we show exper-
imental results of an implementation based on the C++ libraries Eigen, LinBox and NTL.

4.1. Description, correctness and cost analysis
We mentioned that the method of Steel (2015) already uses the block Wiedemann algorithm

to compute the minimal polynomial P of X = t1X1 + · · · + tnXn; given sufficiently many terms
of the sequence (UT MsV), this is done by means of polynomial lattice reduction. Knowing the
roots of P in K, that algorithm uses an “evaluation” method for the rest (several Gröbner basis
computations, all with one variable less).

Our algorithm (Algorithm 3) computes the whole zero-dimensional parametrization of V(I)
for essentially the same cost as the computation of the minimal polynomial. Hereafter, ε1 denotes
the size-D column vector whose only nonzero entry is a 1 at the first index: ε1 = [1 0 · · · 0]T.

Algorithm 3 BlockParametrization(M1, . . . , Mn,U,V, X)
Input:
• M1, . . . , Mn multiplication matrices defined as above
• U,V ∈ KD×m, for some block dimension m ∈ {1, . . . ,D}
• X = t1X1 + · · · + tnXn

Output:
• polynomials ((Q,V1, . . . ,Vn), X), with Q,V1, . . . ,Vn in K[T]

1. let M = t1 M1 + · · · + tn Mn

2. compute Ls = UT Ms for s = 0, . . . , 2d − 1, with d = dD/me
3. compute Fs,U,V = LsV for s = 0, . . . , 2d − 1
4. compute a minimal matrix generator PU,V of (Fs,U,V)0≤s<2d

5. let P be the largest invariant factor of PU,V

6. let Q be the squarefree part of P
7. let a1 = [P 0 · · · 0](PU,V)−1

8. let C1 = ScalarNumerator(PU,V , P, ε1, 1, a1, (Ls)0≤s<d)
9. for i = 1, . . . , n do

let CXi = ScalarNumerator(PU,V , P, Miε1, 1, a1, (Ls)0≤s<d)
10. return ((Q,CX1/C1 mod Q, . . . ,CXn/C1 mod Q), X)

We first prove correctness of the algorithm, for generic choices of t1, . . . , tn, U and V. The
first step computes the multiplication matrix M = t1 M1+· · ·+tn Mn of X = t1X1+· · ·+tnXn. Then,

14

we compute the first 2d terms of the sequence FU,V = (UT MsV)s≥0. As discussed in Section 2.3,
Theorem 2.7 shows that the matrix polynomial PU,V is indeed a minimal left generator of the
sequence FU,V , that P is the minimal polynomial of X and Q its squarefree part.

We find the rest of the polynomials in the output by following Algorithm 2. In particular, the
scalar numerators needed in this algorithm are computed using Algorithm 1 (ScalarNumerator);
indeed, applying Lemma 2.9, we see that calling this algorithm at Steps 8 and 9 computes

C1 = Ω((ui Msε1)s≥0, P) and CXi = Ω((u1 Ms Miε1)s≥0, P), i = 1, . . . , n.

Let ` : Q → K be the linear form f =
∑D

i=1 fibi 7→
∑

1≤i≤D fiui,1, where ui,1 is the entry at
position (i, 1) in U. The two polynomials above can be rewritten as

C1 = Ω((`(Xs))s≥0, P) and CXi = Ω((`(XiXs))s≥0, P),

so they coincide with the polynomials in Algorithm 2. Thus, by Lemma 3.3, for generic U and
X the output of BlockParametrization is indeed a zero-dimensional parametrization of V(I).
Remark 4.1. As already pointed out in Section 2.4, the algorithm is written assuming that mem-
ory usage is not a limiting factor (this makes it slightly easier to write the pseudo-code). As
described here, the algorithm stores Θ(D2) field elements in the sequence Ls computed at Step 2,
since they are re-used at Steps 8 and 9. We may instead discard each matrix Ls after it is used,
by computing on the fly the column vectors needed for Steps 8 and 9.

If the multiplication matrices are dense, little is gained this way (in the worst case, they use
themselves nD2 field elements), but savings can be substantial if these matrices are sparse.

For the cost analysis, we focus on a sparse model: we let ρ ∈ [0, 1] denote the density of M
and the Mi’s, that is, all these matrices have at most ρD2 nonzero entries. As a result, a matrix-
vector product by M can be done in O(ρD2) operations in K. In particular, the cost incurred at
Step 1 to compute M is O(ρnD2).

In this context, the main purpose of Coppersmith’s blocking strategy is to allow for easy
parallelization. Computing the matrices Ls = UT Ms, for s = 0, . . . , 2d−1, is the bottleneck of the
algorithm but can be parallelized. This is done by working row-wise, computing independently
the sequences (`i,s)0≤s<2d of the ith rows of (Ls)0≤s<2d as `i,0 = ui and `i,s+1 = `i,s M for all i, s,
where ui is the ith row of UT. For a fixed i ∈ {1, . . . ,m}, computing (`i,s)0≤i<2d costs O(dρD2) =

O(ρD3/m) field operations. If we are able to compute in parallel m vector-matrix products at
once, the span of Step 2 is thus O(ρD3/m), whereas the total work is O(ρD3).

At Step 3, we can then compute Fs,U,V = UT MsV, for s = 0, . . . , 2d − 1 by the product

UT

UT M
UT M2

...
UT M2d−1

V =

UTV
UT MV
UT M2V

...
UT M2d−1V

of size O(D) × D by D × m; since m ≤ D, this costs O(mω−2D2) base field operations.

Recall from Section 2.2 that we can compute a minimal matrix generator PU,V in time

O(mωM(D/m) log(D/m)) ⊆ O(mω−1M(D) log(D)),

and from Sections 2.3 and 2.4 that the largest invariant factor P and the vector a1 can be computed
in time O(mω−1M(D) log(D) log(m)). Computing Q takes time O(M(D) log(D)).

15

In Section 2.4, we saw that each call to ScalarNumerator takes O(D2 + mM(D)) operations,
for a total of O(nD2+nmM(D)); the final computations modulo Q at Step 10 take time O(nM(D)+
M(D) log(D)). Thus, altogether, assuming perfect parallelization at Step 2, the total span is

O
(
ρ

D3

m
+ mω−1M(D) log(D) log(m) + nD2 + nmM(D)

)
,

and the total work is

O
(
ρD3 + mω−1M(D) log(D) log(m) + nD2 + nmM(D)

)
.

Although one may work on parallelizing other steps than Step 2, we note that this step is simul-
taneously the most costly in theory and in practice, and the easiest to parallelize.
Remark 4.2. Our algorithm only computes the first invariant factor of PU,V , that is, of T ID −

M. A natural question is whether computing further invariant factors can be of any use in the
algorithm (or possibly can help us determine part of the structure of the algebras Qi).

We conclude this section by a discussion of “dense” versions of the algorithm (to be used
when the density ρ is close to 1). If we use a dense model for our matrices, our algorithms should
rely on dense matrix multiplication. We will see two possible approaches, which respectively
take m = 1 and m = D; we will not discuss how they parallelize, merely pointing out that one
may simply parallelize dense matrix multiplications throughout the algorithms.

Let us first discuss the modifications in the algorithm to apply if we choose m = 1. We com-
pute the row-vectors Ls, for s = 0, . . . , 2D − 1, using the square-and-multiply technique from
(Keller-Gehrig, 1985), for O(Dω log(D)) operations in K. For generic choices of U and V, a min-
imal matrix generator PU,V is equal to the minimum polynomial P of M, and can be computed
efficiently by the Berlekamp-Massey algorithm; besides, a1 = P(PU,V)−1 = 1. Computing the
scalar numerators is simply a power series multiplication in degree at most D. Altogether, the
runtime is O(Dω log(D) + nD2), where the second term gives the cost of computing M.

When m = D, U,V ∈ KD×D are square matrices and d = D/m = 1. The canonical matrix
generator ofFU,V = (UTV,UT MV, . . .) is PU,V = T ID−UT MU−T and its largest invariant factor
P and a1 can be computed in O(Dω log(D)) operations in K using high-order lifting.

