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Abstract

In this article, we design fast algorithms for the computation of approximant bases in shifted
Popov normal form. We first recall the algorithm known as PM-Basis, which will be our second
fundamental engine after polynomial matrix multiplication: most other fast approximant basis
algorithms basically aim at efficiently reducing the input instance to instances for which PM-
Basis is fast. Such reductions usually involve partial linearization techniques due to Storjohann,
which have the effect of balancing the degrees and dimensions in the manipulated matrices.

Following these ideas, Zhou and Labahn gave two algorithms which are faster than PM-Basis
for important cases including Hermite-Padé approximation, yet only for shifts whose values are
concentrated around the minimum or the maximum value. The three mentioned algorithms were
designed for balanced orders and compute approximant bases that are generally not normalized.
Here, we show how they can be modified to return the shifted Popov basis without impact on
their cost bound; besides, we extend Zhou and Labahn’s algorithms to arbitrary orders.

Furthermore, we give an algorithm which handles arbitrary shifts with one extra logarithmic
factor in the cost bound compared to the above algorithms. To the best of our knowledge, this
improves upon previously known algorithms for arbitrary shifts, including for particular cases
such as Hermite-Padé approximation. This algorithm is based on a recent divide and conquer
approach which reduces the general case to the case where information on the output degree is
available. As outlined above, we solve the latter case via partial linearizations and PM-Basis.

Keywords: Hermite-Padé approximation; minimal approximant basis; order basis; polynomial
matrix; shifted Popov form.

1. Introduction

Let d = (d1, . . . , dn) ∈ Zn
>0, and let F ∈ K[X]m×n be a matrix of univariate polynomials over a

field K, which represents a matrix of formal power series with the jth column truncated at order
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d j. We consider a matrix-type generalization of Hermite-Padé approximation, which consists in
computing polynomial row vectors p ∈ K[X]1×m such that

pF = 0 mod Xd , where Xd = diag(Xd1 , . . . , Xdn ). (1)

Here, pF = 0 mod Xd means that pF = qXd for some q ∈ K[X]1×n. The set of all such
approximants forms a free K[X]-module of rank m denoted byAd(F); its bases are represented as
the rows of nonsingular matrices in K[X]m×m. One is usually interested in bases having minimal
row degrees with respect to a shift s ∈ Zm, used as column weights.

In this paper, we improve complexity bounds for the computation of such s-minimal approx-
imant bases. In addition, our algorithms return a canonical s-minimal basis ofAd(F), called the
s-Popov basis (Popov, 1972; Beckermann et al., 1999) and defined in Section 2.1. The properties
of this basis allow us to compute it faster than s-minimal bases in general (for more insight, see
Jeannerod et al., 2016) and also, once obtained, to efficiently perform operations with this basis
(see for example Rosenkilde and Storjohann, 2016, Thm. 12).

Problem 1 – Approximant basis in shifted Popov form

Input:
• approximation order d ∈ Zn

>0,
• matrix F in K[X]m×n with cdeg(F) < d componentwise,
• shift s ∈ Zm.

Output: the s-Popov basis P ∈ K[X]m×m of the K[X]-module

Ad(F) =
{
p ∈ K[X]1×m | pF = 0 mod Xd }

.

Our problem is stated in Problem 1; cdeg(F) denotes the tuple of the n column degrees of
the matrix F. Here and hereafter, tuples of integers are always compared componentwise. The
assumption that cdeg(F) < d is harmless: truncating the column j of F modulo Xd j does not
affect the module of approximants.

For estimating the tightness of the cost bounds below, we consider the number of field ele-
ments used to represent the input and output of the problem. Representing polynomials in the
standard monomial basis, the matrix F is represented by mσ coefficients from K, where

σ = d1 + · · · + dn = |d|;

here, | · | denotes the sum of a tuple of nonnegative integers. By definition of the shifted Popov
form, the output basis can be written P = Xδ + A, where the matrix A is such that cdeg(A) <
δ = cdeg(P). Importantly, we have |δ| ≤ σ (see Lemma 2.2). Thus, P can be represented by the
degrees δ together with m|δ| ≤ mσ coefficients from K for its nontrivial columns. The tuple δ,
called the s-minimal degree ofAd(F), plays a central role in our algorithms; knowing δ amounts
to knowing the degrees of the columns of the sought canonical basis.

Our cost model estimates the number of arithmetic operations in K on an algebraic RAM.
We consider an exponent ω for matrix multiplication: two matrices in Km×m can be multiplied in
O(mω) operations in K. In this paper, all cost bounds are given for ω > 2; additional logarithmic
factors may appear if ω = 2. (Coppersmith and Winograd, 1990; Le Gall, 2014) show that one
may take ω < 2.373. We also use a cost function MM(·, ·) for the multiplication of polynomial
matrices, defined as follows: for two real numbers m, d > 0, MM(m, d) is such that two matrices
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of degree at most d in K[X]m̄×m̄ with m̄ ≤ m can be multiplied using MM(m, d) operations in K.
Furthermore, we will use MM′(m, d) =

∑
0≤i≤log(d) 2iMM(m, 2−id) from (Storjohann, 2003; Giorgi

et al., 2003), which is typically related to divide-and-conquer computations.
We will always give cost bounds in function of MM(m, d) and MM′(m, d); the current best

known upper bounds on the former quantity can be found in (Cantor and Kaltofen, 1991; Bostan
and Schost, 2005; Harvey et al., 2017). The first of these references proves

MM(m, d) ∈ O(mωd log(d) + m2d log(d) log(log(d)))

for an arbitrary field K, while the last two show better bounds in the case of fields that are either
finite or of characteristic zero. For the sake of presentation, we will also give simplified cost
bounds for our main results, relying on the following assumption:

HMM : MM(m, d) + MM(m, d′) ≤ MM(m, d + d′) for m, d, d′ > 0 (super-linearity).

We remark thatHMM implies MM′(m, d) ∈ O(MM(m, d) log(d)).
It is customary to assume MM(m, d) ∈ O(mωM(d)) for a cost function M(·) such that two

polynomials in K[X] of degree less than d can be multiplied in M(d) operations in K. However
this does not always reflect well the actual cost of polynomial matrix multiplication, which tends
to have a term in m2d with several (sub)logarithmic factors, and a term in mωd with at most one
logarithmic factor. In fact, even the above general bound on MM(m, d) is asymptotically better
than O(mωM(d)) if we replace M(d) by the best known bound.

As a consequence, and since we will be discussing cost bound improvements on the level
of logarithmic factors, we will not follow this custom. Instead, and as in (Storjohann, 2003) for
example, we will prefer to write our cost bounds with general expressions involving MM(m, d)
and MM′(m, d), which one can then always replace with context-dependent upper bounds.

Main result. We give an efficient solution to Problem 1 for arbitrary orders and shifts.

Theorem 1.1. Let d ∈ Zn
>0, let F ∈ K[X]m×n with cdeg(F) < d, and let s ∈ Zm. Writing σ = |d|

for the sum of the entries of d, and assuming m ∈ O(σ), then Problem 1 can be solved in

O


dlog2(σ/m)e∑

k=0

2kMM′(m, 2−kσ/m)

 + mω−1σ log(m)


operations in K. AssumingHMM, this is in O(MM(m, σ/m) log(σ/m)2 + mω−1σ log(m)).

Hiding logarithmic factors, this cost bound is O˜(mω−1σ), the same as for the multiplication of
two m × m matrices of degree σ/m. As mentioned above, the output basis has average column
degree at most σ/m, which is reached generically. Furthermore, there are instances of Problem 1
whose solving does require at least as many field operations as the multiplication of two matrices
in K[X]m×m of degree about σ/m (see Section 2.4).

In the case σ ∈ O(m), the current fastest known algorithm for solving Problem 1 uses
O(mσω−1 + σω log(max(d))) operations (Jeannerod et al., 2017, Prop. 7.1).

The overall design of our main algorithm is based on (Jeannerod et al., 2016, Algo. 1); we
refer to (ibid., Sec. 1.2) for an overview of this approach. In short, we use a divide and conquer
strategy which splits the order d into two parts whose sums are about σ/2. Two corresponding
shifted Popov bases are found recursively and yield the s-minimal degree δ, which then helps us
to efficiently compute the s-Popov approximant basis.
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(ibid., Algo. 1) solves a more general problem; we refer to (Van Barel and Bultheel, 1992;
Beckermann, 1992; Beckermann and Labahn, 1997) for details about and earlier solutions to
matrix rational interpolation problems. Eq. (1) is indeed a particular case of

pF = 0 mod (X − x)d, where (X − x)d = diag([(X − x j)d j ]1≤ j≤n), (2)

where these diagonal entries are given by their roots x and multiplicities d.
For such equations, (Beckermann and Labahn, 2000, Algo. FFFG) returns the s-Popov basis

of solutions in O(mσ2) operations (Neiger, 2016, Sec. 6.4). At each step of this iterative algo-
rithm, one normalizes the computed basis to better control its degrees, and thus achieve better
efficiency. Indeed, similar algorithms without normalization, such as the one in (Van Barel and
Bultheel, 1992), have a cost of O(m2σ2) operations in general.

The algorithm of (Jeannerod et al., 2016) also addresses Eq. (2). Here, we obtain a faster
algorithm in the case x = 0 by improving one of its core components: solving Problem 1 when
the s-minimal degree δ is known a priori. Explicitly, the gain here compared to the cost bound in
(ibid., Thm. 1.3) is in Ω(log(σ)).

This extra logarithmic factor in (ibid.) has two independent sources. First, it originates from
the computation of residuals, which are matrix remainders of the form PF mod (X − x)d; here,
with x = 0, these are simply truncated products. Second, it also comes from the strategy for
handling unbalanced output degrees, by relying on (Jeannerod et al., 2017, Algo. 2) which uses
unbalanced polynomial matrix products and changes of shifts. Here we rather make use of the
overlapping linearization from (Storjohann, 2006, Sec. 2), allowing us to reduce more directly to
cases solved by (Giorgi et al., 2003, Algo. PM-Basis) using balanced polynomial matrix products.

Balanced orders: obtaining the canonical basis via PM-Basis. Let us now consider the case
where all n entries of the order d are roughly the same. More precisely, we assume that

Hd : max(d) ∈ O(σ/n) (balanced order),

and we let d = max(d). We note that any algorithm designed for a uniform order (d, . . . , d) can
straightforwardly be used to deal with any order d (see Remark 3.3); yet, this might lead to a
poor cost bound if the latter order is not balanced.

Under Hd, the divide and conquer algorithm of (Beckermann and Labahn, 1994), improved
as in (Giorgi et al., 2003, Algo. PM-Basis), computes an s-minimal approximant basis using
O((1 + n/m)MM′(m, σ/n)) operations. This is achieved for arbitrary shifts, despite the existence
of s-minimal bases with arbitrarily large degree: PM-Basis always returns a basis of degree ≤ d.
It is particularly efficient in the case n = Θ(m), the cost bound being then in O˜(mω−1σ).

Here, we slightly modify PM-Basis so that its output basis reveals the s-minimal degree δ.
For this, we ensure that, in addition to being s-minimal, this basis exhibits a so-called pivot
entry on each row; it is then said to be in s-weak Popov form (Mulders and Storjohann, 2003).
Computing bases in this form to obtain δ will be a common thread in all algorithms we present.

Then, we show that the canonical basis can be obtained by using essentially two successive
calls to PM-Basis: the first one to find δ, and the second one to find the basis by using −δ in
place of the shift. The correctness of this approach is detailed in Lemma 2.3.

Theorem 1.2. Let d ∈ Zn
>0, let F ∈ K[X]m×n be such that cdeg(F) < d, and let s ∈ Zm. Then,

• Problem 1 can be solved in O((1 + n/m)MM′(m, d)) operations in K, where d = max(d);
assumingHMM, this is in O((1 + n/m)MM(m, d) log(d)).
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• Problem 1 can be solved in O(MM′(m, dσ/me) + MM′(m, d)) operations in K; assuming
HMM, this is in O(MM(m, dσ/me) log(dσ/me) + MM(m, d) log(d)).

The cost bound in the second item improves upon that in the first item for some unbalanced
orders with n > m. Take for example d = (σ/2, 1, . . . , 1) with n = σ/2 + 1 ≥ m: then, d = σ/2
and the first bound is O(σm MM′(m, σ)) whereas the second bound is only O(MM′(m, σ)). This is
obtained via an algorithm which reduces the column dimension to n < m (first term in the cost)
and then applies PM-Basis on the remaining instance (second term in the cost). The first step is
itself done by applying PM-Basis a logarithmic number of times to process all columns whose
corresponding order is less than σ/m; there are at least n − m such columns by definition of σ.

To illustrate the involved logarithmic factors, let us consider m = n + 1 = 2. The cost bounds
in the last theorem become O(M(σ) log(σ)), the same as for the related half-gcd algorithm in
K[X] of Knuth (1970); Schönhage (1971); Moenck (1973). Besides, the bound O(M(σ) log(σ)3)
from (Jeannerod et al., 2016) is replaced by O(M(σ) log(σ)2) in Theorem 1.1. We will see that
this remaining extra logarithmic factor compared to the half-gcd comes from two layers of recur-
sion: at each node of the global divide and conquer scheme, there is a call to PM-Basis, which
itself is a divide and conquer algorithm performing a polynomial matrix product at each node.
To avoid this factor for the general approximation problem considered here is an open question.

Weakly unbalanced shifts, around their minimal or maximum value. In this paragraph, we report
cost bounds from (Zhou and Labahn, 2012) which are proved under the following assumptions:

HM : MM(m, d) ∈ O(mωM(d)),M(dd′) ∈ O(dω−1M(d′)), and M(·) satisfies the
super-linearity property from (Gathen and Gerhard, 2013, Sec. 8.3).

Note that HM implies HMM, and that HM holds if M(d) and M(m, d) are replaced by the best
known upper bounds mentioned above. Hereafter, for an integer t and a shift s = (s1, . . . , sm), we
denote by s + t the shift (s1 + t, . . . , sm + t), and notation such as s ≤ t stands for max(s) ≤ t.

The algorithm PM-Basis discussed above is efficient for n ∈ Ω(m) and assumingHd. Yet, this
assumption becomes weaker when n is small compared to m, and so does the bound d = max(d)
controlling the output degree. In the extreme case n = 1, Hd is void since d ≤ σ = |d| always
holds; then, PM-Basis manipulates bases of degree up to d = σ, and its cost bound is O˜(mωσ).
Focusing on the case n < m, Zhou and Labahn (2012) noted that both the assumption

Hs,bal : max(s) −min(s) ∈ O(σ/m) (balanced shift)

and the weaker assumption

Hs,min : |s −min(s)| ∈ O(σ) (weakly unbalanced shift, around min)

imply that the average row degree of any s-minimal approximant basis is in O(σ/m). Then,
using the overlapping linearization technique from (Storjohann, 2006, Sec. 2) at most log(m/n)
times, they reduced to the case n = Θ(m) and obtained the cost bound O(mωM(σ/m) log(σ/n)) ⊆
O˜(mω−1σ) (Zhou and Labahn, 2012, Sec. 3 to 5), under HM, Hd, and Hs,min. The partial lin-
earizations are done at a degree δ which is doubled at each iteration, each of them allowing to
recover the rows of degree ≤ δ of the sought basis. There are many such rows since the aver-
age row degree is small by assumption: after the kth iteration, only O(m/2k) rows remain to be
found. An essential property for efficiency is that the found rows can be discarded in the further
iterations; this results in a dimension decrease which compensates the increase of the degree δ.
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On the other hand, assuming

Hs,max : |max(s) − s| ∈ O(σ) (weakly unbalanced shift, around max)

implies roughly that the sought basis has average row degree in O(σ/m) up to a small number
of large degree columns, and that the shift can be used to guess locations for these large degree
columns. Then, Zhou and Labahn (2012, Sec. 6) use log(m) calls to the output column lineariza-
tion from (Storjohann, 2006, Sec. 3) in degree δ. At each call, this transformation reduces to the
case Hs,bal and allows one to uncover rows of the sought basis whose degree is at a distance at
most δ from the expected one. Again, there must be many such rows under Hs,max, and since
the remaining rows have degrees which do not agree well with the shift, they must contain large
blocks of zeroes; this leads to decreasing the dimensions while δ is doubled. This approach has
the same asymptotic cost as above, still underHM andHd; we summarize this in Fig. 1 (top).

Most often, the approximant bases returned by the algorithms in (Zhou and Labahn, 2012)
are not normalized. Here, we show how to modify these algorithms to obtain the s-Popov basis
without impacting the cost bound. Furthermore, we generalize them to arbitrary orders; in other
words, we remove the assumptions n < m and Hd. Instead of making assumptions on s such as
Hs,min andHs,max, we extend the algorithms to arbitrary shifts and give cost bounds parametrized
by the quantities |s − min(s)| and |max(s) − s| which appear in the latter assumptions and are
inherent to the approach. Then, the obtained cost bounds range from O˜(mω−1σ) under Hs,min
orHs,max, thus matching Theorem 1.1 up to logarithmic factors, to O˜(mωd) when the quantities
above exceed some threshold, thus matching Theorem 1.2; in the latter case, the algorithms
essentially boil down to a single call to PM-Basis. Precisely, we obtain the next result.

Theorem 1.3. Let d ∈ Zn
>0, let F ∈ K[X]m×n be such that cdeg(F) < d, and let s ∈ Zm. Consider

the parameters σ = |d|, d = max(d), ξ = σ + |s −min(s)|, and ζ = σ + |max(s) − s|. Then,

• If ξ ≤ md, Problem 1 can be solved in O(C(ξ,m, d)) operations in K, where

C(ξ,m, d) =

dlog2(d/dξ/me)e∑
k=0

MM′(2−km, 2kdξ/me) + 2kMM(2−km, 2kdξ/me). (3)

AssumingHM, the latter quantity is in O(mωM(dξ/me) log(d)).
• If ζ ≤ md, Problem 1 can be solved in

O

MM′(µ, dσ/µe) + MM′(µ, d) +

blog2(md/ζ)c∑
k=0

C(ζ, 2−km, d)


operations in K, for some integer µ ∈ Z>0 such that µ ≤ m and µd < ζ. AssumingHM, this
cost bound is in O(mωM(dζ/me) log(d) + µωM(dσ/µe) log(dσ/µe)).

If σ ≥ m, these cost bounds can be written O˜(mω−1ξ) and O˜(mω−1ζ), and they improve upon
those in Theorem 1.2 when ξ ∈ o(md) and when ζ ∈ o(md), respectively. Note that Hs,min and
Hs,max are equivalent to ξ ∈ O(σ) and ζ ∈ O(σ), respectively; under either of these assumptions,
the corresponding cost bound in the above theorem improves upon that in Theorem 1.1 at the
level of logarithmic factors, assumingHM.

An important example of a shift which satisfies neither ξ ≤ md nor ζ ≤ md is the one which
yields the approximant basis in Hermite form; explicitly, s = (σ, 2σ, . . . ,mσ) for which we have
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[n < m,Hd, and]Hs,max

[n < m,Hd, and]Hs,bal

[Hd, and] n < m,Hs,bal[Hd and] n < m,Hs,min

[n < m,Hd and]Hs,min

n ∈ Θ(m) andHd fast solution using PM-Basis

output column linearization

Algorithm 4, based on PM-Basis

overlapping linearization

known δ = cdeg(P) with |δ| ≤ σ

known δ = cdeg(P) with max(δ) ∈ O(σ/m)

n < m, known δ = cdeg(P) with max(δ) ∈ O(σ/m)

n ∈ Θ(m) andHd fast solution using PM-Basis

output column linearization

Algorithm 4, based on PM-Basis

overlapping linearization

Figure 1: (Top) Fast algorithm from (Zhou and Labahn, 2012) assuming eitherHs,min orHs,max, via a logarithmic number
of partial linearizations from (Storjohann, 2006) and calls to PM-Basis. In brackets, assumptions that we have removed
in our modified algorithm; we have also inserted the column dimension reduction (Algorithm 4) which is not necessary in
(Zhou and Labahn, 2012) where n < m is assumed. (Bottom) Fast algorithm when the shifted minimal degree is known,
using two partial linearizations from (Storjohann, 2006) and calls to (Giorgi et al., 2003, Algo. PM-Basis).

ξ = ζ =
m(m−1)

2 σ ≥ m−1
2 md. Then, only the cost in Theorem 1.1 meets the target O˜(mω−1σ) in

general: Theorem 1.3 is void with such ξ and ζ, while the cost O˜(mω−1σ+ mωd) in Theorem 1.2
has an extra factor md/σ which may be as large as m.

The cost bounds in Theorem 1.3 refine those in (Zhou and Labahn, 2012, Thm. 5.3 and 6.14).
Jeannerod et al. (2017) gave an algorithm achieving a cost similar to that in the first item above,
in the more general context of Eq. (2) and thus covering the case of arbitrary orders as well; the
cost bound above improves upon that given in (ibid., Thm. 1.5) by a logarithmic factor.

Known minimal degree. The main new ingredient behind Theorem 1.1 is an efficient algorithm
for Problem 1 when the s-minimal degree δ ofAd(F) is known.

As noted above, knowing δ leads us to consider the shift −δ instead of s. This new shift
is weakly unbalanced around its maximum value, since |δ| ≤ σ. Inspired by the efficient algo-
rithms of (Zhou and Labahn, 2012) for such shifts, we consider the same overall strategy while
exploiting the additional information given by δ to design a simpler and more efficient algorithm.

To handle the unbalancedness of the output column degrees, (ibid.) uses a logarithmic num-
ber of output column linearizations, each of them leading to find some rows of the sought basis.
Thanks to the knowledge of δ, we are able to use the same linearization only once, with param-
eters which directly yield the full basis (Algorithm 5, Step 1). This transformation builds a new
instance for which the new shifted minimal degree δ is known and balanced: max(δ) ∈ O(σ/m).

Then, we use PM-Basis to efficiently reduce to the case n < m (Algorithm 5, Step 2). This is
not done in (ibid.) since n < m holds by assumption in this reference (yet, we do resort to column
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dimension reduction in our generalized version of this algorithm, see Algorithm 7, Step 1).
Now, to handle balanced shifts such as the new −δ, (ibid.) uses a logarithmic number of

overlapping linearizations. Each of these transformations gives an instance satisfying n ∈ Θ(m)
andHd, which can thus be solved efficiently via PM-Basis, thereby uncovering some rows of the
output basis. Here, since the output degree is in max(δ) ∈ O(σ/m), a single call to overlapping
linearization (Algorithm 5, Step 3) yields a new instance which directly gives the full basis; as
above, it satisfies n ∈ Θ(m) andHd and thus can be solved efficiently via PM-Basis.

We summarize our approach in Fig. 1 (bottom diagram). We note that similar ideas were
already used in (Gupta and Storjohann, 2011, Sec. 3), in the context of Hermite form computation
when the degrees of the diagonal entries are known.

To summarize, we obtain the cost bound O(MM′(m, σ/m)) for solving Problem 1 when δ is
known (see Proposition 5.1), without any further assumption. This improves over the algorithm
in (Jeannerod et al., 2016, Sec. 4), designed for the same purpose but in the more general context
of Eq. (2), in which it is unclear to us how to generalize the overlapping linearization.

Outline of the paper. In Section 2, we present preliminary definitions and properties. Then, in
Section 3, we describe the algorithm PM-Basis and we prove the first item of Theorem 1.2. Then
we use this algorithm in Section 4 to show how to reduce to n < m efficiently; this implies the
second item of Theorem 1.2. Together with partial linearizations that we recall, this allows us
to solve Problem 1 when the s-minimal degree is known (Section 5). Then, in Section 6, we
give our main algorithm and the proof of Theorem 1.1. Finally, we present generalizations of the
algorithms of (Zhou and Labahn, 2012) and we prove Theorem 1.3 in Section 7.

2. Preliminaries

2.1. Minimal bases, Popov bases, and minimal degree

For a shift s = (s j) j ∈ Zm, the s-degree of p = [p j] j ∈ K[X]1×m is max j(deg(p j) + s j),
with the convention deg(0) = −∞. Then, the s-row degree of a matrix P ∈ K[X]k×m is rdegs(P) =

(r1, . . . , rk) where ri is the s-degree of the ith row of P. Besides, the s-leading matrix of P = [pi j]i j

is the matrix lms(P) ∈ Kk×m whose entry (i, j) is the coefficient of degree ri−s j of pi j. The column
degree of P is cdeg(P) = rdeg0(PT), where PT is the transpose of P. We use the following
definitions from (Kailath, 1980; Beckermann et al., 1999; Mulders and Storjohann, 2003).

Definition 2.1. For s ∈ Zm, a nonsingular matrix P ∈ K[X]m×m is said to be in

• s-reduced form if lms(P) is invertible;
• s-ordered weak Popov form if lms(P) is invertible and lower triangular;
• s-weak Popov form if it is in s-ordered weak Popov form up to row permutation;
• s-Popov form if lms(P) is unit lower triangular and lm0(PT) is the identity matrix.

The s-pivot degree of P in s-weak Popov form is the tuple δ ∈ Zm
≥0 of the degrees of the diagonal

entries of the corresponding s-ordered weak Popov form; for P in s-Popov form, we have δ =

cdeg(P). For d ∈ Zn
>0 and F ∈ K[X]m×n, a basis of Ad(F) in s-reduced form is said to be an

s-minimal basis of Ad(F). Furthermore, we call s-minimal degree of Ad(F) the s-pivot degree
of the s-Popov basis of Ad(F), and in fact of any s-weak Popov basis of Ad(F) (Jeannerod
et al., 2016, Lem. 3.3). The importance of these degrees is highlighted in the next two results,
Lemmas 2.2 and 2.3.
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The first one allows us to control the degrees in the computed bases and can be found in
(Van Barel and Bultheel, 1992, Thm. 4.1) in a more general context. The second one follows
from (Sarkar and Storjohann, 2011, Lem. 15 and 17) and shows that when the s-minimal degree
δ is known, the computations may be performed with the shift −δ.

Lemma 2.2. Let d ∈ Zn
>0, let σ = |d|, and let F ∈ K[X]m×n with cdeg(F) < d. Then, for any

basis P ∈ K[X]m×m ofAd(F), we have deg(det(P)) ≤ σ. Furthermore, for s ∈ Zm, the s-minimal
degree δ ∈ Zm

≥0 ofAd(F) satisfies |δ| ≤ σ and max(δ) ≤ max(d).

Proof. Let P be the s-Popov basis of Ad(F). Then, P is in particular 0-column reduced, hence
deg(det(P)) = |cdeg(P)| = |δ| (Kailath, 1980, Sec. 6.3.2); and since any basis of Ad(F) has
determinant λ det(P) for some nonzero λ ∈ K, it is enough to prove that |δ| ≤ σ.

Since P has column degree (δ1, . . . , δm), according to (Kailath, 1980, Thm. 6.3.15) the quo-
tient K[X]1×m/Ad(F) is isomorphic to K[X]/(Xδ1 ) × · · · × K[X]/(Xδm ) as a K-vector space, and
thus has dimension |δ|. Now, this dimension is at most σ, since Ad(F) is the kernel of the mor-
phism p ∈ K[X]1×m 7→ pF mod Xd ∈ K[X]/(Xd1 ) × · · · × K[X]/(Xdn ), whose codomain has
dimension |d| = σ as a K-vector space.

To prove max(δ) ≤ max(d), we note that Xmax(d)ImF = 0 mod Xd , hence Xmax(d)Im is a
left-multiple of P and the inequality follows from the predictable degree property.

Lemma 2.3 (Jeannerod et al. (2016, Lem. 4.1)). Let s ∈ Zm and let P ∈ K[X]m×m be in s-Popov
form with column degree δ ∈ Zm

≥0. Then P is also in −δ-Popov form, and we have rdeg−δ(P) = 0.
In particular, for any matrix R ∈ K[X]m×m which is unimodularly equivalent to P and −δ-
reduced, R has column degree δ, and P = lm−δ(R)−1R.

Let δ be the s-minimal degree of Ad(F). This result states that, up to a constant transfor-
mation, the s-Popov basis of Ad(F) is equal to any of its −δ-minimal bases R. Furthermore,
cdeg(R) = δ implies that R has average column degree |δ|/m ≤ σ/m. We have no such control
on the column degree of s-minimal bases when s is not linked to δ, even under assumptions on
the shift such asHs,max,Hs,min, orHs,bal.

2.2. Recursive computation of approximant bases

Here, we state the correctness of the approach which consists in computing a first basis from
the input, another basis from a residual, and combining them by multiplication to obtain the
output basis. This scheme is followed for example by the iterative algorithms in (Van Barel
and Bultheel, 1991; Beckermann and Labahn, 2000) and the divide and conquer algorithms in
(Beckermann and Labahn, 1994; Giorgi et al., 2003).

In the next lemma, the items (i) and (ii) focus on minimal bases and extend (Beckermann and
Labahn, 1997, Sec. 5.1); the item (iii) gives a similar result for ordered weak Popov bases. The
item (iv), from (Jeannerod et al., 2016, Sec. 3), shows how to retrieve the s-minimal degree from
two bases in normal form without computing their product.

Lemma 2.4. LetM ⊆M1 be two K[X]-submodules of K[X]m of rank m, and let P1 ∈ K[X]m×m

be a basis ofM1. Let further s ∈ Zm and t = rdegs(P1). Then,

(i) The rank of the module M2 = {λ ∈ K[X]1×m | λP1 ∈ M} is m, and for any basis P2 ∈

K[X]m×m ofM2, the product P2P1 is a basis ofM.
(ii) If P1 is s-reduced and P2 is t-reduced, then P2P1 is s-reduced.
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(iii) If P1 is in s-ordered weak Popov form and P2 is in t-ordered weak Popov form, then P2P1
is in s-ordered weak Popov form.

(iv) If δ1 is the s-minimal degree of M1 and δ2 is the t-minimal degree of M2, then the s-
minimal degree ofM is δ1 + δ2.

Proof. (i) Let A ∈ K[X]m×m denote the adjugate of P1. Then, we have AP1 = det(P1)Im. Thus,
pAP1 = det(P1)p ∈ M for all p ∈ M, and thereforeMA ⊆ M2. Now, the nonsingularity of A
ensures thatMA has rank m; from (Dummit and Foote, 2004, Sec. 12.1, Thm. 4), this implies that
M2 has rank m as well. The matrix P2P1 is nonsingular since det(P2P1) , 0. Now let p ∈ M; we
want to prove that p is a K[X]-linear combination of the rows of P2P1. First, p ∈ M1, so there
exists λ ∈ K[X]1×m such that p = λP1. But then λ ∈ M2, and thus there exists µ ∈ K[X]1×m such
that λ = µP2. This yields the combination p = µP2P1.

(ii) Let d = rdegt(P2); we have d = rdegs(P2P1) by the predictable degree property (Forney,
Jr., 1975). Using X−d P2P1Xs = X−d P2Xt X−t P1Xs , we obtain that lms(P2P1) = lmt(P2)lms(P1).
By assumption, lmt(P2) and lms(P1) are invertible, and therefore lms(P2P1) is invertible as well;
thus P2P1 is s-reduced.

