
HAL Id: hal-01701861
https://unilim.hal.science/hal-01701861v2

Submitted on 17 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Certification of minimal approximant bases
Pascal Giorgi, Vincent Neiger

To cite this version:
Pascal Giorgi, Vincent Neiger. Certification of minimal approximant bases. ISSAC 2018 - 43rd
International Symposium on Symbolic and Algebraic Computation, Jul 2018, New York, United States.
pp.167-174, �10.1145/3208976.3208991�. �hal-01701861v2�

https://unilim.hal.science/hal-01701861v2
https://hal.archives-ouvertes.fr

Certification of Minimal Approximant Bases
Pascal Giorgi

LIRMM, Université de Montpellier, CNRS

Montpellier, France

pascal.giorgi@lirmm.fr

Vincent Neiger

Univ. Limoges, CNRS, XLIM, UMR 7252

F-87000 Limoges, France

vincent.neiger@unilim.fr

ABSTRACT
For a given computational problem, a certificate is a piece of data

that one (the prover) attaches to the output with the aim of allowing

efficient verification (by the verifier) that this output is correct. Here,
we consider the minimal approximant basis problem, for which the

fastest known algorithms output a polynomial matrix of dimensions

m×m and average degreeD/m usingO˜(mω D
m) field operations.We

propose a certificate which, for typical instances of the problem, is

computed by the prover usingO(mω D
m) additional field operations

and allows verification of the approximant basis by a Monte Carlo

algorithm with cost bound O(mω +mD).
Besides theoretical interest, our motivation also comes from the

fact that approximant bases arise in most of the fastest known algo-

rithms for linear algebra over the univariate polynomials; thus, this

work may help in designing certificates for other polynomial ma-

trix computations. Furthermore, cryptographic challenges such as

breaking records for discrete logarithm computations or for integer

factorization rely in particular on computing minimal approximant

bases for large instances: certificates can then be used to provide

reliable computation on outsourced and error-prone clusters.

KEYWORDS
Certification; minimal approximant basis; order basis; polynomial

matrix; truncated product.

1 INTRODUCTION
Context. For a given tuple d = (d1, . . . ,dn) ∈ Zn>0 called order, we
consider anm ×n matrix F of formal power series with the column

j truncated at order dj . Formally, we let F ∈ K[X]m×n be a matrix

over the univariate polynomials over a fieldK, such that the column

j of F has degree less than dj . Then, we consider the classical notion
of minimal approximant bases for F [1, 27]. An approximant is a

polynomial row vector p ∈ K[X]1×m such that

pF = 0 mod Xd , where Xd = diag(Xd1 , . . . ,Xdn); (1)

here pF = 0 mod Xd
means that pF = qXd

for some q ∈ K[X]1×n .
The set of all approximants forms a (free) K[X]-module of rankm,

Ad(F) =
{
p ∈ K[X]1×m

�� pF = 0 mod Xd
}
.

ISSAC ’18, July 16–19, 2018, New York, NY, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in ISSAC ’18: 2018
ACM International Symposium on Symbolic and Algebraic Computation, July 16–19,
2018, New York, NY, USA, https://doi.org/10.1145/3208976.3208991.

A basis of this module is called an approximant basis (or sometimes

an order basis or a σ -basis); it is a nonsingular matrix in K[X]m×m

whose rows are approximants in Ad(F) and generate Ad(F).
The design of fast algorithms for computing approximant bases

has been studied throughout the last three decades [1, 14, 15, 26–

28]. Furthermore, these algorithms compute minimal bases, with
respect to some degree measure specified by a shift s ∈ Zm . The

best known cost bound isO˜(mω−1D) operations inK [15] where D
is the sum D = |d| = d1 + · · · +dn . Throughout the paper, our com-

plexity estimates will fit the algebraic RAM model counting only

operations inK, and we will useO(nω) to refer to the complexity of

the multiplication of twom ×m matrices, where ω < 2.373 [4, 21].

Here, we are interested in the following question:

How to efficiently certify that some approximant basis
algorithm indeed returns an s-minimal basis ofAd(F)?

Since all known fast approximant basis algorithms are deterministic,

it might seem that a posteriori certification is pointless. In fact, it is

an essential tool in the context of unreliable computations that arise

when one delegates the processing to outsourced servers or to some

large infrastructure that may be error-prone. In such a situation,

and maybe before concluding a commercial contract to which this

computing power is attached, one wants to ensure that he will be

able to guarantee the correctness of the result of these computations.

Of course, to be worthwhile, the verification procedure must be

significantly faster than the original computation.

Resorting to such computing power is indeed necessary in the

case of large instances of approximant bases, which are a key tool

within challenging computations that try to tackle the hardness

of some cryptographic protocols, for instance those based on the

discrete logarithm problem (e.g. El Gamal) or integer factorization

(e.g. RSA). The computation of a discrete logarithm over a 768-bit

prime field, presented in [20], required to compute an approximant

basis that served as input for a larger computation which took a

total time of 355 core years on a 4096-cores cluster. The approximant

basis computation itself took 1 core year. In this context, it is of great

interest to be able to guarantee the correctness of the approximant

basis before launching the most time-consuming step.

Linear algebra operations are good candidates for designing fast

verification algorithms since they often have a cost related to matrix

multiplication while their input only uses quadratic space. The first

example one may think of is linear system solving. Indeed, given a

solution vector x ∈ Kn to a system Ax = b defined by A ∈ Kn×n

and b ∈ Kn , one can directly verify the correctness by checking

the equations at a cost of O(n2) operations in K. Comparatively,

solving the system with the fastest known algorithm costs O(nω).
Another famous result, due to Freivalds [11], gives a method to

verify a matrix product. Given matrices A,B,C ∈ Kn×n , the idea
is to check uC = (uA)B for a random row vector u ∈ {0, 1}1×n ,

https://doi.org/10.1145/3208976.3208991

rather than C = AB. This verification algorithm costs O(n2) and
is false-biased one-sided Monte-Carlo (it is always correct when it

answers “false”); the probability of error can be made arbitrarily

small by picking several random vectors.

In some cases, one may require an additional piece of data to be

produced together with the output in order to prove the correctness

of the result. For example, Farkas’ lemma [10] certifies the infeasi-

bility of a linear program thanks to an extra vector. Although the

verification is deterministic in this example, the design of certifi-

cates that are verified by probabilistic algorithms opened a line of

work for faster certification methods in linear algebra [7, 8, 17, 18].

In this context, one of the main challenges is to design optimal
certificates, that is, ones which are verifiable in linear time. Further-

more, the time and space needed for the certificate must remain

negligible. In this work, we seek such an optimal certificate for the

problem of computing shifted minimal approximant bases.

Here, an instance is given by the input (d, F, s) which is of size

O(mD): each column j of F contains at mostmdj elements ofK, and
the order sums to d1 + · · · + dn = |d| = D. We neglect the size of

the shift s, since one may always assume that it is nonnegative and

such that max(s) < mD (see [15, App. A]). Thus, ideally one would

like to have a certificate which can be verified in time O(mD).
In this paper, we provide a non-interactive certification protocol

which uses the input (d, F, s), the output P, and a certificate which is
a constant matrix C ∈ Km×n . We design a Monte-Carlo verification

algorithm with cost bound O(mD +mω−1(m + n)); this is optimal

as soon as D is large compared tom and n (e.g. when D > m2 +mn),
which is most often the case of interest. We also show that the

certificate C can be computed inO(mω−1D) operations in K, which
is faster than known approximant basis algorithms.

Degrees and size of approximant bases. For P ∈ K[X]m×m , we

denote the row degree of P as rdeg(P) = (r1, . . . , rm) where ri =
deg(Pi,∗) is the degree of the row i of P for 1 ≤ i ