Pascal Giorgi
email: pascal.giorgi@lirmm.fr

Vincent Neiger
email: vincent.neiger@unilim.fr

Certification of Minimal Approximant Bases

Keywords: Certification, minimal approximant basis, order basis, polynomial matrix, truncated product

For a given computational problem, a certificate is a piece of data that one (the prover) attaches to the output with the aim of allowing efficient verification (by the verifier) that this output is correct. Here, we consider the minimal approximant basis problem, for which the fastest known algorithms output a polynomial matrix of dimensions m×m and average degree D/m using O˜(m ω D m) field operations. We propose a certificate which, for typical instances of the problem, is computed by the prover using O(m ω D m) additional field operations and allows verification of the approximant basis by a Monte Carlo algorithm with cost bound O(m ω + mD).

Besides theoretical interest, our motivation also comes from the fact that approximant bases arise in most of the fastest known algorithms for linear algebra over the univariate polynomials; thus, this work may help in designing certificates for other polynomial matrix computations. Furthermore, cryptographic challenges such as breaking records for discrete logarithm computations or for integer factorization rely in particular on computing minimal approximant bases for large instances: certificates can then be used to provide reliable computation on outsourced and error-prone clusters.

INTRODUCTION

Context. For a given tuple d = (d 1 , . . . , d n) ∈ Z n >0 called order, we consider an m × n matrix F of formal power series with the column j truncated at order d j . Formally, we let F ∈ K[X] m×n be a matrix over the univariate polynomials over a field K, such that the column j of F has degree less than d j . Then, we consider the classical notion of minimal approximant bases for F [START_REF] Beckermann | A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants[END_REF][START_REF] Van Barel | A general module theoretic framework for vector M-Padé and matrix rational interpolation[END_REF]. An approximant is a polynomial row vector p ∈ K[X] 1×m such that pF = 0 mod X d , where X d = diag(X d 1 , . . . , X d n);

(1) here pF = 0 mod X d means that pF = qX d for some q ∈ K[X] 1×n .

The set of all approximants forms a (free) K[X]-module of rank m,

A d (F) = p ∈ K[X] 1×m pF = 0 mod X d .
ISSAC ' A basis of this module is called an approximant basis (or sometimes an order basis or a σ -basis); it is a nonsingular matrix in K[X] m×m whose rows are approximants in A d (F) and generate A d (F).

The design of fast algorithms for computing approximant bases has been studied throughout the last three decades [START_REF] Beckermann | A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants[END_REF][START_REF] Giorgi | On the complexity of polynomial matrix computations[END_REF][START_REF] Jeannerod | Fast computation of minimal interpolation bases in Popov form for arbitrary shifts[END_REF][START_REF] Storjohann | Notes on computing minimal approximant bases[END_REF][START_REF] Van Barel | A general module theoretic framework for vector M-Padé and matrix rational interpolation[END_REF][START_REF] Zhou | Efficient Algorithms for Order Basis Computation[END_REF]. Furthermore, these algorithms compute minimal bases, with respect to some degree measure specified by a shift s ∈ Z m . The best known cost bound is O˜(m ω-1 D) operations in K [START_REF] Jeannerod | Fast computation of minimal interpolation bases in Popov form for arbitrary shifts[END_REF] where D is the sum

D = |d| = d 1 + • • • + d n .
Throughout the paper, our complexity estimates will fit the algebraic RAM model counting only operations in K, and we will use O(n ω) to refer to the complexity of the multiplication of two m × m matrices, where ω < 2.373 [START_REF] Coppersmith | Matrix multiplication via arithmetic progressions[END_REF][START_REF] Gall | Powers of Tensors and Fast Matrix Multiplication[END_REF].

Here, we are interested in the following question:

How to efficiently certify that some approximant basis algorithm indeed returns an s-minimal basis of A d (F)?

Since all known fast approximant basis algorithms are deterministic, it might seem that a posteriori certification is pointless. In fact, it is an essential tool in the context of unreliable computations that arise when one delegates the processing to outsourced servers or to some large infrastructure that may be error-prone. In such a situation, and maybe before concluding a commercial contract to which this computing power is attached, one wants to ensure that he will be able to guarantee the correctness of the result of these computations.

Of course, to be worthwhile, the verification procedure must be significantly faster than the original computation.

Resorting to such computing power is indeed necessary in the case of large instances of approximant bases, which are a key tool within challenging computations that try to tackle the hardness of some cryptographic protocols, for instance those based on the discrete logarithm problem (e.g. El Gamal) or integer factorization (e.g. RSA). The computation of a discrete logarithm over a 768-bit prime field, presented in [START_REF] Kleinjung | Computation of a 768-Bit Prime Field Discrete Logarithm[END_REF], required to compute an approximant basis that served as input for a larger computation which took a total time of 355 core years on a 4096-cores cluster. The approximant basis computation itself took 1 core year. In this context, it is of great interest to be able to guarantee the correctness of the approximant basis before launching the most time-consuming step.

Linear algebra operations are good candidates for designing fast verification algorithms since they often have a cost related to matrix multiplication while their input only uses quadratic space. The first example one may think of is linear system solving. Indeed, given a solution vector x ∈ K n to a system Ax = b defined by A ∈ K n×n and b ∈ K n , one can directly verify the correctness by checking the equations at a cost of O(n 2) operations in K. Comparatively, solving the system with the fastest known algorithm costs O(n ω).

Another famous result, due to Freivalds [START_REF] Freivalds | Fast probabilistic algorithms[END_REF], gives a method to verify a matrix product. Given matrices A, B, C ∈ K n×n , the idea is to check uC = (uA)B for a random row vector u ∈ {0, 1} 1×n , rather than C = AB. This verification algorithm costs O(n 2) and is false-biased one-sided Monte-Carlo (it is always correct when it answers "false"); the probability of error can be made arbitrarily small by picking several random vectors.