(iii) The matrix lms(P2P1) = lmt(P2)lms(P1) is lower triangular and invertible.
(iv) Let P1 be the s-Popov basis of M1 and P2 be the t-Popov basis of M2. Then, by the

items (i) and (iii) above, P2P1 is a s-ordered weak Popov basis of M. Thus, from (Jeannerod
et al., 2016, Lem. 3.3), it is enough to show that the s-pivot degree of P2P1 is δ1 + δ2, that is,
rdegs(P2P1) = s+δ1 +δ2. This follows from the predictable degree property, since rdegs(P2P1) =

rdegt(P2) = t + δ2 = rdegs(P1) + δ2 = s + δ1 + δ2.

Now, consider the case where the basis P1 ofM1 already has some rows inM: we show that
we may directly store these rows in the basis P, and that in order to obtain P2 we may focus only
on the rows of P1 not inM. In the next lemma, we use notation from Lemma 2.4.

Lemma 2.5. Let k ∈ {0, . . . ,m} and let π be an m × m permutation matrix such that the first k
rows of πP1 are inM. The rank ofM3 = {λ ∈ K[X]1×(m−k) | λ(πP1){k+1,...,m},∗ ∈ M} is m − k, and
for any basis P3 ofM3, then P2 = π−1[ Ik 0

0 P3
]π is a basis ofM2. Besides, if P1 and P3 are in s-

and (tπ−1){k+1,...,m}-ordered weak Popov form, then P2P1 is an s-ordered weak Popov basis ofM.

Proof. For λ ∈ K[X]1×m, we have λ ∈ M2 ⇔ λπ−1πP1 ∈ M ⇔ (λπ−1)∗,{k+1,...,m} ∈ M3 since the
first k rows of πP1 are inM. It follows thatM3 has rank m − k, and since P3 is a basis ofM3,
λ ∈ M2 ⇔ λπ−1 = [µ ν][ Ik 0

0 P3
] for some ν ∈ K[X]1×(m−k) and where µ = (λπ−1)∗,{1,...,k}.

It is easily verified that if P3 is in (tπ−1){k+1,...,m}-ordered weak Popov form, then P2 is in t-
ordered weak Popov form. Hence the conclusion, by the first and third items of Lemma 2.4.

2.3. Computing residuals
Approximant basis algorithms commonly make use of residuals, which are truncated matrix

products PF mod Xd . Here, we discuss their efficient computation in two cases: when we control
deg(P), and when we control the average column degree of P.

Lemma 2.6. Let P ∈ K[X]m×m and F ∈ K[X]m×n. Then,

• for d, σ ∈ Z≥0 such that deg(P) ≤ d and |cdeg(F)| ≤ σ, one can compute PF using
O
(⌈

n+σ/(d+1)
m

⌉
MM(m, d)

)
operations in K;

• for d ∈ Zn
>0 and σ ≥ m such that |d| ≤ σ and |cdeg(P)| ≤ σ, one can compute PF mod Xd

using O(MM(m, σ/m)) operations in K, assuming n ≤ m.
10



Proof. For the first item, we use column partial linearization on F to transform it into a matrix F
with m rows, n+σ/(d+1) columns, and degree at most d. Then, we compute PF, and the columns
of this product are compressed back to obtain PF. More details can be found for example in the
discussion preceding (Jeannerod et al., 2016, Prop. 4.1).

For the second item, using column partial linearization on P we obtain P ∈ K[X]m×m such
that m ≤ m ≤ 2m, deg(P) < dσ/me, and P = PC where the form of C ∈ K[X]m×m is as in Eq. (7).
Then PF mod Xd = P F mod Xd , where F = CF mod Xd is obtained for free since each row
of C is of the form [0 · · · 0 Xα 0 · · · 0] for some α ∈ Z≥0. Now, up to augmenting P with
m−m zero rows, we can apply the first item to compute P F. Here we take d = dσ/me, implying
σ/(d + 1) ≤ m and thus (n + σ/(d + 1))/m ≤ 2, since m ≥ m ≥ n. Hence, computing P F costs
O(MM(m, dσ/me)) operations, which is within the claimed bound since m ≤ 2m and σ ≥ m.

2.4. Computing matrix products via approximant bases

Consider a constant matrix F ∈ Km×n and d = (1, . . . , 1); note that σ = n. Then, as detailed
in Section 3, finding the s-Popov basis ofAd(F) is equivalent to computing a left nullspace basis
in reduced row echelon form for the matrix F with rows permuted according to the entries of s.
The multiplication of constant matrices can be embedded in such nullspace computations. More
generally, any algorithm for Problem 1 can be used to multiply polynomial matrices, following
ideas from (Sarkar and Storjohann, 2011).

Lemma 2.7. LetP be an algorithm which solves Problem 1. Then, for A,B ∈ K[X]m×m of degree
at most d, the product AB can be read off from the output of P(d,F, 0), where

d = (6d + 4, . . . , 6d + 4) and F =


X2d+1Im B
−X2d+1A X2d+1Im

−Im 0
0 −Im

 ∈ K[X]4m×2m.

Proof. This follows from the results in (Sarkar and Storjohann, 2011, Sec. 4 and 6), which imply
that the 0-Popov left kernel basis of F is[

Im 0 X2d+1Im B
A Im 0 AB + X2d+1Im

]
and appears as the last 2m rows of the 0-Popov basis ofAd(F).

2.5. Stability of ordered weak Popov forms under some permutations

When computing a basis of Ad(F), it is sometimes useful to permute the rows of F, that
is, to consider Ad(πF) for some m × m permutation matrix π. Then, it is easily verified that
an s-minimal basis P for Ad(πF) yields an sπ-minimal basis Pπ of Ad(F). However, the more
specific weak Popov forms are not preserved in process: if P is in s-weak Popov form, then the
column permuted basis Pπmight for example have all its sπ-pivot entries in its last column. Still,
for specific permutations and when considering a submatrix of Pπ, we have the following result
(we remark that it will only be used in Section 7.1).

Lemma 2.8. Let 1 ≤ n < m and consider a partition {1, . . . ,m} = {i1, . . . , in}∪{ j1, . . . , jm−n} with
(ik)k and ( jk)k both strictly increasing. Let further π = (πi, j) be the m × m permutation matrix
such that πk,ik = 1 for 1 ≤ k ≤ n and πk+n, jk = 1 for 1 ≤ k ≤ m − n, and let s = (s j) ∈ Zm. Then,
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• if a matrix P ∈ K[X]m×m is in s-ordered weak Popov form, then the leading principal n× n
submatrix of πPπ−1 is in (si1 , . . . , sin )-ordered weak Popov form;

• for a tuple d ∈ Zm−n
≥0 and matrices P ∈ K[X]n×n and Q ∈ K[X]n×(m−n), if the matrix

P̂ =

[
P Q
0 Xd

]
∈ K[X]m×m

is in s-ordered weak Popov, then π−1P̂π is in sπ-ordered weak Popov form.

Proof. Concerning the first item, let t = (si1 , . . . , sin ) and write [pi, j] for the entries of P. Then,
the leading principal n × n submatrix of πPπ−1 is [pik ,i` ]1≤k,`≤n. Now, lmt([pik ,i` ]) is the subma-
trix of lms(P) formed by its rows and columns indexed by (i1, . . . , in), and lms(P) is unit lower
triangular since P is in s-ordered weak Popov form. Since i1 < · · · < in, lmt([pik ,i` ]) is unit lower
triangular as well, and therefore [pik ,i` ]1≤k,`≤n is in t-ordered weak Popov form.

For the second item, we prove that the sπ-leading matrix of π−1P̂π is unit lower triangular.
For 1 ≤ k ≤ m − n, the row jk of π−1P̂π is [0 · · · 0 Xdk 0 · · · 0] with Xdk at index jk; thus, the
row jk of lmsπ(π−1P̂π) is [0 · · · 0 1 0 · · · 0] with 1 on the diagonal. It remains to show that, for
1 ≤ k ≤ n, the row ik of lmsπ(π−1P̂π) has the form [∗ · · · ∗ 1 0 · · · 0] with 1 on the diagonal.

Equivalently, writing (ŝ j) j = sπ, and [ p̂ j] j for the row ik of π−1P̂π, it remains to show that

p̂ik is monic, and for 1 ≤ j ≤ m we have
{

deg(p̂ j) + ŝ j ≤ deg( p̂ik ) + ŝik if j ≤ ik,
deg(p̂ j) + ŝ j < deg( p̂ik ) + ŝik if j > ik.

(4)

Writing P = [pi j] and Q = [qi j], we have by construction p̂i` = pk` and ŝi` = s` for 1 ≤ ` ≤ n,
and p̂ j` = qk` and ŝ j` = sn+` for 1 ≤ ` ≤ m − n. Since P̂ is in s-ordered weak Popov form,
• pkk = p̂ik is monic;
• deg(qk`) + sn+` < deg(pkk) + sk holds for 1 ≤ ` ≤ m − n, hence Eq. (4) for j ∈ { j1, . . . , j`};
• deg(pk`) + s` < deg(pkk) + sk holds for ` > k, hence Eq. (4) for j ∈ {ik+1, . . . , im};
• deg(pk`) + s` ≤ deg(pkk) + sk holds for ` ≤ k, hence Eq. (4) for j ∈ {i1, . . . , ik}.

Thus Eq. (4) holds and the proof is complete.

3. Algorithm PM-Basis: approximant bases via polynomial matrix multiplication

In this section, we focus on the case of a uniform order, that is, d = (d, . . . , d) ∈ Zn
>0 and

σ = nd. For simplicity, we writeAd(F) to refer toA(d,...,d)(F). Then, for any shift, (Giorgi et al.,
2003, Algo. PM-Basis) computes an s-minimal basis of Ad(F) using O((1 + n/m)MM′(m, d))
operations; this is in O˜(mω−1σ) when n ∈ Ω(m).

PM-Basis follows a divide and conquer approach, splitting the instance at order d into two
instances at order d/2 and combining the recursively obtained bases by polynomial matrix multi-
plication. Here, we describe PM-Basis with a modified base case (d = 1), ensuring that it returns
the normalized basis. As a consequence, the whole algorithm returns an s-ordered weak Popov
basis; this has the advantage of directly uncovering the s-minimal degree of Ad(F), a fact used
several times in this paper.

We now consider the base case: d = 1 and F ∈ Km×n is constant. Then, we will see that the
s-Popov basis ofA1(F) has two sets of rows: rows corresponding to a nullspace basis for F, and
elementary rows of the form [0 · · · 0 X 0 · · · 0]. Algorithm 1 is a modified version of
(Giorgi et al., 2003, Algo. M-Basis with d = 1), and also a specialization of (Jeannerod et al.,
2017, Algo. 9) when the multiplication matrix is zero.
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Algorithm 1 – M-Basis-1 (Popov basis at order (1, . . . , 1))

Input:
• constant matrix F ∈ Km×n,
• shift s ∈ Zm.

Output: the s-Popov basis ofA1(F).
1. πs ← m × m permutation matrix such that πs [(s1, 1) · · · (sm,m)]T is lexicographically

increasing
2. (ρ,L) ∈ Zr

>0×K
m×m ← row rank profile of πsF, and L-factor in the LSP decomposition

of πsF, where L∗, j is an identity column for j < ρ
3. M ∈ Km×m ← matrix whose ith row is Li,∗ with negated off-diagonal entries if i < ρ,

and is the identity row if i ∈ ρ
4. P̂ ∈ K[X]m×m ← the matrix XµM with µ = [µ1, . . . , µm] such that µi = 1 if i ∈ ρ, and

µi = 0 otherwise
5. Return π−1

s P̂πs

Proposition 3.1. Algorithm 1 is correct and uses O(rω−2mn) operations in K, where r is the rank
of F.

Proof. Concerning the cost bound, the LSP decomposition at Step 2 uses O(rω−2mn) operations
(Storjohann, 2000, Sec. 2.2), and reveals the row rank profile.

For the correctness, we prove the following three properties: all the rows of the output P =

π−1
s P̂πs are inA1(F), the rows of P generateA1(F), and P is in s-Popov form.

First, we have that PF = 0 mod X since the rows of P are either multiples of X or, by
definition of M, in the left nullspace of F. Indeed, by property of the LSP decomposition, the
rows Li,∗ with negated off-diagonal entries for all i < ρ form a basis of the left nullspace of πsF.

Second, we show that any p ∈ A1(F) belongs to the row space of P. Writing p = qX + r with
r ∈ K1×m, we have qX = qX1−µXµ = qπ−1

s M−1X1−µ πsP. Furthermore, pF = rF = rπ−1
s πsF =

0 mod X, and therefore rπ−1
s = λM for some λ = [λi]i ∈ K1×m such that λi = 0 if i ∈ ρ. Recalling

that µi = 0 if i < ρ, we obtain r = λXµMπs = λπsP.
Finally, we prove that P is in s-Popov form. By construction, P̂∗, j is the jth column of the

identity if j < ρ, while for j ∈ ρ, it has constants everywhere but at position j, where p̂ j j = X. It
follows that lm0(P̂T) = Im, and it is then easily checked that lm0(PT) = Im.

It remains to prove that lms(P) is unit lower triangular, or, equivalently, that the entries [pi j]i j

of P satisfy

pii is monic and
{

deg(pi j) + s j ≤ deg(pii) + si if j ≤ i,
deg(pi j) + s j < deg(pii) + si if j > i. (5)

Writing [1 · · · m]πs = [π1 · · · πm], we have pi j = p̂πiπ j for all i, j. If Pi,∗ is nonconstant,
then so is P̂πi,∗ and thus, by construction, its only nonzero entry is p̂πiπi = X. Hence Pi,∗ =

[0 · · · 0 X 0 · · · 0] with X at index i, so that Eq. (5) holds.
Let now Pi,∗ be a constant row. In this case, P̂πi,∗ is constant as well and p̂πiπi = 1. Conse-

quently, pii = 1 and Eq. (5) is now equivalent to

if ( j ≤ i and s j > si) or ( j > i and s j ≥ si), then pi j = 0.
13



Now, by definition of πs, if i and j are such that s j > si, or such that s j ≥ si and j > i, then
π j > πi. Since P̂ is lower triangular, this implies p̂πiπ j = 0, that is, pi j = 0.

Now, we recall PM-Basis in Algorithm 2. Note that it computes a basis of degree at most d,
although there often exist s-minimal bases with larger degree. As a result, the two bases obtained
recursively can be multiplied in MM(m, d) operations.

Algorithm 2 – PM-Basis (Minimal basis for a uniform order)

Input:
• order d ∈ Z>0,
• matrix F ∈ K[X]m×n of degree less than d,
• shift s ∈ Zm.

Output:
• an s-ordered weak Popov basis ofAd(F) of degree at most d.

1. If d = 1 then return M-Basis-1(F, s)
2. Else:

a. P1 ← PM-Basis(dd/2e,F mod Xdd/2e, s)
b. G← (X−dd/2eP1F) mod Xbd/2c; t← rdegs(P1)
c. P2 ← PM-Basis(bd/2c,G, t)
d. Return P2P1

Proposition 3.2. Algorithm 2 is correct and uses O((1 + n
m )MM′(m, d)) operations in K.

Proof. From Proposition 3.1, Step 1 computes the s-Popov basis of A1(F), which has degree at
most 1. Then, it follows by induction that the output has degree at most d = dd/2e + bd/2c, and
items (i) and (iii) of Lemma 2.4 prove the correctness.

For the cost analysis, let us assume that d is a power of 2. From Proposition 3.1, Step 1
uses O(mω−1n) operations. The tree of the recursion has d leaves, which altogether account for
O(mω−1nd) field operations. Note that mω−1nd ∈ O( n

m MM′(m, d)).
Then, there are recursive calls at Steps 2.a and 2.c, in dimension m and at order d/2. The

residual G at Step 2.b is obtained from the product P1F, where P1 is an m × m matrix of degree
at most d/2, and F is an m × n matrix of degree at most d. This product is done in O(MM(m, d))
operations if n ≤ m, and in O( n

m MM(m, d)) operations if m ≤ n. The multiplication at Step 2.d in-
volves two m×m matrices of degree at most d/2, and hence is done in O(MM(m, d/2)) operations
in K. The cost bound follows.

Based on Lemma 2.3, we show how to obtain the s-Popov approximant basis using two calls
to PM-Basis (Algorithm 3). This yields an efficient solution to Problem 1 when the order is
balanced as in Hd, and proves the first item of Theorem 1.2. Note that here we allow the order
to be non-uniform, based on the following remark.

Remark 3.3. Let d ∈ Zn
>0 and F ∈ K[X]m×n. Then, for any d′ ∈ Zn

>0 such that d′ ≥ d, we have
Ad(F) = Ad′ (FXd′−d ). In particular, algorithms for uniform orders can be used to solve the case
of arbitrary orders: for d = max(d) and G = FX(d,...,d)−d , we haveAd(F) = Ad(G). For example,
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for a balanced order (d such that Hd: d ∈ O(σ/n)), PM-Basis uses O((1 + n/m)MM′(m, σ/n))
operations, where σ = |d|.

Algorithm 3 – Popov-PM-Basis (Popov basis for a balanced order)

Input:
• order d ∈ Zn

>0,
• matrix F ∈ K[X]m×n with cdeg(F) < d,
• shift s ∈ Zm.

Output: the s-Popov basis ofAd(F).
1. d ← max(d); G← FX(d,...,d)−d

2. P← PM-Basis(d,G, s)
3. δ← the diagonal degrees of P
4. R← PM-Basis(d,G,−δ)
5. Return lm−δ(R)−1R

The correctness of Algorithm 3 follows from that of PM-Basis, and from Lemma 2.3 and Re-
mark 3.3. Besides, the cost bound O((1 + n/m)MM′(m, d)) follows from Proposition 3.2, noting
that Step 5 uses O(mωd) ⊆ O(MM′(m, d)) operations since deg(R) ≤ d.

4. Reduction to the case n < m

Let d = (d1, . . . , dn) ∈ Zn
>0, F ∈ K[X]m×n such that cdeg(F) < d, and let s ∈ Zm. In this

section we assume n ≥ m, which also implies σ = d1 + · · · + dn ≥ m, and we present an efficient
procedure relying on PM-Basis to reduce to the case n < m.

Here is an overview of the reduction; for simplicity, we assume d1 ≥ · · · ≥ dn. Then, we
consider the truncated order d′ = (dm, . . . , dm, dm+1, . . . , dn) ∈ Zn

>0 and the truncated matrix
F′ = F mod Xd′ ; we will compute a basis P of Ad′ (F′). Then, defining the residual order
d̂ = d − d′, the residual matrix F̂ = PF′ mod Xd̂ has fewer nonzero columns than it has rows.
Furthermore, Lemma 2.4 shows that for any basis P̂ ofAd̂(F̂), the product P̂P is a basis ofAd(F).

Below, we detail how to efficiently obtain P and the residual instance (d̂, F̂) (Algorithm 4).
We now give an overview of this algorithm, assuming that dm, . . . , dn are powers of 2, for ease of
presentation. How to reduce to this case follows from Remark 3.3.

Then, denoting by ` the integer such that dm = 2`, we define

νi = Card({ j ∈ {1, . . . , n} | d j = 2i})

for 0 ≤ i ≤ `, as well as ν`+1 = n − ν0 − · · · − ν`. This can be illustrated as follows:

d = (

m︷                      ︸︸                      ︷
> 2`, . . . , > 2`︸           ︷︷           ︸

ν`+1

, 2`, . . . , 2`︸     ︷︷     ︸
ν`

, 2`−1, . . . , 2`−1︸          ︷︷          ︸
ν`−1

, . . . , 1, . . . , 1︸  ︷︷  ︸
ν0

).

Furthermore, we let µi = ν`+1+ν`+· · ·+νi = max{ j | d j = 2i}. Then, guided by this decomposition
of d, we obtain P in O(MM′(m, σ/m)) operations via ` + 1 calls to PM-Basis. This is faster than
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the straightforward approach consisting in a single call to PM-Basiswith order d = 2` ∈ O(σ/m),
which uses O( n

m MM′(m, σ/m)) operations.
The first call is with d = 1 and computes an approximant basis P0 for all µ0 = n columns

of F mod X. After this, we are left with the residual matrix G = X−1P0F and the order (d1 −

1, . . . , dn−1), whose last ν0 entries are zero. Thus, the second call is with d = 21−20 = 1 and for
the µ1 = n − ν0 first columns of G mod X, giving an approximant basis P1. Then P1P0 is a basis
of A(2,...,2)(F). Considering the residual G = X−2P1P0F, the third call is with d = 22 − 21 = 2
and for the µ2 first columns of G mod X2, yielding an approximant basis P2. Thus, P2P1P0 is
a basis of A(4,...,4)(F). Continuing this process until reaching the order (2`, . . . , 2`), we obtain
P = P` · · ·P0, and we are left with a residual matrix having ν`+1 = µ`+1 < m columns.

Algorithm 4 – ReduceColDim (Reduction to n < m via PM-Basis)

Input:
• order d = (d1, . . . , dn) ∈ Zn

>0 with d1 ≥ · · · ≥ dn,
• matrix F ∈ K[X]m×n with cdeg(F) < d and n ≥ m,
• shift s ∈ Zm.

Output:
• d̂ = (d1 − dm, . . . , dν − dm) ∈ Zν

>0, where ν = max{ j | d j > dm},
• F̂ = X−dm [(PF∗,1) mod Xd1 | · · · |(PF∗,ν) mod Xdν ] ∈ K[X]m×ν,
• ŝ = rdegs(P) ∈ Zm,
• P an s-ordered weak Popov basis ofAd−(d̂,0)(F).

1. d̃ j ← 2dlog2(d j)e for m ≤ j ≤ n; and d̃ j ← d j + d̃m − dm for 1 ≤ j < m
2. F̃← FXd̃−d where d̃ = (d̃1, . . . , d̃n)
3. ` ← log2(d̃m); µi ← max{ j | d̃ j ≥ 2i} for 1 ≤ i ≤ `; and ν← max{ j | d̃ j > 2`}
4. P← M-Basis-1(F̃ mod X, s)
5. For i from 1 to `:

a. G← (X−2i−1 P[F̃∗,1| · · · |F̃∗,µi ]) mod X2i−1

b. Pi ← PM-Basis(2i−1,G, rdegs(P))
c. P← PiP

6. d̂← (d1 − dm, . . . , dν − dm); and ŝ← rdegs(P)
7. F̂← X−dm [(PF∗,1) mod Xd1 | · · · |(PF∗,ν) mod Xdν ]
8. Return (d̂, F̂, ŝ,P)

Proposition 4.1. Algorithm 4 is correct and uses O(MM′(m, σ/m)) operations in K, where σ =

d1 + · · · + dn. Furthermore, the output is such that F̂ has m rows and ν < m columns, |d̂| ≤ σ,
deg(P) ≤ 2σ/m, and for any basis Q ofAd̂(F̂), then QP is a basis ofAd(F).

Proof. Steps 1 and 2 compute d̃ and F̃ such that (d̃i)i≥m are the powers of two just larger than
(di)i≥m, and Ad(F) = Ad̃(F̃) (see Remark 3.3). Step 3 defines parameters, and Step 4 computes
the s-Popov basis P ofA(1,...,1)(F̃).

Then, Lemma 2.4 shows that we have the following invariant for the loop at Step 5: at
the end of the iteration i, P is an s-ordered weak Popov approximant basis for F̃ at order
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(2i, . . . , 2i, d̃µi+1, . . . , d̃n). Thus, after exiting the loop, P is an s-ordered weak Popov approxi-
mant basis for F̃ at order

(2`, . . . , 2`, d̃µ`+1, . . . , d̃n) = (d̃m, . . . , d̃m, d̃m+1, . . . , d̃n) = d̃ − (d̂, 0).

By choice of F̃, we obtain that P is an approximant basis for F at order

d − (d̂, 0) = (dm, . . . , dm, dm+1, . . . , dn).

In particular, it follows from Lemma 2.4 that QP is a basis ofAd(F).
Now, concerning the cost bound, Proposition 3.1 states that Step 4 costs O(mω−1n) operations,

since n ≥ m. This is within O(MM′(m, σ/m)), since we have mω−1n ∈ O(MM′(m, n/m)), with
n ≤ σ. The resulting basis P has degree at most 1.

To obtain the residual at Step 5.a, we compute P[F̃∗,1| · · · |F̃∗,µi ] mod X2i
; this is done in

O( µi
m MM(m, 2i)) operations since µi ≥ m. Then, according to Proposition 3.2, Step 5.b uses

O( µi
m MM′(m, 2i−1)) operations and deg(Pi) ≤ 2i−1. Thus, at Step 5.c we multiply two m × m

matrices of degree at most 2i−1, which uses O(MM(m, 2i)) operations.
Altogether, the loop at Step 5 uses O(

∑
1≤i≤`

µi
m MM′(m, 2i−1)) ⊆ O(MM′(m, σ/m)) operations

in K, where we prove the inclusion as follows. By definition of MM′(·, ·),∑
1≤i≤`

µi

m
MM′(m, 2i−1) =

∑
1≤i≤`, 0≤k<i

µi

m
2i−1−kMM′(m, 2k)

≤ 2
∑

0≤k<`

2−k σ

m
MM′(m, 2k) ≤ 2MM′(m, σ/m).

Both inequalities are consequences of the construction of d̃: the first one follows from

2σ ≥ |d̃| = d̃1 + · · · + d̃ν + (µ` − µ`+1)2` + · · · + (µ1 − µ2)2 + (n − µ1) ≥
∑

1≤i≤` µi2i−1,

while the second one comes from the fact that we have ` − 1 ≤ log(σ/m) since

m2` = md̃m ≤ d̃1 + · · · + d̃m ≤ |d̃| ≤ 2σ.

Finally, the matrix F̂ at Step 7 is directly obtained from the product P[F∗,1| · · · |F∗,ν]. This
is computed in O(MM(m, σ/m)) operations, according to the first item of Lemma 2.6 with d =

2σ/m, noting that (ν + σ/(d + 1))/m < 2 since ν < m.

As a result, we obtain the second item in Theorem 1.2; we only consider the case n ≥ m,
hence also σ ≥ m, since otherwise the claimed bound follows from that of the first item in the
same theorem. We first apply Algorithm 4 to reduce to the column dimension in O(MM′(m, σ/m))
operations. This gives a first basis, in s-ordered weak Popov form, and a new instance (d̂, F̂, ŝ).
Then we compute a second basis, in ŝ-ordered weak Popov form for Ad̂(F̂), via Algorithm 2;
since F̂ has fewer columns than rows by construction, this uses O(MM′(m,max(d))) operations.

Multiplying both bases costs O(MM(m, σ/m + max(d))) and yields an s-ordered weak Popov
basis of Ad(F); to obtain the canonical basis, one would rather simply deduce the s-minimal
degree δ from the two bases, and then either restart the process with the shift −δ (similarly to
Algorithm 3) or call the algorithm in the next section.
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5. Computing approximant bases when the minimal degree is known

Let (d,F, s) be the input of Problem 1, and suppose that the s-minimal degree δ ∈ Zm
≥0

of Ad(F) is known. In this context, Lemma 2.3 suggests that we may focus on computing a
basis R of Ad(F) which is −δ-minimal; then, the s-Popov basis can be easily retrieved via the
constant transformation lm−δ(R)−1R. An obstacle towards computing R efficiently is the possible
non-uniformity of δ = cdeg(R), which also impacts the shift −δ. As sketched in Section 1
and in Fig. 1 (bottom), we handle this in Algorithm 5 by using the partial linearizations from
(Storjohann, 2006) which allow us to compute R using essentially one call to ReduceColDim
and then one call to PM-Basis. We defer the proof of Proposition 5.1 to Section 5.3, and we first
present the partial linearizations.

Algorithm 5 – KnownDegAppBasis (Popov basis for known minimal degree)

Input:
• order d ∈ Zn

>0,
• matrix F ∈ K[X]m×n with cdeg(F) < d,
• shift s ∈ Zm,
• the s-minimal degree δ ∈ Zm

≥0 ofAd(F).
Output: the s-Popov basis ofAd(F).
1. /* Output column linearization ⇒ balanced minimal degree */

δ← d|d|/me
(−δ,C, (αi)1≤i≤m,m)← ColParLin(d,F,−δ, δ,max(−δ)) // see Section 5.1

2. /* ReduceColDim ⇒ fewer columns than rows */

permute d into nonincreasing order, and permute the columns of F accordingly

(d̂, F̂,−δ̂,R1)←
{

ReduceColDim(d,CF mod Xd ,−δ) if n ≥ m
(d,CF mod Xd ,−δ, Im) if n < m

ν← the number of columns of F̂ // F̂ ∈ K[X]m×ν with ν < m
3. /* Overlapping linearization ⇒ balanced order and dimensions */

Construct Lδ(d̂) ∈ Zm+ν
>0 and Ld̂,δ(F̂) ∈ K[X](m+ν)×(ν+ν) as in Definition 5.4

t← (−δ̂,−δ, . . . ,−δ) ∈ Zm+ν
≤0

4. /* Compute approximant basis for linearized instance */

d̂ ← max(Lδ(d̂)); ∆← (d̂, . . . , d̂) − Lδ(d̂)
P← PM-Basis(d̂,Ld̂,δ(F̂)X∆ , t)

5. /* Deduce basis for original instance and normalize */

R2 ← leading principal m × m submatrix of P
R← submatrix of R2R1C formed by its rows at indices α1 + · · · + αi for 1 ≤ i ≤ m
Return lm−δ(R)−1R

Proposition 5.1. Algorithm 5 is correct and uses O(MM′(m, σ/m)) operations in K, where we
assume that σ = |d| ∈ Ω(m).

5.1. Output column linearization to balance the output degrees
Here, we detail the transformation used in Step 1 of Algorithm 5, for which we closely follow

ideas from (Storjohann, 2006, Sec. 3) and (Zhou and Labahn, 2012, Sec. 6). Yet, there are a few
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differences linked to our goal of computing bases in Popov form or in ordered weak Popov form.
This transformation corresponds to modifying the input matrix F and the input shift s so that

the computed basis P is a column partial linearization of the sought approximant basis P, the
benefit being that P has uniformly small degrees. Like all partial linearizations, this increases the
matrix dimensions, m in this case. This transformation is thus mostly useful when we are able to
predict which columns of P may have large degree: then, we only perform partial linearization
for the columns that require it, and m is typically at most doubled. If the prediction was not
completely accurate, this will only yield a subset of the rows of P (see Section 7.2).

Here, knowing the shifted minimal degree gives us precisely the column degree of the sought
basis P. Thanks to this information, the original transformation of Storjohann (2006, Sec. 3)
allows us to reduce to the case where the output has degree in O(σ/m), and yet to retrieve the full
Popov approximant basis P. This has already been stated in (Jeannerod et al., 2016, Lem. 4.2) in
a more general context; for the purpose of this section, the latter result would be sufficient.

Still, in Section 7.2 we will meet situations where the s-minimal degree is not available a
priori, but where assumptions on the shift allow us to guess the locations of large degree columns.
This leads us to present, in the next lemma, the details of a more general transformation similar to
that in (Zhou and Labahn, 2012, Sec. 6); in Corollary 5.3, we apply it to the specific case where
the minimal degree if known. For more insight into this transformation, we refer the reader to
the latter reference as well as (Storjohann, 2006, Sec. 3).

From the next lemma we derive a procedure ColParLin which, on input (d,F, s, δ, t), returns
the partial linearization parameters (s,C, (αi)1≤i≤m,m). It is used in Algorithms 5 and 8.

Lemma 5.2. Let d ∈ Zn
>0, let F ∈ K[X]m×n with cdeg(F) < d, and let s ∈ Zm. Then, consider a

degree δ ∈ Z>0 for partial linearization and an integer parameter t ∈ Z.
Define the shift t = (t1, . . . , tm) = s − max(s) + t ∈ Zm

≤t, and for each i ∈ {1, . . . ,m} write
−ti = (αi − 1)δ + βi with αi = d−ti/δe and 1 ≤ βi ≤ δ if ti < 0, and with αi = 1 and βi = −ti if
ti ≥ 0. Let m = α1 + · · · + αm, and define the shift s ∈ Zm

≤0 as

s = (−δ, . . . ,−δ,−β1︸             ︷︷             ︸
α1

, . . . ,−δ, . . . ,−δ,−βm︸             ︷︷             ︸
αm

). (6)

We have −δ ≤ s ≤ max(t,−1), and if t ≥ 0 then m ≤ m ≤ m + |max(s) − s|/δ. Define also the
compression-expansion matrix C ∈ K[X]m×m as the transpose of

CT =


1 Xδ · · · X(α1−1)δ

. . .

1 Xδ · · · X(αm−1)δ

 . (7)

Then,Ad(F) = Ad(CF mod Xd )C. Furthermore, for i ∈ {1, . . . ,m},
• If p ∈ K[X]1×m has s-pivot index α1 + · · · + αi and s-pivot degree γ, then pC has s-pivot

index i and s-pivot degree γ + (αi − 1)δ = γ − ti − βi.
• If p ∈ K[X]1×m has s-pivot index i and s-pivot degree γ ≥ −ti, then p = pC for some

p ∈ K[X]1×m which has s-pivot index α1 + · · · + αi and s-pivot degree γ + ti + βi.

Now, let δ = (δ1, . . . , δm) ∈ Zm
≥0 be the s-minimal degree of Ad(F), let P ∈ K[X]m×m be an s-

ordered weak Popov basis ofAd(CF mod Xd ), and let i ∈ {1, . . . ,m}. If δi ≥ −ti, the approximant
Pα1+···+αi,∗C ∈ Ad(F) has s-pivot index i and s-pivot degree δi. Furthermore, if Pα1+···+αi,∗ has s-
pivot degree more than βi (or, equivalently, rdegs(Pα1+···+αi,∗) > 0), then δi > −ti.
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Proof. If t ≥ 0, for all i we have αi ≤ 1 + (t − ti)/δ since t ≥ ti. Hence the bound on m. The
bound on s follows from min(−t, 1) = min(−t, 1) ≤ βi ≤ δ, which holds by definition.

The inclusion Ad(F) ⊇ Ad(CF mod Xd )C is obvious: any p ∈ Ad(CF mod Xd ) satisfies
pCF = 0 mod Xd by definition, hence pC ∈ Ad(F). Conversely, since C contains Im as a
submatrix, from p ∈ Ad(F) one can easily construct p such that p = pC; then we have pCF =

pF = 0 mod Xd , hence p ∈ Ad(CF mod Xd ) and therefore p ∈ Ad(CF mod Xd )C.
Let p be as in the first item, and let p = pC. We write p = [p j]1≤ j≤m, p = [p j]1≤ j≤m, and

s = [s j]1≤ j≤m. Our assumption on the s-pivot of p implies that deg(p j) ≤ γ − βi − s j holds for
1 ≤ j ≤ m, with equality if j = α1 + · · · + αi and strict inequality if j > α1 + · · · + αi. Now, by
construction we have p j =

∑
1≤k≤α j

pα1+···+α j−1+kX(k−1)δ for 1 ≤ j ≤ m, hence

deg(p j) ≤ γ − βi + β j + (α j − 1)δ = γ − βi − t j,

with equality if j = i and strict inequality if j > i. Thus, p has t-pivot index i and t-pivot degree
γ − βi − ti; its s-pivot index and degree are the same since s and t only differ by a constant.

Let p be as in the second item, and write p = [p j]1≤ j≤m. We define p = [pk]1≤k≤m ∈ K[X]1×m

as the (unique) vector such that p = pC and deg(pk) < δ if k < {α1 + · · · + α j, 1 ≤ j ≤ m}. Thus,
the entry pα1+···+α j

is the nonnegative degree part of X−(α j−1)δp j. In particular, for j = i, since by
assumption deg(pi) = γ ≥ max(−ti, 0) ≥ (αi − 1)δ, we obtain that pα1+···+αi

has degree exactly
deg(pi)− (αi−1)δ = γ+ ti +βi, which we denote by γ. Then, our assumption on the s-pivot index
and degree of p, which are the same as its t-pivot index and degree, implies that

deg(pα1+···+α j
) ≤ deg(p j) − (α j − 1)δ ≤ γ + ti − t j − (α j − 1)δ = γ + sα1+···+αi − sα1+···+α j ,

where the second inequality is strict if j > i. Furthermore, for k < {α1 + · · · + α j, 1 ≤ j ≤ m},
the requirement deg(pk) < δ = −sk implies that deg(pk) + sk < 0 ≤ γ + ti = γ + si. Thus, p has
s-pivot index α1 + · · · + αi and s-pivot degree γ.

Now, let p = Pα1+···+αi,∗. We note that pC ∈ Ad(F) and that p has s-pivot index α1 + · · · + αi

since P is in s-ordered weak Popov form; let γ be the s-pivot degree of p.
Then, from the first item we obtain that pC has s-pivot index i and s-pivot degree γ − ti − βi;

this must be at least δi by minimality of δ. On the other hand, the second item implies that there
exists an approximant inAd(CF mod Xd ) which has s-pivot index α1+· · ·+αi and s-pivot degree
δi + ti + βi; this must be at least γ by minimality of P. Thus, we have γ − ti − βi = δi.

To prove our last claim, we assume that γ > βi, and we show that δi ≤ −ti leads to a
contradiction. Indeed, in this case there exists p ∈ Ad(F) with s-pivot index i and s-pivot degree
γ = −ti. Then, the second item shows the existence of an approximant inAd(CF mod Xd ) with
s-pivot degree γ + ti + βi = βi < γ, which is impossible by minimality of γ.

Corollary 5.3. Let d ∈ Zn
>0, let F ∈ K[X]m×n with cdeg(F) < d, let s ∈ Zm, and let δ ∈ Zm

≥0 be
the s-minimal degree of Ad(F). Choosing parameters δ ≥ d|δ|/me and t = max(−δ), we apply
the construction of Lemma 5.2 to obtain (s,C, (αi)1≤i≤m,m) = ColParLin(d,F,−δ, δ, t).

Then, we have m ≤ m < 2m, −δ ≤ s ≤ 0, and s = −δ where δ is the s-minimal degree of
Ad(CF mod Xd ). Let P ∈ K[X]m×m be an s-ordered weak Popov basis of Ad(CF mod Xd ) and
R ∈ K[X]m×m be the submatrix of PC formed by its rows at indices {α1+· · ·+αi, 1 ≤ i ≤ m}. Then,
R is a −δ-ordered weak Popov basis of Ad(F) and therefore, as a consequence of Lemma 2.3,
lm−δ(R)−1R is the s-Popov basis ofAd(F).
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Proof. The bound on s follow from that in Lemma 5.2. Here, we have αi = dδi/δe < 1 + δi/δ for
1 ≤ i ≤ m, hence m < m + |δ|/δ ≤ 2m. Furthermore, −t = δ by definition, and thus −t ≤ δ. Then,
the last claim of Lemma 5.2 shows that R is a −δ-ordered weak Popov basis ofAd(F).

Our claim on δ can then be showed using the minimality of δ and the arguments used for the
items of Lemma 5.2. For more details, the reader may refer to the proof of (Jeannerod et al., 2016,
Lem. 4.2) which contains an explicit description of the s-Popov basis ofAd(CF mod Xd ).

5.2. Overlapping linearization to balance orders and dimensions
Now, we study Step 3 of Algorithm 5: assuming that the shifted minimal degree is known,

balanced (Step 1), and that n < m (Step 2), we reduce to an instance solved efficiently by PM-
Basis. Namely, we use the overlapping linearization of Storjohann (2006, Sec. 2) to further
transform the instance of Problem 1 into one with a balanced order and n ∈ Θ(m). In the latter
reference, as well as in (Zhou and Labahn, 2012, Sec. 3), this linearization has been considered in
the case of a uniform order d = (d, . . . , d). Here, we extend the construction to arbitrary orders,
and we show how it can be used in our specific situation where the s-minimal degree is known.

We first give an overview of the construction and of its properties. Let d ∈ Zn
>0 and F ∈

K[X]m×n with cdeg(F) < d, and choose a positive integer δ. Then, we build a matrix Ld,δ(F) ∈
K[X](m+n)×(n+n) and an order Lδ(d) ∈ Zn+n

>0 such that
• the largest entry of the order Lδ(d) is at most 2δ,
• the increase in dimension satisfies n < σ/δ, where σ = |d|,
• approximants p ∈ Ad(F) of degree at most δ correspond to approximants [p q] ∈
ALδ(d)(Ld,δ(F)) for some q of degree less than rdeg(p).

The last item, stated in Lemma 5.5, gives a link between the original approximation instance
and the one obtained via the overlapping linearization. This induces a method to retrieve a
minimal basis of the original instance via the computation of a minimal basis for the transformed
instance, assuming we choose δ as an upper bound on the degree of the former basis; this is
detailed in Lemma 5.6.

The first two items are direct consequences of the construction, given in Definition 5.4. They
specify the dimensions of the transformed instance. In general, the s-Popov approximant basis
may have degree up to σ, in which case one has to choose δ ≥ σ; then, the construction is point-
less since it does not decrease the entries of the order. However, in the context of Algorithm 5,
one has already applied the output column linearization of Section 5.1, thus ensuring that δ can
be chosen to be about σ/m. Then, the new order is balanced and the dimension increase is only
about m: the transformed instance can be solved efficiently using a single call of PM-Basis. More
details about Step 3 of Algorithm 5 can be found in Section 5.3.

Let us now present the construction of Ld,δ(F) and Lδ(d).

Definition 5.4. Let d = (d1, . . . , dn) ∈ Zn
>0, let F ∈ K[X]m×n with cdeg(F) < d, and let δ ∈ Z>0.

Then, for 1 ≤ i ≤ n, let di = αiδ + βi with αi =
⌈

di
δ
− 1

⌉
and 1 ≤ βi ≤ δ. Considering the ith

column of F, we write its Xδ-adic representation as

F∗,i = F(0)
∗,i + F(1)

∗,i Xδ + · · · + F(αi)
∗,i Xαiδ

where cdeg([F(0)
∗,i F(1)

∗,i · · · F(αi)
∗,i ]) < (δ, . . . , δ, βi).

Then, if αi > 1 we define

F∗,i =
[
F(0)
∗,i + F(1)

∗,i Xδ F(1)
∗,i + F(2)

∗,i Xδ · · · F(αi−1)
∗,i + F(αi)

∗,i Xδ
]
∈ K[X]m×αi
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and the matrix Ei = [0 Iαi−1] ∈ K[X](αi−1)×αi , and otherwise we let F∗,i = F∗,i and Ei ∈ K[X]0×1.
The overlapping linearization of F with respect to d and δ is defined as

Ld,δ(F) =



F∗,1 F∗,2 · · · F∗,n
E1

E2
. . .

En


∈ K[X](m+n)×(n+n),

where n = max(α1 − 1, 0) + · · · + max(αn − 1, 0). Furthermore, we define

Lδ(d) = (d1, . . . , dn) ∈ Zn
>0,

where di = (2δ, . . . , 2δ, δ + βi) ∈ Zαi
>0 if αi > 1 and di = di otherwise.

The next lemma gives a correspondence between the approximants of degree bounded by δ
inAd(F) and inALδ(d)(Ld,δ(F)). It uses notation from Definition 5.4.

Lemma 5.5. Let d ∈ Zn
>0, let F ∈ K[X]m×n with cdeg(F) < d, and let δ ∈ Z>0. Then,

• If a vector p ∈ K[X]1×m is in Ad(F), then there exists a unique q ∈ K[X]1×n such that
[p q] ∈ ALδ(d)(Ld,δ(F)), rdeg(q) < rdeg(p), and cdeg(q) < Lδ(d)ET where E =

diag(E1, . . . ,En). Explicitly, it is defined as q = −p[F∗,1 · · · F∗,n]ET mod XLδ(d)ET
.

• If [p q] ∈ K[X]1×(m+n) is in ALδ(d)(Ld,δ(F)) and such that rdeg(q) < δ and rdeg(p) ≤ δ,
then p ∈ Ad(F); in particular, rdeg(q) < rdeg(p).

Proof. Concerning the first item, we first consider i ∈ {1, . . . , n} such that αi ∈ {0, 1}. Then, we
have F∗,i = F∗,i, di = di, and Ei ∈ K[X]0×1. Defining qi as an empty matrix in K[X]1×0, the
identity pF∗,i = 0 mod Xdi can be rewritten as pF∗,i + qiEi = 0 mod Xdi .

Now, for i such that αi > 1, we define qi = [q1,i · · · qαi−1,i] ∈ K[X]1×(αi−1) as q j,i = X− jδp(F(0)
∗,i + · · · + F( j−1)

∗,i X( j−1)δ) mod X2δ for 1 ≤ j < αi − 1,
qαi−1,i = X−(αi−1)δp(F(0)

∗,i + · · · + F(αi−2)
∗,i X(αi−2)δ) mod Xδ+βi .

(8)

These are polynomials since pF∗,i = 0 mod Xdi , and rdeg(qi) < rdeg(p) holds since by construc-
tion cdeg(F(k)

∗,i ) < δ for all k. For j < αi − 1, p(F(0)
∗,i + · · ·+ F( j+1)

∗,i X( j+1)δ) = 0 mod X( j+2)δ becomes
q j,iX jδ + p(F( j)

∗,i X
jδ + F( j+1)

∗,i X( j+1)δ) = 0 mod X( j+2)δ, hence p(F( j)
∗,i + F( j+1)

∗,i Xδ) + q j,i = 0 mod X2δ.
Similarly, we obtain p(F(αi−1)

∗,i + F(αi)
∗,i Xδ) + q j,i = 0 mod Xδ+βi . In short, we have

[
p qi

] [F∗,i
Ei

]
= 0 mod Xdi where di = (2δ, . . . , 2δ, δ + βi). (9)

Thus, by construction of Ld,δ(F) and Lδ(d), we have [p q1 · · · qn] ∈ ALδ(d)(Ld,δ(F)). Besides,
we have proved the degree bound for [q1 · · · qn]; the explicit formula follows from Eq. (9),
since the latter gives qi = qiEiET

i = −pF∗,iET
i mod XdiET

i .
Now, we prove the second item. We write q = [q1 · · · qn] with qi ∈ K[X]1×0 if αi ∈ {0, 1}

and qi = [q1,i, . . . , qαi−1,i] ∈ K[X]1×(αi−1) if αi > 1. Let i ∈ {1, . . . , n}. If αi ∈ {0, 1}, then we have

22



pF∗,i = 0 mod Xdi . If αi > 1, then the identity in Eq. (9) holds and yields

p(F(0)
∗,i + F(1)

∗,i Xδ) = 0 mod X2δ,

p(F( j)
∗,i + F( j+1)

∗,i Xδ) = −q j,i mod X2δ for 1 ≤ j ≤ αi − 2,

p(F(αi−1)
∗,i + F(αi)

∗,i Xδ) = −qαi−1,i mod Xδ+βi ,

where qi = [q1,i, . . . , qαi−1,i]. The first identity and the second one for j = 1 imply that

p(F(0)
∗,i + F(1)

∗,i Xδ + F(2)
∗,i X2δ) = pF(0)

∗,i − q1,iXδ = 0 mod X2δ;

using the bounds rdeg(q) < δ and rdeg(p) ≤ δ we obtain q1,i = X−δpF(0)
∗,i and pF∗,i = 0 mod X3δ.

Then the same arguments with the above identity for j = 2, we obtain q2,i = X−2δp(F(0)
∗,i + F(1)

∗,i Xδ)
and pF∗,i = 0 mod X4δ. Continuing this process, we eventually obtain pF∗,i = 0 mod Xdi .

We now show that the s-Popov basis P ofAd(F) can be deduced from one for the transformed
problem, as long as δ is chosen to be at least deg(P).

Lemma 5.6. Let d ∈ Zn
>0, let F ∈ K[X]m×n with cdeg(F) < d, let s ∈ Zm, let δ ∈ Zm

≥0

be the s-minimal degree of Ad(F), and let δ ∈ Z>0 be such that δ ≥ max(δ). Let P be a
(−δ,−δ, . . . ,−δ)-ordered weak Popov basis of ALδ(d)(Ld,δ(F)). Then, the leading principal sub-
matrix R ∈ K[X]m×m of P is a −δ-ordered weak Popov basis of Ad(F) and therefore, as a
consequence of Lemma 2.3, lm−δ(R)−1R is the s-Popov basis ofAd(F).

Proof. In this proof, we use the notation t = (−δ,−δ, . . . ,−δ) ∈ Zm+n.
Let P ∈ K[X]m×m be a −δ-ordered weak Popov basis ofAd(F). Then, we have rdeg−δ(P) = 0

according to Lemma 2.3, hence in particular all rows of P have degree at most δ. The first item
of Lemma 5.5 implies that there exists a matrix Q ∈ K[X]m×(n+n) such that all rows of [P Q]
are in ALδ(d)(Ld,δ(F)) and rdeg(Q) < rdeg(P). Then, by choice of t, we have lmt([P Q]) =

[lm−δ(P) 0], with lm−δ(P) lower triangular by assumption. Thus [P Q] is in t-ordered weak
Popov form with all t-pivots in P.

Now, let us write

P =

[
R P12

P21 P22

]
with R ∈ K[X]m×m and P22 ∈ K[X]n×n.

Since the t-pivots of [R P12] are on the diagonal of R, by minimality of P we obtain rdeg−δ(R) =

rdegt([R P12]) ≤ rdegt([P Q]) = 0. Thus deg(R) ≤ max(δ) ≤ δ and deg(P12) < δ, and the
second item of Lemma 5.5 applied to the rows of [R P12] shows that each row of R is inAd(F).
Since R is in −δ-ordered weak Popov form, this gives rdeg−δ(R) ≥ rdeg−δ(P) = 0 by minimality
of P. Thus, we have rdeg−δ(R) = 0 and R is a −δ-ordered weak Popov basis ofAd(F).

5.3. Proof of Proposition 5.1
We first give some properties of the manipulated quantities to verify that the assumptions of

the lemmas and corollary referred to in the next paragraph are indeed satisfied. In what follows,
we let F = CF mod Xd . First, we have |δ| ≤ σ = |d| by Lemma 2.2, hence δ = dσ/me ≥ d|δ|/me
and thus we can apply Corollary 5.3; it ensures that the tuple δ computed at Step 1 is the −δ-
minimal degree of Ad(F) and satisfies −δ ≥ −δ, that is, max(δ) ≤ δ. Besides, since R1 is in
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−δ-ordered weak Popov form, it has −δ-pivot degree rdeg
−δ(R1) + δ = −δ̂ + δ, by definition of

δ̂ at Step 2. Thus, by the fourth item of Lemma 2.3 and by Proposition 4.1, δ̂ is the −δ̂-minimal
degree ofAd̂(F̂). This further implies δ̂ ≤ δ, and therefore max(δ̂) ≤ max(δ) ≤ δ.

By Remark 3.3, Step 4 computes a t-ordered weak Popov basis P of ALδ(d̂)(Ld̂,δ(F̂)). Then,
Lemma 5.6 applied to (d̂, F̂,−δ̂, δ̂, δ) shows that R2 is a −δ̂-ordered weak Popov basis ofAd̂(F̂).
Then, Proposition 4.1 implies that R2R1 is a basis of Ad(F) and the third item of Lemma 2.4
shows that it is in −δ-ordered weak Popov form, since −δ̂ = rdeg

−δ(R1). It then follows from
Corollary 5.3 applied to (d,F, s, δ) that R is the s-Popov basis ofAd(F).

Concerning the cost, Steps 1 and 3 use no field operation. At Step 2, obtaining the matrix
CF mod Xd involves no field operation given the form of C, but only at most mσ read/write of
field elements, where m < 2m according to Corollary 5.3. Then Proposition 4.1 indicates that
Step 2 uses O(MM′(m, σ/m)) operations, which is within the announced bound.

From ν ≤ |d̂|/δ by Definition 5.4 and |d̂| ≤ σ by Proposition 4.1, we get ν ≤ σ/dσ/me ≤ m.
Thus, Ld̂,δ(F) has m + ν < 3m rows and ν + ν < 3m columns. Besides, by construction of Lδ(d̂)
we have d̂ ≤ 2δ = 2dσ/me, hence d̂ ∈ O(σ/m). Note that we can discard the ceiling since we
have assumed σ ∈ Ω(m). Then, according to Proposition 3.2, the call to PM-Basis at Step 4 uses
O(MM′(m + ν, d̂)) ⊆ O(MM′(m, σ/m)) operations.

Now, deg(R1) ≤ 2σ/m by Proposition 4.1. We have seen that R2 has −δ̂-pivot degree δ̂,
which implies cdeg(R2) = δ̂ by Lemma 2.3. Thus deg(R2) = max(δ̂) ≤ dσ/me, which gives
deg(R2) ∈ O(σ/m) (remark that here only the case σ ≥ m is relevant, since otherwise n ≤ σ <
m ≤ m and then R1 = Im). Thus, computing R2R1 uses O(MM(m, σ/m)) operations. Then, given
the shape of C, obtaining R from R2R1 uses O(mmσ/m) ⊆ O(mσ) additions in K.

Finally, the computation of lm−δ(R)−1 at Step 5 uses O(mω) operations. Since cdeg(R) = δ
by Lemma 2.3 and |δ| ≤ σ by Lemma 2.2, applying the first item of Lemma 2.6 with d = 0 shows
that the product lm−δ(R)−1R costs O(d(m + σ)/memω) operations. Since σ ∈ Ω(m) this bound is
in O(mω−1σ), which itself is in O(MM′(m, σ/m)).

6. Computing approximant bases for arbitrary shifts

We now describe our algorithm for solving the general case of Problem 1 (Algorithm 6), and
we prove that it is correct and admits the cost bound announced in Theorem 1.1.

Proof of Theorem 1.1. Concerning the base case of the recursion at Step 1, (Jeannerod et al.,
2017, Prop. 7.1) shows that it correctly computes the s-Popov basis ofAd(F) using O(mω log(m))
operations. When the algorithm is called on an instance withσ > m, Step 1 is performed less than
2σ/m times in the whole computation, thus leading to a total contribution of O(mω−1σ log(m))
operations in the cost bound.

Let us now study Step 3, where σ > m and n < m. The instance (d,F) is first split into two
instances (d1,F1) and (d2,F2) such that |d1| = bσ/2c and |d2| = dσ/2e, and with cdeg(F1) < d1
and cdeg(F2) < d2. Furthermore, since n < m, the column dimensions of both F1 and F2 are less
than their row dimension, so that the recursive calls at Steps 3.e and 3.g will not lead to entering
Step 2. We note that when d = di0 the first entry of d2 is zero; then, one can discard this entry
and the corresponding zero column of F2.

At Step 3.f, the residual G is computed in O(MM(m, σ/m)) operations according to the second
item of Lemma 2.6. Indeed, we have σ > m > n, |cdeg(P1)| ≤ bσ/2c ≤ σ by Lemma 2.2, and
|d2| = dσ/2e ≤ σ by construction.
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Algorithm 6 – PopovAppBasis (Shifted Popov approximant basis)

Input:
• order d = (d1, . . . , dn) ∈ Zn

>0,
• matrix F ∈ K[X]m×n with cdeg(F) < d,
• shift s ∈ Zm.

Output: the s-Popov basis ofAd(F).
1. If σ = d1 + · · · + dn ≤ m : // Base case

a. For i from 1 to n:
(i) Ei ←

[
f(0)
i f(1)

i · · · f(di−1)
i

]
∈ Km×di where F∗,i =

∑
0≤k<di

f(k)
i Xk

(ii) Zi ←

 0 1
. . .

. . .

0 1
0

 ∈ Kdi×di

b. E←
[
E1 · · · En

]
∈ Km×σ; Z← diag(Z1, . . . ,Zn) ∈ Kσ×σ

c. Return LinearizationInterpolationBasis(E,Z, s,max(d))
// (Jeannerod et al., 2017, Algo. 9)

2. Else if n ≥ m: // Entered at most once at initial call

a. permute d into nonincreasing order, and the columns of F accordingly
b. (d̂, F̂, ŝ,P1)← ReduceColDim(d,F, s)
c. P2 ← PopovAppBasis(d̂, F̂, ŝ)
d. δ1 ← diagonal degrees of P1; δ2 ← diagonal degrees of P2

e. Return KnownDegAppBasis(d,F, s, δ1 + δ2)
3. Else: // Divide and conquer

a. 1 ≤ i0 ≤ n and 1 ≤ d ≤ di0 such that d1 + · · · + di0−1 + d = bσ/2c
b. fi0,1 ← F∗,i0 mod Xd; fi0,2 ← X−d(F∗,i0 − fi0,1)
c. d1 ← (d1, . . . , di0−1, d); F1 ← [F∗,1| · · · |F∗,i0−1|fi0,1]
d. d2 ← (di0 − d, di0+1, . . . , dn); F2 ← [fi0,2|F∗,i0+1| · · · |F∗,n]
e. P1 ← PopovAppBasis(d1,F1, s); δ1 ← diagonal degrees of P1

f. G← P1F2 mod Xd2 // using partial linearization

g. P2 ← PopovAppBasis(d2,G, s + δ1); δ2 ← diagonal degrees of P2

h. Return KnownDegAppBasis(d,F, s, δ1 + δ2)
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Let us define the shift t ∈ Zm as t = rdegs(P1) = s + δ1. Suppose that the recursive calls cor-
rectly compute the s- and t-Popov bases P1 and P2 ofAd1 (F1) andAd2 (G). Then, the s-minimal
degree of Ad(F) is δ1 + δ2 according to the item (iv) of Lemma 2.4. Thus, by Proposition 5.1,
Step 3.h computes the sought approximant basis in O(MM′(m, σ/m)) operations.

The recursive calls (Steps 3.e and 3.g) are with the same dimension m and half the total order
σ/2, hence the cost bound in the case n < m.

Step 2 deals with the case n ≥ m, and starts by calling Algorithm 4 to efficiently reduce to
n < m. According to the above discussion, Step 2 may only be entered once, at the initial call to
the algorithm. The correctness and cost bound in the case n ≥ m then follow from Proposition 4.1
and from the arguments used above concerning Step 3.

7. Computing approximant bases for weakly unbalanced shifts

In this section, we focus on the computation of approximant bases when the shift is weakly
unbalanced around its minimum value (Section 7.1) or around its maximum value (Section 7.2).

In the first case, this means that s satisfies the assumptionHs,min described in Section 1, that
is, |s −min(s)| ∈ O(σ) where σ = |d|. We recall that s −min(s) stands for the shift (si −min(s))i.
Note also that a balanced shift, that is, satisfyingHs,bal: max(s)−min(s) ∈ O(σ/m), also satisfies
Hs,min. In the second case, this means that s satisfiesHs,max: |max(s) − s| ∈ O(σ).

For shifts satisfying Hs,min, any s-minimal approximant basis P has small average row de-
gree δ, which means that the overlapping linearization of Section 5.2 at degree δ will efficiently
recover a large number of the rows of P (all those of degree ≤ δ). Then, Zhou and Labahn (2012)
show how the computed rows allow us to discard a correspondingly large number of rows and
columns in the overlapping linearization at degree 2δ, making it efficient to recover the rows of
P of degree ≤ 2δ. This process is continued until all rows are obtained.

In Section 7.1, we present a generalization of (Zhou and Labahn, 2012, Algo. 1) which sup-
ports arbitrary orders and returns the basis in s-Popov form. We do not assume that s satisfies
Hs,min, but we describe the algorithm and a detailed complexity analysis using the parameter
|s − min(s)|. Besides, we observe that this generalization does not impact the cost bound: we
obtain the same bound as in (ibid., Thm. 5.3) if we assumeHs,min.

For shifts satisfying Hs,max, an s-minimal approximant basis P may have both large average
row degree and large average column degree. Nevertheless, under this assumption the size of P
remains in O(mσ), and we can guess the location of the columns of P which may have uniformly
large degrees: they correspond to the smallest entries of the shift. For example, for the shift
s = (−σ, 0, . . . , 0), only the first column of P may have all its entries of degree close to σ. Based
on this, (ibid., Algo. 2) uses output column linearization to balance the degrees according to
this guessed column degree profile of P. This is similar to the output column linearization of
Algorithm 5, except that here we have no guarantee that the guessed column degree is the actual
column degree of P. As a result, the linearization will be called a logarithmic number of times,
until all rows of P are revealed. The efficiency of each step depends on the quantity |max(s) − s|,
which is assumed small inHs,max.

Similarly, in Section 7.2, we present a generalization of (ibid., Algo. 2) which supports arbi-
trary orders and returns the basis in s-Popov form. We do not assume that s satisfies Hs,max but
the algorithm and the cost bound are parametrized by |s − min(s)|. Besides, this generalization
does not impact the cost bound obtained in (ibid., Thm. 6.14).

Before entering the details, we remark that the first item of Theorem 1.3 follows as a corol-
lary of Proposition 7.3, although the latter only proves that we can compute an s-ordered weak
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Popov basis of Ad(F) within the claimed cost bound. Indeed, this computation reveals the s-
minimal degree ofAd(F) and therefore it remains to call Algorithm 5, which also fits within the
claimed cost bound, to obtain the s-Popov basis. The same remark holds for the second item of
Theorem 1.3, which follows as a corollary of Proposition 7.4 and Algorithm 5.

7.1. Weakly unbalanced shift around its minimum value

Here we focus on the computation of approximant bases for shifts that satisfyHs,min, that is,
|s −min(s)| ∈ O(σ). For this, we extend the approach of (Zhou and Labahn, 2012, Sec. 3 to 5) to
work with an arbitrary order, and we add the guarantee that the basis is in s-ordered weak Popov
form. We achieve these improvements without impacting the cost bound of the algorithm.

In this approach, one computes approximants for overlapping linearizations of (d,F) (see
Section 5.2), for a linearization degree parameter δ which is doubled iteratively until the full
basis of Ad(F) is obtained. The correctness is based on the next result, which shows how the
knowledge of a basis ofALδ(d)(Ld,δ(F)) can be used to find a basis ofAL2δ(d)(Ld,2δ(F)).

Hereafter, for m ∈ Z>0, we write Jm for the m × (dm/2e − 1) matrix whose column k is the
column 2k of Im, and Jc

m for the m×(bm/2c+1) submatrix of Im formed by the remaining columns.
We stress that if m is even, the last column of Im does not appear in Jm but in Jc

m. In particular,
J1 and J2 are the empty 1 × 0 and 2 × 0 matrices, while Jc

2 = I2. Besides, in what follows Jm and
Jc

m refer to the 0 × 0 matrix when m ∈ {−1, 0}, and we use the notation 0m×? or 0?×n for the zero
matrix when the row dimension m or the column dimension n is not clear from the context.