The numerator Ω(UT Mε1, PU,V) is then seen to be UTε1, that is, the first column of UT; we
recover C1 from it through a dot product with a1. Similarly, the numerator Ω(UT MMiε1, PU,mV)
is UT Miε1, and gives us CXi . Altogether, the runtime is again O(Dω log(D) + nD2), where the
second term now gives the cost of computing M, as well as C1 and all CXi .

4.2. Example
We give an example of our algorithm with a non-radical system as input. Let

I =

〈 X3
1 + 88X2

1 + 56X1 + 21,
X2

1 X2 + 91X2
1 + 92X1X2 + 90X1 + 20X2 + 2,

X1X2
2 + 81X1X2 + 100X1 + 96X2

2 + 100X2 + 5,
X2

1 X2 + 81X2
1 + 93X1X2 + 59X1 + 16X2 + 84,

X1X2
2 + 71X1X2 + 99X1 + 97X2

2 + 19X2 + 8,
X3

2 + 61X2
2 + 96X2 + 20

〉
⊂ F101[X1, X2];

the corresponding residue class ring Q = F101[X1, X2]/I has dimension D = 4. Although it is
not obvious from the generators, the ideal I is simply m2

1m2, where m1 = 〈X1 − 4, X2 − 10〉 and
m2 = 〈X1 − 5, X2 − 20〉 (this immediately implies that D = 3 + 1 = 4).

16

We choose X = 2X1 + 53X2, so that the multiplication matrices of X1, X2 and X in the basis
B = (1, X1, X2, X2

2) of Q are respectively

M1 =

7 91 100 0

41 2 20 0
100 10 8 1

1 71 86 0

 , M2 =

40 1 91 0
5 0 2 1
0 0 10 0

81 0 71 0

 , and M =

13 33 74 0
44 4 45 53
99 20 41 2
53 41 97 0

 .
We choose m = 2 and take U,V ∈ FD×m

101 with entries

U =

84 38
29 58
80 43
7 82

 , V =

6 97

83 58
0 95

59 89

 .
We compute the first 2d = 2dD/me = 4 terms in the matrix sequence FU,V = (UT MsV)s≥0 and
its minimum matrix generator PU,V . This is done by first computing

UT =

[
84 29 80 7
38 58 43 82

]
, UT M =

[
54 28 67 81
34 52 90 29

]
, (10)

UT M2 =

[
33 91 3 2
47 77 47 7

]
, UT M3 =

[
89 80 87 82
34 56 55 34

]
,

from which we get, by right-multiplication by V,

FU,V =

[
92 75
83 51

]
,

[
54 34
70 73

]
,

[
92 54
16 74

]
,

[
94 51
91 51

]
, . . .

and then we obtain the minimal matrix generator

PU,V =

[
T 2 + 60T + 62 88T + 25

100T + 33 T 2 + 84T + 78

]
.

The largest invariant factor of PU,V is P = T 3 + 76T 2 + 100T + 7, with squarefree part Q =

T 2 +8T +61. Next, we compute the row vector a1 = [T +16, 13] by solving a1 = [P 0](PU,V)−1,
and the matrix numerator

Ω((UT Msε1)s≥0, PU,V) =

[
84T + 55
38T + 11

]
which is made from the entries of nonnegative degree in the product

PU,V

([
84
38

]
·

1
T

+

[
54
34

]
·

1
T 2 + · · ·

)
,

where the columns are the first columns of the matrices in Eq. (10) (as per Eq. (4), we only need
d = 2 terms in the right-hand side). From this, we find the scalar numerator

C1 = Ω((u1 Msε1)s≥0, P) = 84T 2 + 75T + 13
17

by means of the dot product [C1] = a1 ·Ω((UT Msε1)s≥0, PU,V).
We then find CX1 = 88T 2 + 47T + 16, by proceeding similarly: we find the matrix numerator

Ω((u1 Ms M1ε1)s≥0, PU,V) =

[
88T + 19
57T + 40

]
and we take the dot product with a1. Thus, we obtain the polynomial V1 = CX1/C1 mod Q =

15T + 14. We compute V2 = 49T + 9 in the same way, and our output is

((T 2 + 8T + 61, 15T + 14, 49T + 9), 2X1 + 53X2).

As a sanity check, we recall that V(I) has two points in F2
101, namely (4, 10) and (5, 20); ac-

cordingly, Q has two roots in F101, 33 and 60, and we have (V1(33) = 4,V2(33) = 10) and
(V1(60) = 5,V2(60) = 20), as expected.

4.3. Experimental results

In Table 1, we give the timings in seconds for different values of m for Algorithm 3. Our
implementation is based on Shoup’s NTL for univariate polynomials, LinBox for dense polyno-
mial matrices and matrix generator computations, and Eigen for sparse matrix-vector products.
It is dedicated to small prime fields; thus, as is done in (The FFLAS-FFPACK Group, 2019) for
dense matrices, we use machine floats to do the bulk of the calculations. Explicitly, we rely on
Eigen’s SparseMatrix<double, RowMajor> class to store our multiplication matrices and do
the matrix-vector products, reducing the results modulo p afterwards.

All timings are measured on an Intel Xeon CPU E5-2667 with 128GB RAM and 8 cores (or
16 via hyperthreading). For each value of m in {1, 3, 6}, we create and run m threads in parallel.

In all cases, we start from multiplication matrices computed from a degrevlex Gröbner basis
in Magma (Bosma et al., 1997). The timings reported here do not include this precomputation;
instead, we refer the reader to (Faugère and Mou, 2017) for extensive experiments comparing
the runtime of two similar algorithmic stages (degree basis computation and conversion to a lex
ordering). Rather than optimizing our implementation, our main focus here was to demonstrate
the effects of parallelization, and how the Krylov sequence computation dominates the runtime
in these examples. In particular, improvements are possible for polynomial matrix computations
(minimal matrix generator, largest invariant factor, . . .), but this is by no means a bottleneck here.

All our inputs as well as our source code are available at https://github.com/vneiger/
block-sparse-fglm. Some systems are well-known (Katsura or Eco from (Morgan, 1988)),
while we also consider families of randomly generated inputs (some are inspired from (Faugère
and Mou, 2017)). Systems rand1-i have 3 variables and randomly generated equations (of degree
depending on i), and rand2-i are similar with 4 variables. These systems are generically radical
and in shape position (for the projection on the first coordinate axis; the last column uses that
convention). Systems mixed1-i and mixed2-i have similar numbers of variables as the previous
ones, but some of their solutions are multiple, so the ideals are not radical (and not in shape
position). Systems mixed3-i have only one multiple root (the others are simple), in increasing
numbers of variables; they are not in shape position. Systems W1-κ-n-p are determinantal equa-
tions that describe the computation of critical points for the projection (α1, . . . , αn) 7→ α1 on
V(f1, . . . , fp), where f1, . . . , fp are p equations of degree κ in n variables.

We used OpenMP parallel for pragmas to parallelize the computation of the Krylov se-
quence, as described in Section 4.1. In the columns m = 1, m = 3, m = 6, the numbers in brackets

18

https://github.com/vneiger/block-sparse-fglm
https://github.com/vneiger/block-sparse-fglm

indicate the fraction of the total time spent in computing the Krylov sequence (UT Ms)0≤s<2d, with
d = dD/me. This is always by far the dominant factor. In other words, almost all the time is spent
doing sparse matrix-vector products for matrices with machine float entries.

Increasing m has two effects. On the plus side, it decreases the length of the Krylov sequence.
On the other side, while the algorithm performs better by a factor often close to 3 for m = 3, the
gain is not as significant for m = 6, so that parallelization is less effective. It is an interesting
question to clarify this issue. Besides, increasing m also increases the time to compute the output
polynomials, through minimal generator computation, high-order lifting, However, from the
observed speedup and the ratios in the table, we can conclude that this effect is minor.