In some cases, one may require an additional piece of data to be produced together with the output in order to prove the correctness of the result. For example, Farkas' lemma [START_REF] Farkas | Theorie der einfachen Ungleichungen[END_REF] certifies the infeasibility of a linear program thanks to an extra vector. Although the verification is deterministic in this example, the design of certificates that are verified by probabilistic algorithms opened a line of work for faster certification methods in linear algebra [START_REF] Dumas | Essentially Optimal Interactive Certificates in Linear Algebra[END_REF][START_REF] Dumas | Linear Time Interactive Certificates for the Minimal Polynomial and the Determinant of a Sparse Matrix[END_REF][START_REF] Kaltofen | Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients[END_REF][START_REF] Kaltofen | Quadratic-time Certificates in Linear Algebra[END_REF].

In this context, one of the main challenges is to design optimal certificates, that is, ones which are verifiable in linear time. Furthermore, the time and space needed for the certificate must remain negligible. In this work, we seek such an optimal certificate for the problem of computing shifted minimal approximant bases.

Here, an instance is given by the input (d, F, s) which is of size O(mD): each column j of F contains at most md j elements of K, and the order sums to

d 1 + • • • + d n = |d| = D.
We neglect the size of the shift s, since one may always assume that it is nonnegative and such that max(s) < mD (see [START_REF] Jeannerod | Fast computation of minimal interpolation bases in Popov form for arbitrary shifts[END_REF]App. A]). Thus, ideally one would like to have a certificate which can be verified in time O(mD).

In this paper, we provide a non-interactive certification protocol which uses the input (d, F, s), the output P, and a certificate which is a constant matrix C ∈ K m×n . We design a Monte-Carlo verification algorithm with cost bound O(mD + m ω-1 (m + n)); this is optimal as soon as D is large compared to m and n (e.g. when D > m 2 +mn), which is most often the case of interest. We also show that the certificate C can be computed in O(m ω-1 D) operations in K, which is faster than known approximant basis algorithms.

Degrees and size of approximant bases. For P ∈ K[X] m×m , we denote the row degree of P as rdeg(P) = (r 1 , . . . , r m) where r i = deg(P i, *) is the degree of the row i of P for 1 ≤ i ≤ m. The column degree cdeg(P) is defined similarly. More generally, we will consider row degrees shifted by some additive column weights: for a shift s = (s 1 , . . . , s m) ∈ Z m the s-row degree of P is rdeg s (P) = (r 1 , . . . , r m) where r i = max(deg(P i,1) + s 1 , . . . , deg(P i,m) + s m).

We use | • | to denote the sum of integer tuples: for example |rdeg s (P)| is the sum of the s-row degree of P (note that this sum might contain negative terms). The comparison of integer tuples is entrywise: cdeg(F) < d means that the column j of F has degree less than d j , for 1 ≤ j ≤ n. When adding a constant to a tuple, say for example s -1, this stands for the tuple (s 1 -1, . . . , s m -1).

In existing approximant basis algorithms, the output bases may take different forms: essentially, they can be s-minimal (also called s-reduced [START_REF] Van Barel | A general module theoretic framework for vector M-Padé and matrix rational interpolation[END_REF]), s-weak Popov [START_REF] Mulders | On lattice reduction for polynomial matrices[END_REF], or s-Popov [START_REF] Beckermann | Shifted Normal Forms of Polynomial Matrices[END_REF]. For formal definitions and for motivating the use of shifts, we direct the reader to these references and to those above about approximant basis algorithms; here the precise form of the basis will not play an important role. What is however at the core of the efficiency of our algorithms is the impact of these forms on the degrees in the basis.

In what follows, by size of a matrix we mean the number of field elements used for its dense representation. We define the quantity Size(P) = m 2 + 1≤i, j ≤m max(0, deg(p i j)) for a matrix P = [p i j] ∈ K[X] m×m . In the next paragraph, we discuss degree bounds on P when it is the output of any of the approximant basis algorithms mentioned above; note that these bounds all imply that P has size in O(mD).

There is no general degree bound for approximant bases: any unimodular matrix is a basis of Problem and contribution. Certifying that a matrix P is an sminimal approximant basis for a given instance (d, F, s) boils down to the following three properties of P:

A d (0) = K[X]
(1) Minimal: P is in s-reduced form. By definition, this amounts to testing the invertibility of the so-called s-leading matrix of P (see Step 1 of Algorithm 1 for the construction of this matrix), which can be done using O(m ω) operations in K.

(2) Approximant: the rows of P are approximants. That is, we should check that PF = 0 mod X d . The difficulty is to avoid computing the full truncated product PF mod X d , since this costs O˜(m ω-1 D). In Section 3, we give a probabilistic algorithm which verifies more generally PF = G mod X d using O(Size(P) + mD) operations, without requiring a certificate.

(3) Basis: the rows of P generate the approximant module 1 . For this, we prove that it suffices to verify first that det(P) is of the form cX δ for some c ∈ K \ {0} and where δ = |rdeg(P)|, and second that some constant m × (m + n) matrix has full rank; this matrix involves P(0) and the coefficient C of degree 0 of PFX -d . In Section 2, we show that C can serve as a certificate, and that a probabilistic algorithm can assess its correctness at a suitable cost. Our (non-interactive) certification protocol is as follows. Given (d, F, s), the Prover computes a matrix P, supposedly an s-minimal basis of A d (F), along with a constant matrix C ∈ K m×n , supposedly the coefficient of degree 0 of the product PFX -d . Then, the Prover communicates these results to the Verifier who must solve Problem 1 within a cost asymptotically better than O˜(m ω-1 D).

Problem 1: Approximant basis certification

Input:

• order d ∈ Z n >0 , • matrix F ∈ K[X] m×n with cdeg(F) < d, • shift s ∈ Z m , • matrix P ∈ K[X] m×m , • certificate matrix C ∈ K m×n . Output: • True if P is an s-minimal basis of A d (F) and C is the coefficient of degree 0 of PFX -d , otherwise False.
The main result in this paper is an efficient solution to Problem 1.

Theorem 1.1. There is a Monte-Carlo algorithm which solves Problem 1 using O(mD + m ω-1 (m + n)) operations in K, assuming Size(P) ∈ O(mD). It chooses m + 2 elements uniformly and independently at random from a finite subset S ⊂ K. If S has cardinality at least 2(D + 1), then the probability that a True answer is incorrect is less than 1/2, while a False answer is always correct.

A detailed cost bound showing the constant factors is described in Proposition 2.5. If Size(P) ∈ O(mD), then the size of the input of Problem 1 is in O(mD); the cost bound above is therefore optimal (up to constant factors) as soon as

m ω-2 (m + n) ∈ O(D).
If K is a small finite field, there may be no subset S ⊂ K of cardinality #S ≥ 2(D + 1). Then, our approach still works by performing the probabilistic part of the computation over a sufficiently large extension of K. Note that an extension of degree about 1+ ⌈log 2 (D)⌉ would be suitable; this would increase our complexity estimates by a factor logarithmic in D, which remains acceptable in our context.

Our second result is the efficient computation of the certificate.

Theorem 1.2. Let d ∈ Z n >0 , let F ∈ K[X] m×n with cdeg(F) < d and m ∈ O(D), and let P ∈ K[X] m×m . If |rdeg(P)| ∈ O(D) or |cdeg(P)| ∈ O(D), there is a deterministic algorithm which computes the coefficient of degree 0 of PFX -d using O(m ω-1 D) operations in K if m ≥ n and O(m ω-1 D log(n/m)) operations in K if m < n.
Note that the assumption m ∈ O(D) in this theorem is commonly made in approximant basis algorithms, since when D ≤ m most entries of a minimal approximant basis have degree in O(1) and the algorithms then rely on methods from dense K-linear algebra.

CERTIFYING APPROXIMANT BASES

Here, we present our certification algorithm. Its properties, given in Proposition 2.5, prove Theorem 1.1. One of its core components is the verification of truncated polynomial matrix products; the details of this are in Section 3 and are taken for granted here.

First, we show the basic properties behind the correctness of this algorithm, which are summarized in the following result.

Theorem 2.1. Let d ∈ Z n >0 , let F ∈ K[X]
m×n , and let s ∈ Z m . A matrix P ∈ K[X] m×m is an s-minimal basis of A d (F) if and only if the following properties are all satisfied:

(i) P is s-reduced;

(ii) det(P) is a nonzero monomial in K[X]; (iii) the rows of P are in A d (F), that is, PF = 0 mod X d ; (iv) [P(0) C] ∈ K m×(m+n) has full rank, where C is the coefficient of degree 0 of PFX -d .
We remark that having both PF = 0 mod X d and C the constant coefficient of PFX -d is equivalent to the single truncated identity PF = CX d mod X t , where t = (d 1 + 1, . . . , d n + 1).

As mentioned above, the details of the certification of the latter identity is deferred to Section 3, where we present more generally the certification for truncated products of the form PF = G mod X t .

Concerning Item (ii), the fact that the determinant of any basis of A d (F) must divide X D , where D = |d|, is well-known; we refer to [2, Sec. 2] for a more general result.

The combination of Items (i) and (iii) describes the set of matrices P ∈ K[X] m×m which are s-reduced and whose rows are in A d (F).

For P to be an s-minimal basis of A d (F), its rows should further form a generating set for A d (F); thus, our goal here is to prove that this property is realized by the combination of Items (ii) and (iv).

For this, we will rely on a link between approximant bases and kernel bases, given in Lemma 2.3. We recall that, for a given matrix M ∈ K[X] µ×ν of rank r ,

• a kernel basis for M is a matrix in K[X] (µ-r)×µ whose rows form a basis of the left kernel {p ∈ K[X] 1×µ | pM = 0}, • a column basis for M is a matrix in K[X] µ×r whose columns form a basis of the column space {Mp, p ∈ K[X] ν ×1 }. In particular, by definition, a kernel basis has full row rank and a column basis has full column rank. The next result states that the column space of a kernel basis is the whole space (that is, the space spanned by the identity matrix). Lemma 2.2. Let M ∈ K[X] µ×ν and let B ∈ K[X] k ×µ be a kernel basis for M. Then, any column basis for B is unimodular. Equivalently,

BU = I k for some U ∈ K[X] µ×k .
Proof. Let S ∈ K[X] k ×k be a column basis for B. By definition, B = S B for some B ∈ K[X] k ×µ . Then 0 = BM = S BM, hence BM = 0 since S is nonsingular. Thus, B being a kernel basis for M, we have B = TB for some T ∈ K[X] k×k . We obtain (ST -I k)B = 0, hence ST = I k since B has full row rank. Thus, S is unimodular. □ This arises for example in the computation of column bases and unimodular completions in [START_REF] Zhou | Computing Column Bases of Polynomial Matrices[END_REF][START_REF] Zhou | Unimodular Completion of Polynomial Matrices[END_REF]; the previous lemma can also be derived from these references, and in particular from [START_REF] Zhou | Computing Column Bases of Polynomial Matrices[END_REF]Lem. 3.1].

Here, we will use the property of Lemma 2.2 for a specific kernel basis, built from an approximant basis as follows. Proof. The equivalence is straightforward; a detailed proof can be found in [START_REF] Neiger | Bases of relations in one or several variables: fast algorithms and applications[END_REF]Lem. 8.2]. If [P Q] is a kernel basis for [F T -X d] T , then we have PF = QX d , hence the explicit formula for Q. Besides, the last claim is a direct consequence of Lemma 2.2.

□

This leads us to the following result, which forms the main ingredient that was missing in order to prove Theorem 2.1.

Lemma 2.4. Let d ∈ Z n >0 and let F ∈ K[X] m×n . Let P ∈ K[X]
m×m be such that PF = 0 mod X d and det(P) is a nonzero monomial, and let C ∈ K m×(m+n) be the constant coefficient of PFX -d . Then, P is a basis of A d (F) if and only if [P(0) C] ∈ K m×(m+n) has full rank.

Proof. First, assume that P is a basis of A d (F). Then, defining Proof of Theorem 2.1. If P is an s-minimal basis of A d (F), then by definition Items (i) and (iii) are satisfied. Since the rows of X max(d) I m are in A d (F) and P is a basis, the matrix X max(d) I m is a left multiple of P and therefore the determinant of P divides X m max(d) : it is a nonzero monomial. Then, according to Lemma 2.4, [P(0) C] has full rank. Conversely, if Items (ii) to (iv) are satisfied, then Lemma 2.4 states that P is a basis of A d (F); thus if furthermore Item (i) is satisfied then P is an s-minimal basis of A d (F). □ Algorithm 1: CertifApproxBasis Input: In order to provide a sharp estimate of the cost of Algorithm 1, we recall the best known cost bound with constant factors of the LQUP factorization of an m × n matrix over K, which we use for computing ranks and determinants. Assuming m ≤ n, we have:

Q = PFX -d ∈ K[X] m×n , Lemma 2.3 implies that PV + QW = I m for some V ∈ K[X] m×m and W ∈ K[X] n×m . Since Q(0) = C,
• order d = (d 1 , . . . , d n) ∈ Z n >0 , • matrix F ∈ K[X] m×n with cdeg(F) < d, • shift s = (s 1 , . . . , s m) ∈ Z m , • matrix P ∈ K[X] m×m , • certificate matrix C ∈ K m×n . Output: True if P is an s-minimal basis of A d (F)
C(m, n) = n m 1 2 ω-1 -2 - 1 2 ω -2 MM(m)
operations in K [6, Lem. 5.1], where MM(m) is the cost for the multiplication of m × m matrices over K.

Proposition 2.5. Algorithm 1 uses at most

5Size(P) + 2m(D + max(d)) + 3C(m, m) + C(m, m + n) + (4m + 1)n + 4 log 2 (Dd 1 • • • d n) ∈ O(Size(P) + mD + m ω-1 (m + n))
operations in K, where D = |d|. It is a false-biased Monte Carlo algorithm. If P is not an s-minimal basis of A d (F), then the probability that it outputs True is less than D+1 #S , where S is the finite subset of K from which random field elements are drawn.

Proof. By definition, P is s-reduced if and only if its s-leading matrix L computed at Step 1 is invertible. Thus, Step 1 correctly tests the property in Item (i) of Theorem 2.1. It uses at most C(m, m) operations in K. Furthermore, Step 2 correctly tests the first part of Item (iv) of Theorem 2.1 and uses at most C(m, m + n) operations.

Step 3 performs a false-biased Monte Carlo verification of Item (ii) of Theorem 2.1. Indeed, since P is s-reduced (otherwise the algorithm would have exited at Step 1), we know from [16, Sec. 6.3.2] that deg(det(P)) = ∆ = |rdeg s (P)| -|s|. Thus, det(P) is a nonzero monomial if and only if det(P) = det(P(1))X ∆ . Step 3 tests the latter equality by evaluation at a random point α. The algorithm only returns False if det(P(α)) det(P(1))α ∆ , in which case det(P) is indeed not a nonzero monomial. Furthermore, if we have det(P) det(P(1))X ∆ , then the probability that the algorithm fails to detect this, meaning that det(P(α)) = det(P(1))α ∆ , is at most ∆ #S . Since ∆ ≤ D according to [START_REF] Van Barel | A general module theoretic framework for vector M-Padé and matrix rational interpolation[END_REF]Thm. 4.1], this is also at most D #S < D+1 #S . The evaluations P(α) and P(1) are computed using respectively at most 2(Size(P) -m 2) operations and at most Size(P) -m 2 additions. Then, computing the two determinants det(P(α)) and det(P(1)) uses at most 2C(m, m) + 2m operations. Finally, computing det(P(1))α ∆ uses at most 2 log 2 (∆) + 1 ≤ 2 log 2 (D) + 1 operations.

Summing the cost bounds for the first three steps gives

3(Size(P) -m 2) + 3C(m, m) + C(m, m + n) + 2m + 2 log 2 (D) + 1 ≤ 3Size(P) + 3C(m, m) + C(m, m + n) + 2 log 2 (D). (2)
Step 4 tests the identity PF = CX d mod X t , which corresponds to both Item (iii) of Theorem 2.1 and the second part of Item (iv). Proposition 3.2 ensures that:

• If the call to VerifTruncMatProd returns False, we have PF CX d mod X t , and Algorithm 1 correctly returns False. 2) gives a cost bound for Algorithm 1, which is bounded from above by that in the proposition. Thanks to Theorem 2.1, the above considerations show that when the algorithm returns False, then P is indeed not an s-minimal basis of A d (F). On the other hand, if P is not an s-minimal basis of A d (F), the algorithm returns True if and only if one of the probabilistic verifications in Steps 3 and 4 take the wrong decision. According to the probabilities given above, this may happen with probability less than max(D+1 #S ,

max(d)+1 #S) = D+1 #S . □

VERIFYING A TRUNCATED PRODUCT

In this section, we focus on the verification of truncated products of polynomial matrices, and we give the corresponding algorithm VerifTruncMatProd used in Algorithm 1. Given a truncation order t and polynomial matrices P, F, G, our goal is to verify that PF = G mod X t holds with good probability. Without loss of generality, we assume that the columns of F and G are already truncated with respect to the order t, that is, cdeg(F) < t and cdeg(G) < t. Similarly, we assume that P is truncated with respect to δ = max(t), that is, deg(P) < δ .

Problem 2: Truncated matrix product verification Input:

• truncation order t ∈ Z n >0 ,

• matrix P ∈ K[X] m×m with deg(P) < max(t), • matrix F ∈ K[X] m×n with cdeg(F) < t, • matrix G ∈ K[X] m×n with cdeg(G) < t. Output: • True if PF = G mod X t , otherwise False.
Obviously, our aim is to obtain a verification algorithm which has a significantly better cost than the straightforward approach which computes the truncated product PF mod X t and compares it with the matrix G. To take an example: if we have n ∈ O(m) as well as |rdeg(P)| ∈ O(|t|) or |cdeg(P)| ∈ O(|t|), as commonly happens in approximant basis computations, then this truncated product PF mod X t can be computed using O˜(m ω-1 |t|) operations in K.

For verifying the non-truncated product PF = G, the classical approach would be to use evaluation at a random point, following ideas from [START_REF] Demillo | A Probabilistic Remark on Algebraic Program Testing[END_REF][START_REF] Schwartz | Fast Probabilistic Algorithms for Verification of Polynomial Identities[END_REF][START_REF] Zippel | Probabilistic algorithms for sparse polynomials[END_REF]. However, evaluation does not behave well with regards to truncation. A similar issue was tackled in [START_REF] Giorgi | Certification of Polynomial Middle Product[END_REF] for the verification of the middle product and the short products of univariate polynomials. The algorithm of [START_REF] Giorgi | Certification of Polynomial Middle Product[END_REF] can be adapted to work with polynomial matrices by writing them as univariate polynomials with matrix coefficents; for example, P is a polynomial P = 0≤i <δ P i X i with coefficients P i ∈ K m×m . While this leads to a verification of PF = G mod X t with a good probability of success, it has a cost which is close to that of computing PF mod X t .

To lower down the cost, we will combine the evaluation of truncated products from [START_REF] Giorgi | Certification of Polynomial Middle Product[END_REF] with Freivalds' technique [START_REF] Freivalds | Fast probabilistic algorithms[END_REF]. The latter consists in left-multiplying the matrices by some random vector u ∈ K 1×m , and rather checking whether uPF = uG mod X t ; this effectively reduces the row dimension of the manipulated matrices, leading to faster computations. Furthermore, this does not harm the probability of success of the verification, as we detail now.

In what follows, given a matrix A ∈ K[X] m×n and an order t ∈ Z n >0 , we write A rem X t for the (unique) matrix B ∈ K[X] m×n such that B = A mod X t and cdeg(B) < t. For simplicity, we will often write A 1 A 2 rem X t to actually mean (A 1 A 2) rem X t . Lemma 3.1. Let S be a finite subset of K. Let u ∈ K 1×m with entries chosen uniformly and independently at random from S, and let α ∈ K be chosen uniformly at random from S. Assuming PF G mod X t , the probability that (uPF rem X t)(α) = uG(α) is less than

max(t) #S .
Proof. Let A = (PF -G) rem X t . By assumption, there exists a pair (i, j) such that the entry (i, j) of A is nonzero. Since this entry is a polynomial in K[X] of degree less than δ = max(t), the probability that α is a root of this entry is at most δ -1 #S . As a consequence, we have A(α) 0 ∈ K m×n with probability at least 1-δ -1 #S . In this case, uA(α) = 0 occurs with probability at most 1 #S (see [START_REF] Motwani | Randomized Algorithms[END_REF]Sec. 7.1]). Thus, altogether the probability that uA(α) = 0 is bounded from

above by δ -1 #S + 1 -δ -1 #S 1 #S < δ #S
, which concludes the proof. □

We deduce an approach to verify the truncated product: compute uA(α) = ((uPF -uG) rem X t)(α) and check whether it is zero or nonzero. The remaining difficulty is to compute uA(α) efficiently: we will see that this can be done in O(Size(P) + m|t|) operations.

For this, we use a strategy similar to that in [START_REF] Giorgi | Certification of Polynomial Middle Product[END_REF]Lem. 4.1] and essentially based on the following formula for the truncated product. Consider a positive integer t ≤ δ and a vector f ∈ K[X] m×1 of degree less than t; one may think of f as a column F * , j of F and of t as the corresponding order t j . Writing f = 0≤k <t f k X k with f k ∈ K m×1 and uP = 0≤k <δ p k X k with p k ∈ K 1×m , we have

uPf rem X t = t -1 k =0 t -1-k i=0 p i X i f k X k = X t -1 t -1 k =0 t -1-k i=0 p t -1-k-i X -i f k .
Thus, the evaluation can be expressed as

(uPf rem X t)(α) = α t -1 t -1 k =0 c t -1-k f k , (3)
where we define, for 0 ≤ k < δ ,

c k = (uP rem X k +1)(α -1) = k i=0 p k -i α -i ∈ K 1×m . (4)
These identities give an algorithm to compute the truncated product evaluation (uPf rem X t)(α), which we sketch as follows:

• apply Horner's method to the reversal of uP rem X t at the point α -1 , storing the intermediate results which are exactly the t vectors c 0 , . . . , c t -1 ; • compute the scalar products λ k = c t -1-k f k for 0 ≤ k < t;

• compute α t -1 and then α t -1 0≤k <t λ k . The last step gives the desired evaluation according to Eq. (3). In our case, this will be applied to each column f = F * , j for 1 ≤ j ≤ n. We will perform the first item only once to obtain the δ vectors c 0 , . . . , c δ -1 , since they do not depend on f. Proposition 3.2. Algorithm 2 uses at most 2Size(P) + (6m + 1)|t| + 2n log 2 (δ) ∈ O(Size(P) + m|t| + n log 2 (δ)) operations in K, where δ ≤ |t| is the largest of the truncation orders. It is a false-biased Monte Carlo algorithm. If PF G mod X t , the probability that it outputs True is less than δ #S , where S is the finite subset of K from which random field elements are drawn.

Proof. The discussion above shows that this algorithm correctly computes [e j] 1≤j ≤n = uG(α) and [e ′ j] 1≤j ≤n = (uPF rem X t)(α). If it returns False, then there is at least one j for which e ′ j e j , thus we must have uPF rem X t uG and therefore PF G mod X t . Besides, the algorithm correctly returns True if PF = G mod X t .

The analysis of the probability of failure (the algorithm returns True while PF G mod X t) is a direct consequence of Lemma 3.1.

Step 2 uses at most 2Size(P) + (2m -1)|t| operations in K. The Horner evaluations at Steps 3 and 4 require at most 2(|t| -n) and at most 1 + 2m(δ -1) operations, respectively. Now, we consider the j-th iteration of the loop at Step 5. The scalar products (λ k) 0≤k <t j are computed using at most (2m -1)t j operations; the sum and multiplication by α t j -1 giving e ′ j use at most t j + 2 log 2 (t j -1) operations. Summing over 1 ≤ j ≤ n, this gives a total of at most Algorithm 2: VerifTruncMatProd Input:

• truncation order t = (t 1 , . . . ,

t n) ∈ Z n >0 , • matrix P ∈ K[X] m×m such that deg(P) < δ = max(t), • matrix F = [f i j] ∈ K[X] m×n with cdeg(F) < t, • matrix G ∈ K[X] m×n with cdeg(G) < t. Output: True if PF = G mod X t ,
p ← uP // in K[X] 1×m , degree < δ g ← uG // in K[X] 1×n , cdeg(g) < t 3. /* Evaluation of right-hand side: uG(α) */ write g = [д 1 • • • д n] with д j ∈ K[X] of degree < t j For j from 1 to n: e j ← д j (α) 4. /* Truncated evaluations c 0 , . . . , c δ -1 */ write p = 0≤k <δ p k X k with p k ∈ K 1×m c 0 ← p 0 For k from 1 to δ -1: c k ← p k + α -1 c k-1 5. /* Evaluation of left-hand side: (uPF rem X t)(α) */
For j from 1 to n:

// process column F * , j write F * , j = 0≤k <t j f k X k (λ k) 0≤k <t j ← (c t j -1-k • f k) 0≤k <t j e ′ j ← α t j -1 0≤k <t j λ k 6. If e j e ′
j for some j ∈ {1, . . . , n} then return False Else return True 2m|t| + 2 log 2 ((t 1 -1) • • • (t n -1)) operations for Step 5. Finally, Step 6 uses at most n comparisons of two field elements. Summing these bounds for each step yields the cost bound 2Size(P)+(4m +1)|t| +2m(δ -1)-n +2 log 2 ((t 1 -1) • • • (t n -1)), [START_REF] Demillo | A Probabilistic Remark on Algebraic Program Testing[END_REF] which is at most the quantity in the proposition. □

In the certification of approximant bases, we want to verify a truncated matrix product in the specific case where each entry in the column j of G is simply zero or a monomial of degree t j -1. Then, a slightly better cost bound can be given, as follows.

Remark 3.3. Assume that t = (d 1 + 1, . . . , d n + 1) and G = CX d , for some d = (d 1 , . . . , d n) ∈ Z n
>0 and some constant C ∈ K m×n . Then, the computation of uG at Step 2 uses at most (2m -1)n operations in K. Besides, since the polynomial д j at Step 3 is either zero or a monomial of degree d j , its evaluation e j is computed using at most 2 log 2 (d j) + 1 operations via repeated squaring [START_REF] Zur Gathen | Modern Computer Algebra[END_REF]Sec. 4.3]. Thus, Step 3 uses at most 2 log 2 (d 1 • • • d n)+n operations. As a result, defining D = |d|, the cost bound in Eq. (5) is lowered to 2Size

(P) + 2m(|t| + δ -1 + n) + n + 4 log 2 (d 1 • • • d n) + 1 = 2Size(P) + 2m(D + max(d) + 2n) + n + 4 log 2 (d 1 • • • d n) + 1. □

COMPUTING THE CERTIFICATE 4.1 Context

In this section, we show how to efficiently compute the certificate C ∈ K m×n , which is the term of degree 0 of the product PFX -d , whose entries are Laurent polynomials (they are in K[X] if and only if the rows of P are approximants). Equivalently, the column C * , j is the term of degree d j of the column j of PF, where d = (d 1 , . . . , d n).

We recall the notation D = d 1 + • • • + d n . Note that, without loss of generality, we may truncate P so that deg(P) ≤ max(d).

For example, suppose that the dimensions and the order are balanced: m = n and d = (D/m, . . . , D/m). Then, C ∈ K m×m is the coefficient of degree D/m of the product PF, where P and F are m × m matrices over K[X]. Thus C can be computed using D/m multiplications of m × m matrices over K, at a total cost O(m ω-1 D).

Going back to the general case, the main obstacle to obtain similar efficiency is that both the degrees in P and the order d (hence the degrees in F) may be unbalanced. Still, we have cdeg(F) < d with sum |d| = D and, as stated in the introduction, we may assume that either |rdeg(P)| ∈ O(D) or |cdeg(P)| ≤ D holds. In this context, both F and P are represented by O(mD) field elements.

We will generalize the method above for the balanced case to this general situation with unbalanced degrees, achieving the same cost O(m ω-1 D). As a result, computing the certificate C has negligible cost compared to the fastest known approximant basis algorithms. Indeed, the latter are in O˜(m ω-1 D), involving logarithmic factors in D coming both from polynomial arithmetic and from divide and conquer approaches. We refer the reader to [START_REF] Zhou | Efficient Algorithms for Order Basis Computation[END_REF]Thm. 5.3] and [START_REF] Jeannerod | Fast computation of minimal interpolation bases in Popov form for arbitrary shifts[END_REF]Thm. 1.4] for more details on these logarithmic factors.

We first remark that C can be computed by naive linear algebra using O(m 2 D) operations. Indeed, writing rdeg(P) = (r 1 , . . . , r m), we have the following explicit formula for each entry in C: C i, j = min(r i ,d j) k =1 P i, * ,k F * , j,d j -k , where P i, * ,k is the coefficient of degree k of the row i of P and similar notation is used for F. Then, since min(r i , d j) ≤ d j , the column C * , j is computed via md j scalar products of length m, using O(m 2 d j) operations. Summing this for 1 ≤ j ≤ n yields O(m 2 D).

This approach considers each column of F separately, allowing us to truncate at precision d j + 1 for the column j and thus to rule out the issue of the unbalancedness of the degrees in P. However, this also prevents us from incorporating fast matrix multiplication. In our efficient method, we avoid considering columns or rows separately, while still managing to handle the unbalancedness of the degrees in both P and F. Our approach bears similarities with algorithms for polynomial matrix multiplication with unbalanced degrees (see for example [START_REF] Zhou | Computing Minimal Nullspace Bases[END_REF]Sec. 3.6]).

Sparsity and degree structure

 1×m . Still, a basis P of A d (F) always satisfies deg(det(P)) ≤ D. Now, for an s-minimal P, we have |rdeg(P)| ∈ O(D) as soon as |smin(s)| ∈ O(D) [27, Thm. 4.1], and it was shown in [28] that P has size in O(mD) if |max(s) -s| ∈ O(D). Yet, without such assumptions on the shift, there are s-minimal bases whose size is in Θ(m 2 D) [15, App. B], ruling out the feasibility of finding them in time O˜(m ω-1 D). In this case, the fastest known algorithms return the more constrained s-Popov basis P, for which |cdeg(P)| ≤ D holds independently of s.

Lemma 2 . 3 .

 23 Let d ∈ Z n >0 , F ∈ K[X] m×n , and P ∈ K[X] m×m . Then, P is a basis of A d (F) if and only if there exists Q ∈ K[X] m×n such that [P Q] is a kernel basis for [F T -X d] T . If this is the case, then we have Q = PFX -d and there exist V ∈ K[X] m×m and W ∈ K[X] n×m such that PV + QW = I m .

 this yields P(0)V(0) + CW(0) = I m , and thus [P(0) C] has full rank. Now, assume that P is not a basis of A d (F). If P has rank < m, then [P(0) C] has rank < m as well. If P is nonsingular, P = UA for some basis A of A d (F) and some U ∈ K[X] m×m which is nonsingular but not unimodular. Then, det(U) is a nonconstant divisor of the nonzero monomial det(P); hence det(U)(0) = 0 = det(U(0)), and thus U(0) has rank < m. Since [P Q] = U[A AFX -d], it directly follows that [P(0) C] has rank < m. □

 Below, we first detail our method assuming |rdeg(P)| ∈ O(D); until further notice, γ ≥ 1 is a real number such that |rdeg(P)| ≤ γ D. To simplify the exposition, we start by replacing the tuple d by the uniform bound d = max(d). To achieve this, we consider the matrix H = FX d -d , where dd stands for (d -d 1 , . . . , dd n): then, C is the coefficient of degree d in PH.

 and C is the constant term of PFX -d , otherwise True or False. 1.

/* P not in s-reduced form ⇒ False */ L ← the matrix in K m×m whose entry i, j is the coefficient of degree rdeg s (P i, *) -s j of the entry i, j of P If L is not invertible then return False 2. /* rank([P(0) C]) not full rank ⇒ False */ If rank([P(0) C]) < m then return False 3. /* det(P) not a nonzero monomial ⇒ False */ S ← a finite subset of K ∆ ← |rdeg s (P)| -|s| α ← chosen uniformly at random from S If det(P(α)) det(P(1))α ∆ then return False 4. /* certify truncated product PF = CX d mod X t */ t ← (d 1 + 1, . . . , d n + 1) Return VerifTruncMatProd(t, P, F, CX d)

•

 If PF CX d mod X t holds, the probability that Algorithm 1 fails to detect this (that is, the call at Step 4 returns True) is

		max(d)+1
	less than	#S

.

A cost bound for Step 4 is given in Proposition 3.2, with a minor improvement for the present case given in Remark 3.3. Summing it with the bound in Eq. (

 otherwise True or False. 1. /* Main objects for verification */ S ← a finite subset of K α ← element of K chosen uniformly at random from S u ← vector in K 1×m with entries chosen uniformly and independently at random from S 2. /* Freivalds: row dimension becomes 1 */

This is not implied by[START_REF] Beckermann | A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants[END_REF] and (2): for d = max(d), then X d I m is s-reduced and X d I m F = 0 mod X d holds; yet, X d I m is not a basis of A d (F) for most (F, d).

Since cdeg(F) < d, we have deg(H) < d. The fact that F has column degree less than d translates into the fact that H has column valuation at least dd (and degree less than d); like F, this matrix H is represented by mD field elements. Recalling the assumption deg(P) ≤ d, we can write P = d k =0 P k X k and H = d k =0 H k X k , where P k ∈ K m×m and H k ∈ K m×n for all k (note that H d = 0). Then, our goal is to compute the matrix

The essential remark to design an efficient algorithm is that each matrix P k has only few nonzero rows when k becomes large, and each matrix H d -k has only few nonzero columns when k becomes large. To state this formally, we define two sets of indices, for the rows of degree at least k in P and for the orders at least k in d:

The latter corresponds to the set of indices of columns of F which are allowed to have degree ≥ k -1 or, equivalently, to the set of indices of columns of H which are allowed to have valuation ≤ d -k.

Proof. The row i of P k is the coefficient of degree k of the row i of P. If it is nonzero, we must have i ∈ R k . Similarly, the column j of

The upper bounds on the cardinalities of R k and D k follow by construction of these sets: we have k

Proof. For the correctness, note that for all j the coefficient of degree d j -k of F * , j is the coefficient of degree dk of H * , j . Thus, using notation from Section 4.2, the matrix B at the iteration k of the loop is exactly the submatrix of H d -k of its columns in D k . Therefore, the loop in Algorithm 3 simply applies Eq. (6), discarding from P k and F d -k rows and columns which are known to be zero. Now, we estimate the cost of updating C at each iteration of the loop. Precisely, the main task is to compute AB, where the matrices A and B have dimensions #R × m and m × t. Then, adding this product to the submatrix C R, D only costs #R • t additions in K. ω). Thus, the total cost for these iterations is in

Algorithm 3: CertificateComp

For the first inclusion, we apply Lemma 4.3 with µ = ⌈γ D/m⌉, ν = max(d), and θ = 1 -ω. For the second, the sum is finite since

Adding the costs of the three considered sets of iterations, we obtain the announced cost for Algorithm 3 in the case n > m as well. □ Lemma 4.3. Given integers 0 < µ < ν and a real number θ ≤ 0,

holds, where ℓ = ⌊log 2 (ν /µ)⌋ + 1. In particular, ν k =µ k -1 ≤ ℓ.

Proof. Note that ℓ is chosen such that 2 ℓ µ -1 ≥ ν. Then, the upper bound is obtained by splitting the sum as follows:

where the second inequality comes from the fact that x → x θ is decreasing on the positive real numbers. □

Finally, we describe minor changes in Algorithm 3 to deal with the case of small average column degree cdeg(P) ∈ O(D); precisely, we replace the assumption |rdeg(P)| ≤ γ D by |cdeg(P)| ≤ γ D. Then, instead of the set R k used above, we rather define

Then we have the following lemma, analogous to Lemma 4.1.

Lemma 4.4. For k ∈ {1, . . . , m} and j C k , the column j of P k is zero. In particular, P k has at most #C k ≤ γ D/k nonzero columns.

Thus, we can modify Algorithm 3 to take into account the column degree of P instead of its row degree. This essentially amounts to redefining the matrices A and B in the loop as follows:

• A ∈ K m×#C k is the coefficient of degree k of P * , C k .

• B ∈ K #C k ×t is such that for all i ∈ C k and 1 ≤ j ≤ t, B i, j is the coefficient of degree d j -k of F i,c j These modifications have obviously no impact on the correctness. Furthermore, it is easily verified that the same cost bound holds since we obtain a similar matrix multiplication cost at each iteration.

PERSPECTIVES

As noted in the introduction, our certificate is almost optimal since we can verify it at a cost O(mD + m ω-1 (m + n)) while the input size is mD. One should notice that the extra term O(m ω-1 (m + n)) corresponds to certifying problems of linear algebra over K, namely the rank and the determinant. These could actually be dealt with in O(m(m + n)) operations using interactive certificates built upon the results in [START_REF] Dumas | Essentially Optimal Interactive Certificates in Linear Algebra[END_REF][START_REF] Dumas | Certificates for Triangular Equivalence and Rank Profiles[END_REF][START_REF] Kaltofen | Quadratic-time Certificates in Linear Algebra[END_REF], thus yielding an optimal certificate. Still, for practical applications, our simpler certification should already be significantly faster than the approximant basis computation, since the constants involved in the cost are small as we have observed in our estimates above. We plan to confirm this for the approximant bases implementations in the LinBox library.

Finally, our verification protocol needs (m + 2) log 2 (#S) random bits, yielding a probability of failure less than D+1 #S . The majority of these bits is required by Algorithm 2 when choosing m random elements for the vector u. As proposed in [START_REF] Kimbrel | A probabilistic algorithm for verifying matrix products using O (n 2) time and log 2 (n) + O (1) random bits[END_REF], it may be worthwhile to pick a single random value ζ and to use u

In the case where max(d) < D/2, this choice would not affect the probability of failure while decreasing the number of random bits to 3 log 2 (#S). In particular, at the price of the same number of bits as we currently use in our algorithm, we could run our verification (m + 2)/3 times and decrease the probability of failure to (D+1 #S) m+2 3 .