Lemma 7.1. Let d = (d1, . . . , dn) ∈ Zn
>0, let F ∈ K[X]m×n with cdeg(F) < d, let s ∈ Zm, and let

δ ∈ Z>0. As in Definition 5.4, let αi = d di
δ
− 1e for 1 ≤ i ≤ n and n =

∑
1≤i≤n max(αi − 1, 0). Then,

insert zero rows into the overlapping linearization Ld,2δ(F) ∈ K[X](m+n2)×n2 as follows:

F̌2 = diag(Im, Jα1−1, . . . , Jαn−1)Ld,2δ(F) = π−1
[
Ld,2δ(F)

0

]
∈ K[X](m+n)×(n+n2),

where n2 =
∑

1≤i≤n max(bαi/2c − 1, 0) and π is the inverse of the permutation matrix

π−1 =


Im

Jα1−1 Jc
α1−1

. . .
. . .

Jαn−1 Jc
αn−1

 ∈ K
(m+n)×(m+n).

Now define a matrix S which, through right-multiplication, selects a given set of n + n2 columns
from any matrix with n + n columns, and a matrix Sc which selects the n−n2 remaining columns:
S = diag(S1, . . . ,Sn) ∈ K(n+n)×(n+n2) and Sc = diag(Sc

1, . . . ,S
c
n) ∈ K(n+n)×(n−n2) with, for 1 ≤ i ≤ n,

Si =

[
1

Jαi−1

]
∈ Kmax(αi,1)×max(bαi/2c,1) and Sc

i =

[
01×?
Jc
αi−1

]
∈ Kmax(αi,1)×(max(αi,1)−max(bαi/2c,1)).

By construction, we have Ld,δ(F)S = F̌2 mod XLδ(d)S and 0 ≤ L2δ(d) − Lδ(d)S ≤ 2δ.
Further define the order ď = (Lδ(d),L2δ(d)) ∈ Z2n+n+n2

>0 , the shifts š = (s −min(s), 0) ∈ Zm+n

and s = (s −min(s), 0) ∈ Zm+n2 , and the matrix F̌ = [Ld,δ(F) F̌2] ∈ K[X](m+n)×(2n+n+n2). Then,
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• For any s-ordered weak Popov basis P ∈ K[X](m+n2)×(m+n2) forAL2δ(d)(Ld,2δ(F)), the matrix

π−1
[
P −P` F Sc mod XLδ(d)Sc

0 XLδ(d)Sc

]
π ∈ K[X](m+n)×(m+n) (10)

is an š-ordered weak Popov basis ofAď(F̌), where P` ∈ K[X](m+n2)×m is the submatrix of P
formed by its leftmost m columns and F ∈ K[X]m×(n+n) is the submatrix of Ld,δ(F) formed
by its top m rows.

• For any š-ordered weak Popov basis P̌ ∈ K[X](m+n)×(m+n) of Aď(F̌), the leading principal
(m+n2)×(m+n2) submatrix of πP̌π−1 is an s-ordered weak Popov basis ofAL2δ(d)(Ld,2δ(F)).

• For any vectors p ∈ K[X]1×m and q ∈ K[X]1×n such that rdeg(q) < rdeg(p) ≤ δ and
[p q] ∈ ALδ(d)(Ld,δ(F)), we have [p q] ∈ Aď(F̌).

Proof. (First item.) We define Q = −P` F Sc mod XLδ(d)Sc
∈ K[X](m+n2)×(n−n2) and we denote

by B the matrix in Eq. (10). Then, we start by showing that all rows of B are in Aď(F̌), that is,
BF̌2 = 0 mod XL2δ(d) and BLd,δ(F) = 0 mod XLδ(d) . First, we have

BF̌2 = π−1
[
P Q
0 XLδ(d)Sc

]
ππ−1

[
Ld,2δ(F)

0

]
= π−1

[
PLd,2δ(F)

0

]
= 0 mod XL2δ(d)

by assumption on P. Since L2δ(d) ≥ Lδ(d)S, this also gives BLd,δ(F)S = BF̌2 = 0 mod XLδ(d)S

and thus it remains to show that BLd,δ(F)Sc = 0 mod XLδ(d)Sc
. By construction, the last n rows

of πLd,δ(F)Sc are formed by n2 zero rows followed by the identity matrix:

[
0?×m In

]
πLd,δ(F)Sc =



(Jα1−1)T

. . .
(Jαn−1)T

(Jc
α1−1)T

. . .
(Jc
αn−1)T


 0?×1 Iα1−1

. . .
0?×1 Iαn−1




01×?
Jc
α1−1

. . .
01×?

Jc
αn−1

 =

[
0n2×?
In−n2

]
.

(11)
As a consequence, we have

BLd,δ(F)Sc = π−1
[
P Q
0 XLδ(d)Sc

]
πLd,δ(F)Sc = π−1

[
P` F Sc + Q

XLδ(d)Sc

]
= 0 mod XLδ(d)Sc

.

Now, we prove that any p̌ ∈ Aď(F̌) is a combination of the rows of B. Write p̌ = [p q]π
with p ∈ K[X]1×(m+n2) and q ∈ K[X]1×(n−n2). Then, p̌ ∈ Aď(F̌) implies first p ∈ AL2δ(d)(Ld,2δ(F)),
hence p = λP for some λ ∈ K[X]1×(m+n2), and second λP`FSc + q = [p q]πLd,δ(F)Sc =

0 mod XLδ(d)Sc
, hence q = λQ + µXLδ(d)Sc

for some µ ∈ K[X]1×(n−n2). Thus, p̌ = [λ µ]πB.
It remains to prove that πBπ−1 is in š-ordered weak Popov form; then, the second item of

Lemma 2.8 shows that B is also in š-ordered weak Popov form (note that šπ = š). Since the
bottom-right block of πBπ−1 is a diagonal matrix and the top-left block is already in s-ordered
weak Popov form, where š = (s, 0), it is enough to show that rdeg(Q) < rdegs(P). Since s ≥ 0,
we have rdeg(P) ≤ rdegs(P) and thus it is enough to show that rdeg(Q) < rdeg(P). Consider a
row [p q] of [P Q]. If rdeg(p) ≥ 2δ, then rdeg(q) < rdegs(p) follows since by construction we
have rdeg(q) < max(Lδ(d)) ≤ 2δ. If rdeg(p) < 2δ, since p is in AL2δ(d)(Ld,2δ(F)), the second
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item of Lemma 5.5 (with parameter 2δ) shows that the m leftmost entries of p are inAd(F); then,
the first item of the same lemma (with parameter δ) gives in particular rdeg(q) < rdeg(p).

(Second item.) The first item implies that P̌ = UB for some unimodular matrix U. Let U0
and P0 denote the leading principal (m + n2) × (m + n2) submatrices of πUπ−1 and πP̌π−1. The
first item of Lemma 2.8 shows that P0 is in s-ordered weak Popov form. Besides, the identity
πP̌π−1 = πUπ−1πBπ−1 and the triangular shape of πBπ−1 yield P0 = U0P. Furthermore, πP̌π−1

and πBπ−1 being š-ordered weak Popov bases of the same module, they have the same š-minimal
degree (see Section 2.1), and thus the same š-row degree. This implies that their leading principal
submatrices P0 and P have the same s-row degree, hence

deg(det(U0)) = deg(det(P0)) − deg(det(P)) = |rdegs(P0)| − |rdegs(P)| = 0.

This means that U0 is unimodular, and therefore P0 is a basis ofAL2δ(d)(Ld,2δ(F)).
(Third item.) We want to prove that [p q] ∈ AL2δ(d)(F̌2). The second item of Lemma 5.5

implies that p ∈ Ad(F), while its first item gives the uniqueness of q: if r ∈ K[X]1×n is such
that rdeg(r) < rdeg(p) and [p r] ∈ ALδ(d)(Ld,δ(F)), then r = q. (Note that here the constraint
cdeg(r) < Lδ(d)ET from Lemma 5.5 is implied by rdeg(r) < δ < min(Lδ(d)ET).)

Lemma 5.5 gives q2 ∈ K[X]1×n2 such that rdeg(q2) < rdeg(p) and [p q2] ∈ AL2δ(d)(Ld,2δ(F)).
Then, define q3 = −pFSc mod XLδ(d)Sc

, which is a subvector of q = −pFET mod XLδ(d)ET
since

Sc selects a subset of the columns selected by ET. Let further r = [q2 q3][0 In]π ∈ K[X]1×n;
by construction, we have rdeg(r) < rdeg(p). We are going to show that [p r] ∈ AL2δ(d)(F̌2) and
[p r] ∈ ALδ(d)(Ld,δ(F)): the latter point implies r = q by the mentioned uniqueness, and then
the former point gives [p q] ∈ AL2δ(d)(F̌2), thus concluding the proof.

Noticing that [p r] = [p q2 q3]π, the first point follows by construction of F̌2:

[p r]F̌2 = [p q2 q3]ππ−1
[
Ld,2δ(F)

0

]
= [p q2]Ld,2δ(F) = 0 mod XL2δ(d) .

Furthermore, since L2δ(d) ≥ Lδ(d)S we can consider the same identity modulo XLδ(d)S . Using
Ld,δ(F)S = F̌2 mod XLδ(d)S , this directly yields [p r]Ld,δ(F)S = 0 mod XLδ(d)S . For the second
point, it remains to show [p r]Ld,δ(F)Sc = 0 mod XLδ(d)Sc

. This follows from the definition of
q3 since Eq. (11) gives [p r]Ld,δ(F)Sc = [p q2 q3]πLd,δ(F)Sc = pFSc + q3.

We remark that working with matrices in ordered weak Popov form allows us to directly
locate the submatrix that contains the sought basis, and thus to avoid resorting to computations
of row rank profiles as was done for example in (ibid., Thm. 3.15 and Algo. 1).

The second item in this lemma implies that, knowing a basis of ALδ(d)(Ld,δ(F)), we can
obtain a basis of AL2δ(d)(Ld,2δ(F)) via the classical approach of computing a residual, a second
approximant basis, and the product of the two bases. Furthermore, the third item shows that rows
of degree less than δ in the first basis are already inAL2δ(d)(Ld,2δ(F)). Thus, they can be discarded
when computing the second basis (see Lemma 2.5); this is a key property for the efficiency of
Algorithm 7. The next result formalizes these remarks, using notation from Lemma 7.1.

Corollary 7.2. Let P ∈ K[X](m+n)×(m+n) be an š-ordered weak Popov basis ofALδ(d)(Ld,δ(F)), let
I ⊆ {1, . . . ,m + n} be the set of indices i of the rows Pi,∗ = [p q] such that rdeg(q) < rdeg(p) ≤ δ,
where p ∈ K[X]1×m and q ∈ K[X]1×n. Let further Ic = {1, . . . ,m + n} \ I be the complement of I
and let i denote the cardinality of I. We have I ⊆ {1, . . . ,m}.

Now, consider the tuples µ = Lδ(d)S and ν = L2δ(d) both in Zn+n2
>0 , as well as the residual

G = PIc,∗F̌2X−µ mod Xν−µ ∈ K[X](m+n−i)×(n+n2) and a basis P2 ∈ K[X](m+n−i)×(m+n−i) ofAν−µ(G)
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in rdegš(PIc,∗)-ordered weak Popov form. Modify P by left-multiplying its submatrix PIc,∗ by P2,
that is, perform the operation PIc,∗ ← P2PIc,∗. Then, the leading principal (m + n2) × (m + n2)
submatrix of πPπ−1 is an s-ordered weak Popov basis ofAL2δ(d)(Ld,2δ(F)).

Proof. The fact that I ⊆ {1, . . . ,m} follows by definition of the š-ordered weak Popov form.
Indeed, since š = (s−min(s), 0), such a row [p q] with rdeg(q) < rdeg(p) ≤ rdegs−min(s)(p) must
have its š-pivot entry in p, or in other words, its š-pivot index in {1, . . . ,m}. Since the š-pivot
entries are on the diagonal, [p q] must be one of the first m rows of P.

The other claims follow directly from Lemmas 7.1 and 2.5.

This suggests an algorithm which computes approximant bases iteratively for the overlapping
linearized problems with a linearization parameter δ which is doubled at each step. When the
parameter reaches δ > max(d), we actually have Lδ(d) = d and Ld,δ(F) = F, and therefore the
computed basis is a basis ofAd(F) = ALδ(d)(Ld,δ(F)). In what follows, let σ = |d|.

In this process, the number of columns of the approximant instances steadily decreases. On
the first hand, the number of columns n added by the overlapping linearization is roughly halved
when δ is doubled. On the other hand, only the ≤ 2σ/δ columns of F with corresponding order
di ≥ δ/2 need to be considered in the iteration with linearization parameter δ, since all the others
have been fully processed already (see the proof of Proposition 7.3 for more details).

Furthermore, the corollary above indicates that if at some iteration one of the computed
approximants in ALδ(d)(Ld,δ(F)) has degree less than δ, then it can be stored as a row of the
sought basis and can be discarded in the computation of the residual and of the second basis. In
the process outlined above, this allows us to decrease the row dimension each time such a small
degree approximant has been found.

Yet, there remains an obstacle towards efficiency: if the output basis has no row of small
degree, there will be no such row dimension decrease before the very last few iterations. In this
case, some iterations may ask us to solve instances with roughly the same dimensions and degrees
as the original instance (d,F); then, this approach is not faster than a direct call to PM-Basis.

Nevertheless, there are many shifts for which this worst-case scenario cannot occur, since the
sum of the row degree of an s-minimal basis ofAd(F) is at most ξ = σ + |s −min(s)| (Van Barel
and Bultheel, 1992, Thm. 4.1). Thus, this s-minimal basis has at most ξ/δ rows of degree ≥ δ;
this is especially beneficial when ξ is small, that is, for shifts that are weakly unbalanced around
their minimum value (see the assumption Hs,min from Section 1). For example, for the uniform
shift, a 0-minimal basis has at most m/2i rows of degree ≥ 2idσ/me, which means that in our
process at least m − m/2i rows can be discarded when δ has reached 2idσ/me.

Proposition 7.3. Algorithm 7 is correct. Let σ = |d|, let ξ = σ+ |s−min(s)|, and let d = max(d).
If ξ ≤ md, then Algorithm 7 uses C(ξ,m, d) operations in K, where C(·) is defined as in Eq. (3).
If ξ > md, it uses O(MM′(m, dσ/me) + MM′(m, d)) operations in K.

Proof. The correctness of Step 1 follows from Lemma 2.4 and Proposition 4.1. Concerning
Step 2, we first note that if dξ/me > d, then Ld,δ(F) = F and Lδ(d) = d and therefore the call to
PM-Basis at Step 2.a computes a whole s-ordered weak Popov basis ofAd(F). Then, the loop at
Step 2.b is not entered, and Step 2 uses O(MM′(m, d)) operations according to Proposition 3.2.

On the other hand, if dξ/me ≤ d, the correctness of Step 2 follows from Corollary 7.2, noticing
that the loop terminates after at most 1 + blog2(d/dξ/me)c iterations since δ is doubled at each
iteration, and as mentioned above Ld,δ(F) = F and Lδ(d) = d for δ > d. Furthermore, in this
algorithm we use the set J to explicitly filter out columns for which the correct order has already
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Algorithm 7 – ShiftAroundMinAppBasis (Minimal basis for small |s −min(s)|)

Input:
• order d ∈ Zn

>0,
• matrix F ∈ K[X]m×n with cdeg(F) < d,
• shift s ∈ Zm.

Output: an s-ordered weak Popov basis ofAd(F).
1. If n ≥ m:

a. permute d into nonincreasing order, and the columns of F accordingly
b. (d̂, F̂, ŝ,P1)← ReduceColDim(d,F, s)
c. P2 ← ShiftAroundMinAppBasis(d̂, F̂, ŝ)
d. δ1 ← diagonal degrees of P1; δ2 ← diagonal degrees of P2

e. Return KnownDegAppBasis(d,F, s, δ1 + δ2)
2. Else:

a. δ← d(|d| + |s −min(s)|)/me
Construct Lδ(d) ∈ Zm+n

>0 and Ld,δ(F) ∈ K[X](m+n)×(n+n) as in Definition 5.4
P← PM-Basis(2δ,Ld,δ(F)X2δ−Lδ(d) , (s −min(s), 0))
I ← {i ∈ {1, . . . ,m + n} | Pi,∗ = [p q] is such that rdeg(q) < rdeg(p) ≤ δ},

where p ∈ K[X]1×m and q ∈ K[X]1×n // for these rows, p ∈ Ad(F)
b. While Card(I) < m: // I ⊆ {1, . . . ,m} holds, cf. Corollary 7.2

(i) Construct matrices π ∈ K(m+n)×(m+n) and S ∈ K(n+n)×(n+n2) as in Lemma 7.1,
tuples µ← Lδ(d)S and ν← L2δ(d) both in Zn+n2

>0 , and sets
J ← { j ∈ {1, . . . , n + n2} | ν j − µ j > 0} and Ic ← {1, . . . ,m + n} \ I

(ii) G← PIc,∗ π
−1

[
Ld,2δ(F)∗,J

0

]
X−µJ mod XνJ−µJ

(iii) P2 ← PM-Basis(2δ,GX2δ−νJ+µJ , rdeg(s−min(s),0)(PIc,∗))
(iv) PIc,∗ ← P2PIc,∗ // this modifies P
(v) P← leading principal (n + n2) × (n + n2) submatrix of πPπ−1

δ ← 2δ; n ← n2; I ← I ∪ {i ∈ Ic | Pi,∗ = [p q] is such that rdeg(q) <
rdeg(p) ≤ δ}, where p ∈ K[X]1×m and q ∈ K[X]1×n

c. Return P
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been reached, thus for which the residual columns are zero. This was not done in Corollary 7.2
which focused on correctness, yet here it makes it easier to describe column dimensions in the
following cost analysis.

Concerning Step 2, we place ourselves at the beginning of an iteration, and we start by
describing the dimensions and the degrees of the matrices involved in the computations. Then,
• PIc,∗ has dimensions Card(Ic) × (m + n) and degree < 2δ;
• π−1

[
Ld,2δ(F)∗,J

0

]
has dimensions (m + n) × Card(J) and degree < max(L2δ(d)) ≤ 4δ;

• G has dimensions Card(Ic) × Card(J) and degree < max(ν − µ) ≤ 2δ;
• P2 has dimensions Card(Ic) × Card(Ic) and degree < 2δ.

As above, n is such that Ld,δ(F) has dimensions (m + n) × (n + n), and n < σ/δ where σ = |d|.
Besides, as a consequence of (Van Barel and Bultheel, 1992, Thm. 4.1), the sum of the de-

grees of the rows of the sought basis is at most ξ, and thus this basis has more than m − ξ/δ rows
of degree ≤ δ; Lemma 5.5 shows that the set I ⊆ {1, . . . ,m} precisely contains the indices of the
latter rows. Thus, Card(I) > m − ξ/δ, and Card(Ic) = m + n − Card(I) < n + ξ/δ ≤ 2ξ/δ.

Furthermore, note that the entries of Lδ(d)S and L2δ(d) which coincide are exactly those
corresponding to columns with order di ≤ 2δ (or, equivalently, αi = 1): these are columns F∗,i
which appear as such in Ld,δ(F) and also in Ld,2kδ(F) for all subsequent iterations. Indeed, if
di > 2δ, the corresponding entries in Lδ(d)S are at most 2δ and cannot coincide with those in
L2δ(d) which are at least 2δ + 1. As a result, Card(J) is the sum of the number n2 of columns
added by the overlapping linearization with degree parameter 2δ, and of the number of indices
i ∈ {1, . . . , n} such that di > 2δ; both numbers are less than σ/(2δ). Thus, Card(J) < σ/δ.

Now, let δ0 = dξ/me be the initial value of δ. Then, at the beginning of the k-th iteration of the
loop (the first one being for k = 1), we have δ = 2k−1δ0 and the dimensions satisfy m + n < 2m,
Card(Ic) < 2ξ/δ = 22−kξ/δ0 ≤ 22−km, and Card(J) < σ/δ = 21−kσ/δ0 ≤ 21−kξ/δ0 ≤ 21−km.

Then, both matrix multiplications at Steps 2.b.(ii) and 2.b.(iv) use O(2k−1MM(21−km, 2k−1δ0))
operations. Besides, the call to PM-Basis at Step 2.b.(iii) uses O(MM′(21−km, 2k−1δ0)) operations
according to Proposition 3.2, while the call at Step 2.a uses O(MM′(m, δ0)) operations. Summing
these terms over all iterations gives the cost bound announced in the statement, since as explained
above the loop terminates before or when k reaches 1 + blog2(d/dξ/me)c.

Now, independently from assumptions on dξ/me, Steps 1.b and 1.e both use O(MM′(m, σ/m))
operations according to Propositions 4.1 and 5.1; here dσ/me ∈ Θ(σ/m) since σ ≥ n ≥ m.
Besides, the former proposition and the specification of ReduceColDim ensure that:
• deg(P1) ≤ 2σ/m, hence s ≤ ŝ ≤ s + 2σ/m since ŝ = rdegs(P1);
• |d̂| ≤ σ, hence σ + |ŝ −min(ŝ)| ≤ ξ + 2σ ≤ 3ξ;
• F̂ has fewer columns than rows, hence the call at Step 1.c will enter Step 2.

Then, the cost bounds given above hold for Step 1.c: if dξ/me ≤ d this step is thus the bottleneck
of Step 1, and if dξ/me > d we obtain the claimed bound O(MM′(m, σ/m) + MM′(m, d)).

We remark that it would also be correct, instead of Steps 1.d and 1.e, to directly compute and
return the product P2P1; this uses O(MM(m, dξ/me)) operations and thus does not impact the cost
bound if ξ ∈ O(σ). In addition, for input instances with σ � m, one may rather rely on linear
algebra over K instead of the above algorithm (see Steps 1.a, 1.b, and 1.c of Algorithm 6).

We now show the upper bound on C(ξ,m, d) given in Theorem 1.3, for the case ξ ≤ md.

32



Under the assumptionHM, we obtain

MM′(2−km, 2kdξ/me) + 2kMM(2−km, 2kdξ/me)

∈ O
(
(2−km)ωM(2kdξ/me) log(2kdξ/me) + 2k(2−km)ωM(2kdξ/me)

)
⊆ O

(
mωM(dξ/me)(2−k(k + log(dξ/me)) + 1)

)
,

sinceHM implies in particular M(2kdξ/me) ∈ O(2(ω−1)kM(dξ/me)). Since
∑

k≥0 k2−k is a constant,
summing over 0 ≤ k ≤ 1 + log(d/dξ/me) gives the sought bound

C(ξ,m, d) ∈ O(mωM(dξ/me)(log(dξ/me) + log(d/dξ/me))) = O(mωM(dξ/me) log(d)),

valid underHM and for an arbitrary order and shift.
We remark that the latter bound is precisely the one which was obtained (Zhou and Labahn,

2012, Thm. 5.3), under the additional assumptions that ξ ∈ O(σ) and that d = (d, . . . , d) ∈ Zn
>0

with n ≤ m ≤ σ = nd; in that case the bound can be written O(mωM(nd/m) log(d)).

7.2. Weakly unbalanced shift around its maximum value

Here, we will only sketch the correctness and cost bound of the algorithm, and refer to (Zhou
and Labahn, 2012, Sec. 6) for more details and examples. Indeed, it can be noticed that the
output column linearization does not modify the order d and does not depend on it. As a result,
generalizing (ibid., Algo. 2) to the case of arbitrary orders was mostly done in Section 5.1 where
the details of the definition and properties of the output column linearization were presented.

In Algorithm 8, we interrupt the iterative use of output column linearization as soon as it
becomes more efficient to directly resort to PM-Basis (Step 4). We remark that, while this may
seem to differ from (ibid., Algo. 2), it is in fact mentioned in the proof of (ibid., Thm. 6.14) that
the algorithm should behave like this to avoid weakening its efficiency.

We recall that C(·) was defined in Eq. (3).

Proposition 7.4. Algorithm 8 is correct. Let σ = |d|, let ζ = σ+ |max(s)−s|, and let d = max(d).
If ζ > md, Algorithm 8 uses O(MM′(m, dσ/me) + MM′(m, d)) operations in K. If ζ ≤ md, it uses

O

MM′(µ, dσ/µe) + MM′(µ, d) +

blog2(md/ζ)c∑
k=0

C(ζ, 2−km, d)


operations in K, where C(·) is defined as in Eq. (3) and µ is the cardinality of the set I after Step 3
has been performed; it is such that µ < ζ/d.

Proof. First, if ζ > md, the loop at Step 3 is not entered, and at Step 4 we have I = {1, . . . ,m}; in
particular, PI,∗ = P and Step 4.f simply amounts to P← P. In this case, the correctness and cost
bound follow from Propositions 4.1 and 3.2, the fourth item of Lemma 2.4, and Proposition 5.1.

From now on, suppose ζ ≤ md. The same results prove the correctness of Step 4 while
Lemma 5.2 proves that of Step 3, using in addition (Zhou and Labahn, 2012, Thm. 6.11) to show
that we may discard the rows of F with index not in I (Steps 3.b and 4.b) and fill corresponding
columns of P with zeroes (multiplication by E in Step 3.e and by the diagonal in 4.f).

Furthermore, the above propositions show that Step 4 uses O(MM′(µ, dσ/µe) + MM′(µ, d))
operations; since the loop at Step 3 has exited, we have ζ > µd.
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Algorithm 8 – ShiftAroundMaxAppBasis (Minimal basis for small |max(s) − s|)

Input:
• order d ∈ Zn

>0,
• matrix F ∈ K[X]m×n with cdeg(F) < d,
• shift s ∈ Zm.

Output: an s-ordered weak Popov basis ofAd(F).
1. P← empty matrix in K[X]0×m

2. I ← {1, . . . ,m} // indices of rows still to be found

3. While σ + |max(s) − s| ≤ Card(I)d:
a. δ← 1 + 2b|max(s) − s|/Card(I)c
b. (s,C, (αi)1≤i≤m,m)← ColParLin(d,FI,∗, sI , δ, δ) // see Section 5.1

c. P← ShiftAroundMinAppBasis(d,CFI,∗ mod Xd , s)
d. E ∈ Km×m ← diag(e1, . . . , em) with ei = 1 if i ∈ I and ei = 0 otherwise
e. For i ∈ I such that si ≥ max(s) − δ or rdegs(Pα1+···+αi,∗) > 0:

Pi,∗ ← Pα1+···+αi,∗CE; I ← I \ {i}

4. If I , ∅: // compute remaining rows via PM-Basis

a. permute d into nonincreasing order, and the columns of FI,∗ accordingly
b. (d̂, F̂, ŝ,P1)← ReduceColDim(d,FI,∗, sI)
c. P2 ← PM-Basis(d̂, F̂, ŝ)
d. δ1 ← diagonal degrees of P1; δ2 ← diagonal degrees of P2

e. P← KnownDegAppBasis(d,FI,∗, sI , δ1 + δ2)
f. PI,∗ ← Pdiag(e1, . . . , em), where ei = 1 if i ∈ I and ei = 0 otherwise

5. Return P

Concerning Step 3, the main point is that the cardinality of I is at least halved at the end of
each iteration of the While loop. Indeed, let c > 0 be the cardinality of I at the beginning of an
iteration; hence δ > 2|max(s) − s|/c. Then, at the end of the iteration, we have that I is contained
in {i ∈ {1, . . . ,m} | si < max(s)− δ} which has cardinality at most |max(s)− s|/δ. Thus, we obtain
Card(I) ≤ |max(s) − s|/δ < c/2.

As a consequence, the worst case in terms of cost occurs when Card(I) is divided by only
slightly more than 2 at each iteration. Then, this cardinality is about 2−km at the end of the kth
iteration of the While loop. This iteration then uses C(ζ, 2−km, d) operations in K; this follows
from the bounds on m and s in Lemma 5.2 and from the cost of Step 3.c given in Proposition 7.3.
We remark that the condition ζ ≤ Card(I)d of the loop precisely ensures that we are in the case
“ξ ≤ md” of the latter proposition.

To conclude this section, we derive the upper bound given in the second item of Theorem 1.3
under the assumptionHM. We first remark that we have d2kζ/me ≤ 2kdζ/me, since ddαre/αe = dre
holds for any real number r and any positive integer α. Besides, the assumptionHM implies that
M(2kdζ/me) ∈ O(2(ω−1)kM(dζ/me)). Then, the first item in Theorem 1.3 yields

C(ζ, 2−km, d) ∈ O
(
(2−km)ωM(d2kζ/me) log(d)

)
⊆ O

(
2−kmωM(dζ/me) log(d)

)
,
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from which we obtain

blog2(md/ζ)c∑
k=0

C(ζ, 2−km, d) ∈ O
(
mωM(dζ/me) log(d)

)
.

Now, using d ≤ m
µ
d
µ
m de ≤ m

µ
d
ζ
m e and the assumptionHM leads to M(d) ∈ O((m/µ)ω−1M(dζ/me)),

and therefore we also have

MM′(µ, d) ∈ O
(
mω−1µM(dζ/me) log(d)

)
⊆ O

(
mωM(dζ/me) log(d)

)
.

This completes the proof of the upper bound in the second item of Theorem 1.3, since we have
MM′(µ, dσ/µe) ∈ O(µωM(dσ/µe) log(dσ/µe)).
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polation. Numer. Algorithms 3, 451–462.
URL https://doi.org/10.1007/BF02141952

Zhou, W., Labahn, G., 2012. Efficient algorithms for order basis computation. J. Symbolic Comput. 47 (7), 793–819.
URL https://doi.org/10.1016/j.jsc.2011.12.009

36

https://doi.org/10.1145/860854.860889
https://doi.org/10.1145/1993886.1993913
http://doi.acm.org/10.1145/3005344
https://doi.org/10.1145/2930889.2930928
https://doi.org/10.1016/j.jsc.2016.11.015
http://www.mathunion.org/ICM/ICM1970.3/Main/icm1970.3.0269.0274.ocr.pdf
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/800125.804045
https://doi.org/10.1016/S0747-7171(02)00139-6
https://doi.org/10.1145/2930889.2930936
https://doi.org/10.1137/0310020
https://doi.org/10.1145/2930889.2930933
https://doi.org/10.1145/1993886.1993931
https://doi.org/10.1007/BF00289520
https://doi.org/10.3929/ethz-a-004141007
https://doi.org/10.1016/S0747-7171(03)00097-X
http://drops.dagstuhl.de/opus/volltexte/2006/776
https://doi.org/10.1007/BF02142327
https://doi.org/10.1007/BF02141952
https://doi.org/10.1016/j.jsc.2011.12.009

	Introduction
	Preliminaries
	Minimal bases, Popov bases, and minimal degree
	Recursive computation of approximant bases
	Computing residuals
	Computing matrix products via approximant bases
	Stability of ordered weak Popov forms under some permutations

	Algorithm PM-Basis: approximant bases via polynomial matrix multiplication
	Reduction to the case nless than m
	Computing approximant bases when the minimal degree is known
	Output column linearization to balance the output degrees
	Overlapping linearization to balance orders and dimensions
	Proof of Proposition

	Computing approximant bases for arbitrary shifts
	Computing approximant bases for weakly unbalanced shifts
	Weakly unbalanced shift around its minimum value
	Weakly unbalanced shift around its maximum value