Table 1: Timings (in seconds) for polynomials over F65537

name n D density ρ m = 1 m = 3 m = 6 radical/shape
rand1-26 3 17576 0.06 692(0.98) 307(0.969) 168(0.926) yes/yes
rand1-28 3 21952 0.05 1261(0.983) 471(0.971) 331(0.944) yes/yes
rand1-30 3 27000 0.05 2191(0.986) 786(0.974) 512(0.946) yes/yes
rand2-10 4 10000 0.14 301(0.981) 109(0.964) 79(0.934) yes/yes
rand2-11 4 14641 0.13 851(0.987) 303(0.975) 239(0.961) yes/yes
rand2-12 4 20736 0.12 2180(0.99) 784(0.982) 648(0.972) yes/yes

mixed1-22 3 10864 0.07 207(0.973) 75(0.947) 58(0.909) no/no
mixed1-23 3 12383 0.07 294(0.976) 107(0.95) 92(0.925) no/no
mixed1-24 3 14040 0.07 413(0.979) 150(0.958) 125(0.934) no/no
mixed2-10 4 10256 0.16 362(0.984) 130(0.969) 113(0.954) no/no
mixed2-11 4 14897 0.14 989(0.988) 384(0.98) 278(0.965) no/no
mixed2-12 4 20992 0.13 2480(0.991) 892(0.984) 807(0.977) no/no
mixed3-12 12 4109 0.5 75(0.963) 27(0.941) 21(0.929) no/no
mixed3-13 13 8206 0.48 554(0.982) 198(0.973) 171(0.968) no/no

eco12 12 1024 0.55 1(0.801) 1(0.641) 1(0.63) yes/yes
sot1 5 8694 0.01 21(0.745) 9(0.62) 9(0.552) yes/no

W1-6-5-2 5 18000 0.2 2362(0.992) 859(0.986) 696(0.979) yes/yes
W1-4-6-2 6 6480 0.32 184(0.981) 66(0.965) 54(0.951) yes/yes
katsura10 11 1024 0.63 1(0.836) 1(0.679) 1(0.672) yes/yes

We refer the reader to experiments with systems of comparable (or higher) degrees presented
in (Faugère and Mou, 2017) (the algorithm in that reference does not use a blocking strategy).
Recall that the output in (Faugère and Mou, 2017) is somewhat stronger than here (the authors
compute a Gröbner basis of the input ideal, so multiplicities are preserved). On the other hand,
for ideals not in shape position, Table 2 of that reference reports only the calculation of the last
polynomial in the Gröbner basis, whereas our algorithm makes no distinction between ideals in
shape position or not.

5. Using the original coordinates

In this last section, we propose a refinement of the algorithm given previously; the main new
feature is that we focus on avoiding or reducing the use of a generic linear form X = t1X1 +

· · · + tnXn. Indeed, such a linear combination is likely to result in a multiplication matrix M =

t1 M1+· · ·+tn Mn significantly less sparse than M1, . . . , Mn. In all this section, we will work under
19

the assumption that M1 is the sparsest matrix among M1, . . . , Mn, and try to rely on computations
involving M1 as much as possible.

All notation, such as I, Q = K[X1, . . . , Xn]/I, its basis B = (b1, . . . , bD), the local algebras
Qi, . . . , are as in the previous two sections. In particular, we write V = V(I) = {α1, . . . ,ακ}, with
αi = (αi,1, . . . , αi,n) ∈ Kn for all i.

5.1. Overview

The algorithm decomposes V into two parts: for the first part, we will be able to use X1
as a linear form in our zero-dimensional parametrization; for the remaining points, we will use
a random linear form X = t1X1 + · · · + tnXn as above. Throughout, we rely on the following
operations: evaluations of linear forms on successive powers of a given element in Q (such as
1, X1, X2

2 , . . . or 1, X, X2, . . .), linear algebra over univariate polynomials, and some operations
on univariate polynomials related to the so-called power projection (Shoup, 1994, 1999).

The main algorithm is as follows. For the moment, we only describe its main structure; the
subroutines are detailed in the next subsections.

Algorithm 4 BlockParametrizationWithSplitting(M1, . . . , Mn,U,V, X,Y)
Input:
• M1, . . . , Mn defined as above
• U,V ∈ KD×m, for some block dimension m ∈ {1, . . . ,D}
• X = t1X1 + · · · + tnXn

• Y = y2X2 + · · · + ynXn

Output:
• polynomials ((Q,V1, . . . ,Vn), X), with Q,V1, . . . ,Vn in K[T]

1. let (F,G1, . . . ,Gn, X1) = BlockParametrizationX1(M1, . . . , Mn,U,V,Y)
2. let (∆s), (∆′s), (∆

′′
s) be correction matrices associated to the previous calculation

3. let (R,W1, . . . ,Wn, X) = BlockParametrizationResidual(M1, . . . , Mn,U,V,
(∆s), (∆′s), (∆

′′
s), X)

4. let ((Q,V1, . . . ,Vn), X) = Union(((F,G1, . . . ,Gn), X1), ((R,W1, . . . ,Wn), X))
5. return ((Q,V1, . . . ,Vn), X)

The call to BlockParametrizationX1 computes a zero-dimensional parametrization of a sub-
set V ′ of V such that X1 separates the points of V ′ (that is, takes pairwise distinct values on the
points of V ′); this is done by using sequences of the form (UT Ms

1V)s≥0. The next step finds three
sequences of correction matrices, using objects computed in the call to BlockParametrizationX1.

We then apply a modified version of Algorithm BlockParametrization, which we call Block
ParametrizationResidual. It computes a zero-dimensional parametrization of V ′′ = V \V ′ using
sequences such as (UT MsV)s≥0 − ∆s, where M = t1 M1 + · · · + tn Mn. Subtracting the correction
terms ∆s has the effect of removing from V the points in V ′; in those cases where V ′ is a large
subset of V , then V ′′ = V \ V ′ contains a few points, and few values for the latter sequences
will be needed. The last step involves changing coordinates in ((F,G1, . . . ,Gn), X1) to use X
as a linear form instead, and performing the union of the two components V ′ and V ′′. These
operations can be done in time O(nD(ω+1)/2) (Poteaux and Schost, 2013, Lemmas 2 & 3); we will
not discuss them further.

20

5.2. Describing the subset V ′ of V

In this paragraph, we give the details of Algorithm BlockParametrizationX1. This is done by
specializing the discussion of Section 3.2 to the case X = X1: in the notation of that section, we
take S = {1, . . . , κ}, that is, VS = V , and we let r1, . . . , rc be the pairwise distinct values taken
by X1 on V , for some c ≤ κ. For j = 1, . . . , c, we write T j for the set of all indices i in {1, . . . , κ}
such that αi,1 = r j; the sets T1, . . . ,Tc form a partition of {1, . . . , κ}. When T j has cardinality 1,
we denote it as T j = {σ j}, for some index σ j in {1, . . . , κ}, so that ασ j,1 = r j.

For i = 1, . . . , κ, let us write νi for the degree of the minimal polynomial of X1 in Qi; thus,
this polynomial is (T − αi,1)νi . For j in {1, . . . , c}, we define µ j as the maximum of all νi, for
i in T j. As a result, the minimal polynomial of X1 in

∏
j∈T j

Q j is (T − r j)µ j , and the minimal
polynomial of X1 in Q is M =

∏
j∈{1,...,c}(T − r j)µ j .

Recall that for any linear form ` : Q → K, the extension ` : Q ⊗K K → K can be written
uniquely as ` =

∑
i∈{1,...,κ} `i, with `i : Qi → K; collecting terms, ` may also be written as

` =
∑

j∈{1,...,c} λ j, with λ j =
∑

i∈T j
`i. Given such an `, we first explain how to compute values of

the form λ j(1). We will do this for some values of j only, namely those j for which µ j = 1.

Lemma 5.1. Let ` be in homK(Q,K) and let M be the minimal polynomial of X1 in Q. Then,
the polynomial Ω((`(Xs

1))s≥0,M) is well-defined and satisfies

Ω((`(Xs
1))s≥0,M)(r j) = λ j(1)M′(r j) for all j in {1, . . . , c} such that µ j = 1.

Proof. Let e be the set of all indices j in {1, . . . , c} such that µ j = 1, and let f = {1, . . . , c} − e; this
definition allows us to split the generating series of sequence (`(Xs

1))s≥0 as

∑
s≥0

`(Xs
1)

T s+1 =
∑

j∈{1,...,c}

∑
i∈T j

∑
s≥0

`i(Xs
1)

T s+1 =
∑
j∈e

∑
i∈T j

∑
s≥0

`i(Xs
1)

T s+1 +
∑
j∈f

∑
i∈T j

∑
s≥0

`i(Xs
1)

T s+1 .

Using Lemma 3.2 with X = X1 and v = 1, any sum
∑

s≥0 `i(Xs
1)/T s+1 in the second summand can

be rewritten as Ei/(T − r j)vi , for some integer vi, and for some polynomial Ei ∈ K[T] of degree
less than v j. Next, take j in e. Since µ j = 1, νi = 1 for all i in T j, so that each `i takes the form
`i : f 7→ (Λi(f))(αi), for a differential operator Λi that does not involve ∂/∂X1. Since all terms
of positive order in Λi involve one of ∂/∂X2, . . . , ∂/∂Xn, they cancel Xs

1 for s ≥ 0. Thus, `i(Xs
1)

can be rewritten as `i,1α
s
i,1, for some constant `i,1, and the generating series of these terms is

`i,1

T − αi,1
=

`i,1

T − r j
.

Remarking that we can write `i,1 = `i(1), altogether, the sum in question can be written

∑
s≥0

`(Xs
1)

T s+1 =
∑
j∈e

∑
i∈T j

`i(1)

T − r j
+

∑
j∈f

D j

(T − r j)x j
=

∑
j∈e

λ j(1)
T − r j

+
∑
j∈f

D j

(T − r j)x j

for some integers {x j | j ∈ f} and polynomials {D j | j ∈ f} such that deg(D j) < x j holds,
and with D j and T − r j coprime. In particular, the minimal polynomial of (`(Xs

1))s≥0 is N =∏
j∈e(T − r j)

∏
j∈f(T − r j)x j .

21

The polynomial N divides M, so that x j ≤ µ j holds for all j in f. As a result, Ω((`(Xs
1))s≥0,M)

is well-defined and is given by

Ω((`(Xs
1))s≥0,M) =

∑
j∈e

(
λ j(1)

∏
ι∈e−{ j}

(T − rι)
)(∏

j∈f

(T − r j)µ j
)

+
∑
j∈f

(
(T − r j)µ j−x j D j

∏
ι∈f−{ j}

(T − r j)µι
)(∏

j∈e

(T − r j)
)
.

This implies that

Ω((`(Xs
1))s≥0,M)(rk) = λk(1)

∏
ι∈e−{k}

(rk − rι)
∏
j∈f

(rk − r j)µ j = λk(1)M′(rk)

holds for all k in e.

We now show how this result allows us to use sequences of the form (`(Xs
1))s≥0 to compute

a zero-dimensional parametrization of a subset V ′ of V . Precisely, we characterize the set V ′ as
follows: for i in {1, . . . , κ}, αi is in V ′ if and only if:
• for i′ in {1, . . . , κ}, with i′ , i, αi′,1 , αi,1;
• Qi is a reduced algebra, or equivalently, Ii is radical (see Section 3.1 for the notation Qi, Ii).

We denote by A ⊂ {1, . . . , κ} the set of corresponding indices i, and we let B = {1, . . . , κ} \ A, so
that we have V ′ = VA and V ′′ = VB. Remark that X1 separates the points of V ′.

Correspondingly, we define a as the set of all indices j in {1, . . . , c} such that σ j is in A. In
other words, j is in a if and only if T j has cardinality 1, so that T j = {σ j}, and Qσ j is reduced.
The algorithm in this paragraph will compute a zero-dimensional parametrization of VA; we will
use the following lemma to perform the decomposition.

Lemma 5.2. Let j be in {1, . . . , c} such that µ j = 1, let λ be a linear form over
∏

i∈T j
Qi and let

Y = y2X2 + · · · + ynXn, for some y2, . . . , yn in K. Define constants a = λ(1), b = λ(Y), c = λ(Y2)
in K. Then, j is in a if and only if, for a generic choice of λ and Y, ac = b2.

Proof. The assumption that µ j = 1 means that for all i in T j, νi = 1. The linear form λ can be
uniquely written as a sum λ =

∑
i∈T j

`i, where each `i is in homK(Qi,K). The fact that all νi are
equal to 1 then implies that each `i takes the form

`i : f 7→ (Λi(f))(αi),

where Λi is a differential operator that does not involve ∂/∂X1. Thus, as in Eq. (7), we can write
a general Λi of this form as

Λi : f 7→ ui,1 f +
∑

2≤r≤n

Pi,r(ui,2, . . . , ui,Di)
∂

∂X j
f +

∑
2≤r≤s≤n

Pi,r,s(ui,2, . . . , ui,Di)
∂2

∂X j∂Xk
f + Λ̃i(f),

where all terms in Λ̃i have order at least 3, ui = (ui,1, . . . , ui,Di) are parameters and (Pi,r)2≤r≤n and
(Pi,r,s)2≤r≤s≤n are linear forms in ui,2, . . . , ui,Di . We obtain

Λi(1) = ui,1

Λi(Y) = ui,1Y +
∑

2≤r≤n

Pi,r(ui,2, . . . , ui,Di)yr

Λi(Y2) = ui,1Y2 + 2Y
∑

2≤r≤n

Pi,r(ui,2, . . . , ui,Di)yr + 2
∑

2≤r≤s≤n

Pi,r,s(ui,2, . . . , ui,Di)yrys,

22

which gives

a =
∑
i∈T j

ui,1

b =
∑
i∈T j

ui,1Y(αi) +
∑

i∈T j,2≤r≤n

Pi,r(ui,2, . . . , ui,Di)yr

c =
∑
i∈T j

ui,1Y(αi)2 + 2
∑

i∈T j,2≤r≤n

Y(αi)Pi,r(ui,2, . . . , ui,Di)yr + 2
∑

i∈T j,2≤r≤s≤n

Pi,r,s(ui,2, . . . , ui,Di)yrys.

Suppose first that j is in a. Then, T j = {σ j}, so we have only one term Λσ j to consider, and Qσ j

is reduced, so that all coefficients Pσ j,r and Pσ j,r,s vanish. Thus, we are left in this case with

a = uσ j,1, b = uσ j,1Y(ασ j), c = uσ j,1Y(ασ j)
2,

so that we have ac = b2, for any choice of λ and Y . Now, we suppose that j is not in a, and we
prove that for a generic choice of λ and Y , ac−b2 is nonzero. The quantity ac−b2 is a polynomial
in the parameters (ui)i∈T j , and (yi)i∈{2,...,n}, and we have to show that it is not identically zero. We
discuss two cases; in both of them, we prove that a suitable specialization of ac − b2 is nonzero.

Suppose first that for at least one index σ in T j, Qσ is not reduced. In this case, there exists
as least one index ρ in {2, . . . , n} such that Pσ,ρ(uσ,2, . . . , uσ,Dσ

) is not identically zero. Let us set
all uσ′ to 0, for σ′ in T j−{σ}, as well as uσ,1, and all yr for r , ρ. Then, under this specialization,
ac − b2 becomes −(Pσ,ρ(uσ,2, . . . , uσ,Dσ

)yρ)2 which is nonzero, hence ac − b2 itself is nonzero.
Else, since j is not in a, we can assume that T j has cardinality at least 2, with Qσ reduced for

all σ in T j (so that Pσ,r and Pσ,r,s vanish for all such σ and all r, s). Suppose that σ and σ′ are
two indices in T j; we set all indices uσ′′,1 to zero, for σ′′ in T j − {σ,σ

′}. We are left with

a = uσ,1 + uσ′,1, b = uσ,1Y(ασ) + uσ′,1Y(ασ′), c = uσ,1Y(ασ)2 + uσ′,1Y(ασ′)2.

Then, ac − b2 is equal to 2uσ,1uσ′,1(Y(ασ) − Y(ασ′))2, which is nonzero, since ασ , ασ′ .

The previous lemmas allow us to write Algorithm BlockParametrizationX1. After computing
M, we determine its factor F =

∏
j∈{1,...,c},µ j=1(T − r j), which is obtained by taking the squarefree

part of M and dividing it by its gcd with gcd(M,M′). We split this polynomial further using the
previous lemma in order to find

∏
j∈a(T−r j), and we conclude using the same kind of calculations

as in Algorithm BlockParametrization.

Lemma 5.3. For generic choices of U, V and Y, the output ((F,G1, . . . ,Gn), X1) of the algorithm
BlockParametrizationX1 is a zero-dimensional parametrization of VA.

Proof. As in the case of BlockParametrization, for generic choices of U and V, the degree bound
deg(PU,V) ≤ d holds and M is the minimal polynomial of X1 in Q; hence, after Step 6, we have
F =

∏
j∈{1,...,c},µ j=1(T − r j).

The calculation of A0, A1, A2 and AX2 , . . . , AXn is justified as in BlockParametrization, by
means of Lemma 2.9. For i = 1, . . . ,D, let ui,1 is the entry at position (i, 1) in U, and define the
linear form ` : Q → K by

`(f) =

D∑
i=1

fiui,1, for f =

D∑
i=1

fibi.

23

Algorithm 5 BlockParametrizationX1(M1, . . . , Mn,U,V,Y)
Input:
• multiplication matrices M1, . . . , Mn in KD×D

• U,V ∈ KD×m, for some block dimension m ∈ {1, . . . ,D}
• Y = y2X2 + · · · + ynXn

Output:
• polynomials ((F,G1, . . . ,Gn), X1), with F,G1, . . . ,Gn in K[T]

1. compute Ls = UT Ms
1 for s = 0, . . . , 2d − 1, with d = dD/me

2. compute Fs,U,V = LsV for s = 0, . . . , 2d − 1
3. compute a minimal matrix generator PU,V of (Fs,U,V)0≤s<2d

4. let M be the largest invariant factor of PU,V

5. let F be the squarefree part of M
6. let F = F/ gcd(F, gcd(M,M′))
7. let a1 = [M 0 · · · 0](PU,V)−1

8. let N = y2 M2 + · · · + yn Mn

9. for i = 0, 1, 2 do
let Ai = ScalarNumerator(PU,V ,M, Niε1, 1, a1, (Ls)0≤s<d)

10. let F = gcd(F, A0A2 − A2
1)

11. for i = 2, . . . , n do
let AXi = ScalarNumerator(PU,V ,M, Miε1, 1, a1, (Ls)0≤s<d)

12. return ((F,T, AX2/A0 mod F, . . . , AXn/A0 mod F), X1)

Then, the above lemma proves that we have Ai = Ω((`(Y iXs
1))s≥0,M) for i = 0, 1, 2 as well as

AXi = Ω((`(XiXs
1))s≥0,M) for i = 2, . . . , n.

Take then j in {1, . . . , c} such that µ j = 1, that is, a root of F as computed at Step 6. By
Lemma 5.1, for i = 0, 1, 2, we have Ai(r j) = M′(r j)(Y i · λ j)(1), where λ j =

∑
i∈T j

`i, where the
`i’s are the components of `, and where Y i · λ j is the linear form f 7→ λ j(Y i f).

As a result, the value of A0A2 − A2
1 at r j is (up to the nonzero factor M′(r j)2) equal to the

quantity ac − b2 defined in Lemma 5.2, so for a generic choice of ` (that is, of U) and Y , it
vanishes if and only if j is in a. Thus, after Step 10, F is equal to

∏
j∈a(T − r j).

The last step is to compute the zero-dimensional parametrization of VA. This is done using
again Lemma 5.1. Indeed, for j in a, T j is simply equal to {σ j}, so that we have, for i = 2, . . . , n,

A0(r j) = M′(r j)λ j(1) and AXi (r j) = M′(r j)(Xi · λ j)(1) = M′(r j)λ j(Xi),

where as above, Xi ·λ j is the linear form f 7→ λ j(Xi f). Now, since j is in a, Qσ j is reduced, so that
there exists a constant λ j,1 such that for all f in K[X1, . . . , Xn], λ j(f) takes the form λ j,1 f (ασ j).
This shows that, as claimed,

AX j (r j)
A0(r j)

=
M′(r j)λ j,1ασ j,i

M′(r j)λ j,1
= ασ j,i,

since M′(r j) is nonzero. For i = 1, since we use X1 as a separating variable for VA, we simply
insert the polynomial T into our list.

The cost analysis is the same as that of Algorithm BlockParametrization, the crucial differ-
ence being that the density ρ1 of M1 plays the role of the density ρ of M used in that algorithm.

24

5.3. Computing correction matrices
Next, we describe an operation of decomposition for linear forms Q → K; this is essentially

akin to the Chinese Remainder Theorem. We then use it to compute the sequences of correction
matrices (∆s), (∆′s), (∆

′′
s) defined in Algorithm BlockParametrizationWithSplitting.

As a preamble, we introduce the notation P(r, t) for the cost of a power projection operation,
as defined in (Shoup, 1994, 1999): given a polynomial F in K[T] of degree r, a linear form
` : K[T]/F → K, and H in K[T]/F, the goal is to compute (`(Hs))0≤s<t, for some upper bound
t. We denote this operation by PowerProjection(F,H, `, t); this is essentially the analogue for
univariate polynomials of the Krylov computations that we heavily rely on in this paper. Here, `
is represented by the vector (`(1), `(T), . . . , `(T r−1)).

Shoup (1994, Theorem 4) showed that this can be done in P(r, t) = O(r(ω−1)/2t) operations
in K for t ≤ r. For t ≥ r, we first solve the problem up to index r in time O(r(ω+1)/2); then
we use the fact that the sequence (`(Hs))s≥0 is linearly recurrent to compute all further values in
time O(tM(r)/r), as for instance in (Bostan et al., 2006, Proposition 1). Thus, for t ≥ r, we take
P(r, t) = O(r(ω+1)/2 + tM(r)/r).

Let A and B be defined as in the previous subsection, and let DA be the number of points in
VA. Since Qi is a reduced algebra for all i in A, DA is also the dimension of QA =

∏
i∈AQi and

QB =
∏

i∈BQi has dimension DB = D − DA.
Consider a linear form ` : Q → K; we still denote ` for its extension Q ⊗K K → K. It can

then be decomposed as ` = `A + `B, with `A : QA → K and `B : QB → K. Remark that the
support of `B is contained in B, and actually equal to B for a generic `.

Suppose that we are given the minimal polynomial M of X1 in Q, the numerator C =

Ω((`(Xs
1))s≥0,M), as well as the zero-dimensional parametrization ((F,G1, . . . ,Gn), X1) of VA

computed in the previous paragraph. Given X = t1X1 + · · · + tnXn, and an upper bound τ, we
show how to compute the values `A(Xs), for s = 0, . . . , τ − 1.

Let E = M/F; the division is exact and E and F are coprime, by construction. The equality
` = `A + `B implies an equality between generating series∑

s≥0

`(Xs
1)

T s+1 =
∑
s≥0

`A(Xs
1)

T s+1 +
∑
s≥0

`B(Xs
1)

T s+1 =
A
F

+
B
E
,

for some polynomials A, B in K[T], with deg(A) < deg(F) and deg(B) < deg(E). With C =

Ω((`(Xs
1))s≥0,M), we deduce the equality

C
M

=
A
F

+
B
E
,

from which we find A = C/E mod F. Knowing A and F allows us to compute the values
`A(Xs

1), for s = 0, . . . ,DA − 1, by Laurent series expansion. Since QA is reduced, we have X =

t1G1 + · · · tnGn in QA, where G1, . . . ,Gn are polynomials in the zero-dimensional parametrization
of VA. As a result, we can finally compute `A(Xs), for s = 0, . . . , τ− 1 by applying our algorithm
for univariate power projection to G = t1G1 + · · · tnGn.

Algorithm 6 (Decompose) summarizes this discussion. Its cost bound is

O(M(DA) log(DA) + P(DA, τ) + nDA)

operations in K, where the first term accounts for the cost of the first three steps, P(DA, τ) is the
cost of power projection and the term O(nDA) is the cost of computing G as defined above.

25

Algorithm 6 Decompose(M,C, ((F,G1, . . . ,Gn), X1), X, τ)
Input:
• minimal polynomial M of X1 in Q

• numerator C = Ω((`(Xs
1))s≥0,M)

• zero-dimensional parametrization ((F,G1, . . . ,Gn), X1) of VA
• X = t1X1 + · · · + tnXn

• a bound τ
Output:
• `A(Xs), for s = 0, . . . , τ − 1

1. let E = M/F
2. let A = C/E mod F
3. compute the first DA terms (v0, . . . , vDA−1) of the Laurent series A/F
4. return PowerProjection(F, t1G1 + · · · + tnGn, (v0, . . . , vDA−1), τ)

Algorithm Decompose will be used for obtaining correction matrices given as input of Al-
gorithm BlockParametrizationResidual. We assume that we have stored various quantities com-
puted in Algorithm BlockParametrizationX1: the sequence of matrices (Fs,U,V)0≤s<2d, the matrix
generator PU,V , the minimal polynomial M of X1, and the parametrization ((F,G1, . . . ,Gn), X1).

Let U and V be the blocking matrices used in BlockParametrizationX1. For i = 1, . . . ,m,
we let `i : Q → K be the linear form whose values on the basis B = (b1, . . . , bD) are given
by the i-th column of U. In other words, `i(f) =

∑D
j=1 f ju j,i, for f =

∑D
j=1 f jb j. Similarly, for

j = 1, . . . ,m, we let γ j be the element of Q whose coefficient vector on the basis B is the j-th
column of V. Hereafter, we write dB = dDB/me, in analogy with the definition of d used so far.
• To each (i, j) in {1, . . . ,m} × {1, . . . ,m} is associated a linear form `i, j : Q → K defined by
`i, j(f) = `i(γ j f) for all f in Q. Then, the entry (i, j) of the matrix sequence (UT Ms

1V)s≥0
is the scalar sequence (`i, j(Xs

1))s≥0.
For all such (i, j), since we know the minimal polynomial M of X1, we can compute the
scalar numerator Ci, j ∈ K[T] associated to `i, j and M. This is done by applying Algorithm
ScalarNumerator of Section 2.4, using the row vector ai defined in that section, together
with the sequence of matrices Fs,U,V and the matrix generator PU,V computed in Algorithm
BlockParametrizationX1.
Once Ci, j is known, we can call Decompose, which allows us to compute `i, j,A(Xs), for
s = 0, . . . , 2dB − 1. We can then construct the sequence (∆s)0≤s<2dB of matrices in Km×m

by setting the (i, j)-th entry of ∆s to be `i, j,A(Xs).

• To each (i, k) in {1, . . . ,m} × {1, . . . , n} is associated a linear form `′i,k : Q → K defined
by `′i,k(f) = `i(Xk f) for all f in Q. Then, the ith entry of the sequence of column vec-
tors (UT Ms

1 Mkε1)s≥0 is the scalar sequence (`′i,k(Xs
1))s≥0, where ε1 is the column vector

[1 0 · · · 0]T we already used several times.
Proceeding as before, we construct the sequence of m×n matrices (∆′s)0≤s<dB by setting the
(i, k)-th entry of ∆′s to be `′i,k,A(Xs). Note that we will only need dB entries in this sequence.

• Finally, we apply this process to the linear forms `i themselves; they are such that the ith
entry of the sequence of column vectors (UT Ms

1ε1)s≥0 is the scalar sequence (`i(Xs
1))s≥0.

Using again ScalarNumerator and Decompose, we construct the sequence of column
26

vectors (∆′′s)0≤s<dB by setting the i-th entry of ∆′′s to `i,A(Xs).
In terms of cost, computing the vectors ai, for i = 1, . . . ,m, uses O(mωM(D) log(D) log(m))

operations in K (see Eq. (5)). Then, the total time spent in ScalarNumerator is m(m+n+1) times
the cost reported in Section 2.4, which was O(D2 + mM(D)); similarly, the total cost incurred by
Decompose is m(m + n + 1) times the cost of a single call, which was reported above.

5.4. Describing the residual set
We finally describe Algorithm BlockParametrizationResidual. Let A and B be as in the

previous section. This part of the main algorithm computes a zero-dimensional parametrization
of the residual set VB = V \ VA. For this, we are going to call a modified version Algorithm
BlockParametrization, where we update the values of our matrix sequences before computing
the minimal matrix generator, using the correction matrices defined just above.

The resulting algorithm is as follows. A superficial difference with BlockParametrization
is that names of the main variables have been changed (so as not to create any confusion with
those used in BlockParametrizationX1). More importantly, using the correction matrices makes
it possible for us to compute fewer terms in the sequences, namely only 2dDB/me and dDB/me,
respectively. Hence, if DB � D (that is, VB contains few points, with small multiplicities), this
last stage of the algorithm will be fast.

The algorithm uses a subroutine called ScalarNumeratorCorrected at Steps 8 and 9. It
is similar to Algorithm ScalarNumerator of Section 2.4, with a minor difference: instead of
computing the vectors Dsε1, resp. Ds Miε1, at the first step of ScalarNumerator, it computes
Dsε1 − ∆′′s , resp. Ds Miε1 − ∆′s,i, where ∆′s,i is the ith column of ∆′s.

Algorithm 7 BlockParametrizationResidual(M1, . . . , Mn,U,V, (∆s), (∆′s), (∆
′′
s), X)

Input:
• M1, . . . , Mn defined as above
• U,V ∈ KD×m, for some block dimension m ∈ {1, . . . ,D}
• sequences of correction matrices (∆s), (∆′s), (∆

′′
s)

• X = t1X1 + · · · + tnXn

Output:
• polynomials ((R,W1, . . . ,Wn), X), with R,W1, . . . ,Wn in K[T]

1. let M = t1 M1 + · · · + tn Mn

2. compute Ds = UT Ms for s = 0, . . . , 2dB − 1, with dB = dDB/me
3. compute Es,U,V = DsV − ∆s for s = 0, . . . , 2dB − 1
4. compute a minimal matrix generator SU,V of (Es,U,V)0≤s<2dB

5. let S be the largest invariant factor of SU,V

6. let R be the squarefree part of S
7. let a1 = [S 0 · · · 0](SU,V)−1

8. let C1 = ScalarNumeratorCorrected(SU,V , S , ε1, 1, a1, (Ds)0≤s<dB , (∆
′′
s)0≤s<dB)

9. for i = 1, . . . , n do
let CXi = ScalarNumeratorCorrected(SU,V , S , Miε1, 1, a1, (Ds)0≤s<dB , (∆

′
s)0≤s<dB)

10. return ((R,CX1/C1 mod R, . . . ,CXn/C1 mod R), X)

Let us prove correctness. Since Q = QA ×QB, we may assume without loss of generality
that our multiplication matrices are block diagonal, with two blocks corresponding respectively

27

to bases of QA and QB; if not, apply a change of basis to reduce to this situation, updating U and
V accordingly.

We denote by MA and MB the two blocks on the diagonal of matrix M. The projection
matrices can also be divided into blocks, namely as

U =

[
UA
UB

]
and V =

[
VA
VB

]
,

and we have UT MsV = UT
A

Ms
A

VA + UT
B

Ms
B

VB for s ≥ 0. The first summand is none other than
the matrix ∆s, so that Es,U,V is equal to UT

B
Ms
B

VB. These are thus the kind of Krylov matrices we
would obtain if we were working with a basis of QB, and shows that we have enough terms to
compute a minimal matrix generator SU,V , at least for generic U and V. Similarly, S is generically
the minimal polynomial of X1 in QB, and R its squarefree part.

The same considerations justify the computation of C1 and CX1 , . . . ,CXn . Indeed, subtracting
the correction matrices implies

C1 = Ω((`1(Xs) − `1,A(Xs))s≥0, S) = Ω((`1,B(Xs))s≥0, S),
CXi = Ω((`1(XiXs) − `1,A(XiXs))s≥0, S) = Ω((`1,B(XiXs))s≥0, S) for i = 1, . . . , n.

As shown in Section 3.3, these are precisely the polynomials we need in order to compute a
zero-dimensional parametrization of VB.

The cost analysis is similar to that of Algorithm BlockParametrization, with the important
exception that the sequence length d = dD/me can then be replaced by dB = dDB/me (which is
hopefully much smaller).

5.5. Experimental results
The algorithms in this section were implemented using the same framework as in the previous

section, using in particular NTL’s built-in implementation of power projection.
In Table 2, we give the ratio of the runtime of BlockParametrizationWithSplitting to that of

our first algorithm, BlockParametrization, for each input: numbers less than 1 indicate a speed-
up. The last column shows the number of points in VA, that is, DA, compared to the total degree
of I, which is D = DA + DB. The inputs, the machine used for timings and the prime field are
the same as in Section 4.3.

The performance of BlockParametrizationWithSplitting depends on the density of M1 and
the number of points DA. For generic inputs, with no multiplicity, DA = D, so it actually will not
spend any time computing correction matrices or running BlockParametrizationResidual. On
the other hand, in the worst case, if DA = 0, so that DB = D, then Algorithm BlockParametriza-
tionWithSplitting may take more than twice as long as BlockParametrization (due to the two
calls to respectively BlockParametrizationX1 and BlockParametrizationResidual, together with
the overhead induced by power projection).

This unlucky case was seldom seen in our experiments, since the systems with multiplicities
generated randomly had few multiple points, and thus were favorable to us. An unfavorable case
is system “sot1”, where VA only accounts for 1012 points out of 7682 points in the variety.

Appendix

In this appendix, we prove Theorem 2.6 from Section 2.2: Let F = (Fs)s≥0 be a linearly re-
current sequence of matrices in Km×m and let d = d`+dr +1, where (d`, dr) ∈ N2 are such that the

28

Table 2: Comparison of BlockParametrizationWithSplitting and BlockParametrization
name n D m = 1 m = 3 m = 6 DA/D

rand1-26 3 17576 0.453 0.384 0.65 17576/17576
rand1-28 3 21952 0.438 0.435 0.562 21952/21952
rand1-30 3 27000 0.429 0.577 0.608 27000/27000
rand2-10 4 10000 0.437 0.462 0.49 10000/10000
rand2-11 4 14641 0.423 0.566 0.435 14641/14641
rand2-12 4 20736 0.431 0.437 0.399 20736/20736

mixed1-22 3 10864 0.49 0.568 0.791 10648/10675
mixed1-23 3 12383 0.477 0.546 0.655 12167/12194
mixed1-24 3 14040 0.463 0.514 0.613 13824/13851
mixed2-10 4 10256 0.43 0.482 0.626 10000/10016
mixed2-11 4 14897 0.414 0.408 0.521 14641/14657
mixed2-12 4 20992 0.416 0.438 0.416 20736/20752
mixed3-12 12 4109 0.453 0.513 0.664 4096/4097
mixed3-13 13 8206 0.435 0.454 0.471 8192/8193

eco12 12 1024 0.446 0.572 0.602 1024/1024
sot1 5 8694 1.31 1.84 2.37 1012/8694

W1-6-5-2 5 18000 0.462 0.471 0.472 18000/18000
W1-4-6-2 6 6480 0.452 0.474 0.57 6480/6480
katsura10 11 1024 0.557 0.661 0.652 1024/1024

minimal left (resp. right) matrix generators of F have degree at most d` (resp. at most dr). Then,
given F0, . . . , Fd−1, one can compute a minimal left matrix generator of F in O(mωM(d) log(d))
operations in K. The first lemma we need is similar to (Turner, 2002, Theorem 4.5).

Lemma 5.4. Let F = (Fs)s≥0 be a linearly recurrent sequence of matrices in Km×m and let
dr ∈ N be such that minimal right matrix generators of F have degree at most dr. Then, a vector
p = p0 + · · · + pdT d ∈ K[T]1×m is a left relation for F if and only if p0Fs + · · · + pd Fs+d = 0
holds for s ∈ {0, . . . , dr − 1}.

Proof. In this proof, for a u × v polynomial matrix Q, we denote by cdeg(Q) the size-v vector
of the degrees of the columns of Q. Consider a minimal right generator P ∈ K[T]m×m in Popov
form (as defined e.g. in (Kailath, 1980)). Then, we have P = L Diag(T t1 , . . . ,T tm) − Q, where
cdeg(Q) < cdeg(P) = (t1, . . . , tm) termwise and L ∈ Km×m is unit upper triangular. Define the
matrix U = Diag(T dr−t1 , . . . ,T dr−tm)L−1, which is in K[T]m×m since dr ≥ deg(P) = max j t j.
Then, the columns of the right multiple PU = T dr Im −QU are right relations for F , and we have
deg(QU) < dr. Thus, writing QU =

∑
0≤k<dr

QkT k, we have Fs+dr =
∑

0≤k<dr
Fs+kQk for all s ≥ 0.

Assuming that p0Fs + · · ·+ pd Fs+d = 0 holds for all s ∈ {0, . . . , dr−1}, we prove by induction
that this holds for all s ∈ N. Let s ≥ dr − 1 and assume that this identity holds for all integers up
to s. Then, the identity concluding the previous paragraph implies that∑

0≤k≤d

pk Fs+1+k =
∑

0≤k≤d

pk

 ∑
0≤ j<dr

Fs+1+k−dr+ jQ j

 =
∑

0≤ j<dr

 ∑
0≤k≤d

pk Fs+1−dr+ j+k

︸ ︷︷ ︸
= 0 since s+1−dr+ j≤s

Q j = 0,

and the proof is complete.
29

The next result is similar to (Turner, 2002, Theorem 4.6) (see also Theorems 4.7 to 4.10 in
that reference). We recall from (Van Barel and Bultheel, 1992; Beckermann and Labahn, 1994)
that, given a matrix F ∈ K[T]m×m and an integer d ∈ N, the set of approximants for F at order d
is defined as

A(F, d) = {p ∈ K[T]1×m | pF = 0 mod T d}.

Then, the next theorem shows that relations forF can be retrieved as subvectors of approximants
at order about d` + dr for a matrix involving the first d` + dr entries of F .

Theorem 5.5. Let F = (Fs)s≥0 be a linearly recurrent sequence of matrices in Km×m and let
(d`, dr) ∈ N2 be such that the minimal left (resp. right) matrix generator of F have degree at
most d` (resp. at most dr). For d > 0, define

F =

[∑
0≤s<d FsT d−s−1

−Im

]
∈ K[T](m+m)×m.

Suppose that d ≥ dr + 1 and let B ∈ K[T](m+m)×(m+m) be a basis of A(F, d` + dr + 1). Then,
if B is row reduced, it has exactly m rows of degree ≤ d`, and they form a submatrix [P R] ∈
K[T]m×(m+m) of B such that P is a minimal matrix generator for F .

Proof. We first observe that for any relation p ∈ K[T]1×m for F , there exists r ∈ K[T]1×m′

such that deg(r) < deg(p) and [p r] ∈ A(F, d). Indeed, if p is a relation for F then q = pZ
has polynomial entries, where Z =

∑
s≥0 FsT−s−1. Then the vector r = −p(

∑
s≥d FsT d−s−1) has

polynomial entries, has degree less than deg(p), and is such that [p r]F = qT d.
Conversely, we show that for any vectors p ∈ K[T]1×m and r ∈ K[T]1×m′ , if [p r] ∈ A(F, d)

and deg([p r]) ≤ d − dr − 1, then p is a relation for F . Indeed, if [p r] ∈ A(F, d) we have
p(

∑
0≤s<d FsT d−s−1) = r mod T d. Since d ≥ dr + 1 and deg([p r]) ≤ d − dr − 1, this implies

that the coefficients of degree d − dr to d − 1 of p(
∑

0≤s<d FsT d−s−1) are zero. Then, Lemma 5.4
shows that p is a relation for F . The theorem follows.

Using the fast approximant basis algorithm of (Giorgi et al., 2003), this implies Theorem 2.6.

References

Alonso, M.E., Becker, E., Roy, M.F., Wörmann, T., 1996. Zeroes, multiplicities and idempotents for zero-dimensional
systems, in: MEGA’94, Birkhäuser. pp. 1–15.

Bardet, M., Faugère, J.C., Salvy, B., 2015. On the complexity of the F5 Gröbner basis algorithm. J. Symbolic Comput.
70, 49–70.

Becker, E., Mora, T., Marinari, M., Traverso, C., 1994. The shape of the Shape Lemma, in: ISSAC’94, ACM. pp.
129–133.

Becker, E., Wörmann, T., 1996. Radical computations of zero-dimensional ideals and real root counting. Mathematics
and Computers in Simulation 42, 561–569.

Beckermann, B., Labahn, G., 1994. A uniform approach for the fast computation of matrix-type Padé approximants.
SIAM J. Matrix Anal. Appl. 15, 804–823.

Bosma, W., Cannon, J., Playoust, C., 1997. The Magma algebra system. I. The user language. J. Symbolic Comput. 24,
235–265.

Bostan, A., Flajolet, P., Salvy, B., Schost, É., 2006. Fast computation of special resultants. J. Symbolic Comput. 41,
1–29.

Bostan, A., Salvy, B., Schost, É., 2003. Fast algorithms for zero-dimensional polynomial systems using duality. Appl.
Algebra Engrg. Comm. Comput. 14, 239–272.

Brent, R.P., Gustavson, F.G., Yun, D.Y.Y., 1980. Fast solution of Toeplitz systems of equations and computation of Padé
approximants. Journal of Algorithms 1, 259–295.

30

Coppersmith, D., 1994. Solving homogeneous linear equations over GF(2) via block Wiedemann algorithm. Math.
Comp. 62, 333–350.

Faugère, J.C., 2002. A new efficient algorithm for computing Gröbner bases without reductions to zero (F5), in: IS-
SAC’02, ACM. pp. 75–83.

Faugère, J.C., Gaudry, P., Huot, L., Renault, G., 2013. Polynomial systems solving by fast linear algebra. https:

//hal.archives-ouvertes.fr/hal-00816724.
Faugère, J.C., Gaudry, P., Huot, L., Renault, G., 2014. Sub-cubic change of ordering for Gröbner basis: a probabilistic

approach, in: ISSAC’14, ACM. pp. 170–177.
Faugère, J.C., Gianni, P., Lazard, D., Mora, T., 1993. Efficient computation of zero-dimensional Gröbner bases by change

of ordering. J. Symbolic Comput. 16, 329–344.
Faugère, J.C., Mou, C., 2017. Sparse FGLM algorithms. J. Symbolic Comput. 80, 538–569.
Faugère, J.C., Safey El Din, M., Spaenlehauer, P.J., 2013. On the complexity of the generalized MinRank problem. J.

Symbolic Comput. , 30–58.
von zur Gathen, J., Gerhard, J., 2013. Modern Computer Algebra. Third ed., Cambridge University Press, Cambridge.
Gianni, P., Mora, T., 1989. Algebraic solution of systems of polynomial equations using Gröbner bases, in: AAECC’5,

Springer. pp. 247–257.
Giorgi, P., Jeannerod, C.P., Villard, G., 2003. On the complexity of polynomial matrix computations, in: ISSAC’03,

ACM. pp. 135–142.
Giorgi, P., Lebreton, R., 2014. Online order basis algorithm and its impact on the block Wiedemann algorithm, in:

ISSAC’14, ACM. pp. 202–209.
Guennebaud, G., Jacob, B., et al., 2018. Eigen, version 3.3.7. http://eigen.tuxfamily.org.
Kailath, T., 1980. Linear Systems. Prentice-Hall.
Kaltofen, E., 1995. Analysis of Coppersmith’s block Wiedemann algorithm for the parallel solution of sparse linear

systems. Mathematics of Computation 64, 777–806.
Kaltofen, E., Villard, G., 2001. On the complexity of computing determinants, in: ISSAC’01, ACM. pp. 13–27.
Kaltofen, E., Villard, G., 2004. On the complexity of computing determinants. Comput. Complexity 13, 91–130.
Keller-Gehrig, W., 1985. Fast algorithms for the characteristic polynomial. Theoret. Comput. Sci. 36, 309–317.
LaMacchia, B.A., Odlyzko, A.M., 1990. Solving large sparse linear systems over finite fields, in: Adv. in Cryptography,

Crypto ’90, Springer. pp. 109–133.
Macaulay, F.S., 1916. The Algebraic Theory of Modular Systems. Cambridge University Press.
Marinari, M.G., Möller, H.M., Mora, T., 1996. On multiplicities in polynomial system solving. Trans. Amer. Math. Soc.

348, 3283–3321.
Moreno-Socı́as, G., 1991. Autour de la fonction de Hilbert-Samuel (escaliers d’idéaux polynomiaux). Ph.D. thesis.

École polytechnique.
Morgan, A., 1988. Solving Polynominal Systems Using Continuation for Engineering and Scientific Problems. Prentice-

Hall.
Mourrain, B., 1997. Isolated points, duality and residues. Journal of Pure and Applied Algebra 117/118, 469–493.
Neiger, V., 2016. Bases of relations in one or several variables: fast algorithms and applications. Ph.D. thesis. École

Normale Supérieure de Lyon.
Neiger, V., Rahkooy, H., Schost, É., 2017. Algorithms for zero-dimensional ideals using linear recurrent sequences, in:

CASC’17, Springer. pp. 313–328.
Poteaux, A., Schost, E., 2013. On the complexity of computing with zero-dimensional triangular sets. J. Symbolic

Comput. 50, 110–138.
Rouillier, F., 1999. Solving zero-dimensional systems through the Rational Univariate Representation. Appl. Algebra

Engrg. Comm. Comput. 9, 433–461.
Sakata, S., 1990. Extension of the Berlekamp-Massey algorithm to N dimensions. Information and Computation 84,

207–239.
Shoup, V., 1994. Fast construction of irreducible polynomials over finite fields. J. Symbolic Comput. 17, 371–391.
Shoup, V., 1999. Efficient computation of minimal polynomials in algebraic extensions of finite fields, in: ISSAC’99,

ACM. pp. 53–58.
Shoup, V., 2018. NTL: A library for doing number theory, version 11.3.2. http://www.shoup.net.
Steel, A., 2015. Direct solution of the (11,9,8)-MinRank problem by the block Wiedemann algorithm in Magma with a

Tesla GPU, in: PASCO’15, ACM. pp. 2–6.
Storjohann, A., 2003. High-order lifting and integrality certification. J. Symbolic Comput. 36, 613–648.
The FFLAS-FFPACK Group, 2019. FFLAS-FFPACK: Finite Field Linear Algebra Subroutines / Package, version 2.3.2.

http://github.com/linbox-team/fflas-ffpack.
The LinBox Group, 2018. Linbox: Linear algebra over black-box matrices, version 1.5.3. https://github.com/

linbox-team/linbox/.
Turner, W.J., 2002. Black box linear algebra with the LINBOX library. Ph.D. thesis. North Carolina State University.

31

https://hal.archives-ouvertes.fr/hal-00816724
https://hal.archives-ouvertes.fr/hal-00816724
http://eigen.tuxfamily.org
http://github.com/linbox-team/fflas-ffpack
https://github.com/linbox-team/linbox/
https://github.com/linbox-team/linbox/

Van Barel, M., Bultheel, A., 1992. A general module theoretic framework for vector M-Padé and matrix rational inter-
polation. Numer. Algorithms 3, 451–462.

Villard, G., 1997a. Further analysis of Coppersmith’s block Wiedemann algorithm for the solution of sparse linear
systems, in: ISSAC’97, ACM. pp. 32–39.

Villard, G., 1997b. A study of Coppersmith’s block Wiedemann algorithm using matrix polynomials. Technical Report.
LMC-IMAG, Report 975 IM.

Wiedemann, D., 1986. Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theory IT-32, 54–62.
Wolovich, W.A., 1974. Linear Multivariable Systems. volume 11 of Applied Mathematical Sciences. Springer-Verlag

New-York.

32

	Introduction
	Linearly recurrent sequences
	Scalar sequences
	Linearly recurrent matrix sequences
	Application to the block Wiedemann algorithm
	Computing a scalar numerator

	Sequences associated to a zero-dimensional ideal
	The structure of the dual
	A fundamental formula
	Computing a zero-dimensional parametrization

	The main algorithm
	Description, correctness and cost analysis
	Example
	Experimental results

	Using the original coordinates
	Overview
	Describing the subset V' of V
	Computing correction matrices
	Describing the residual set
	Experimental results

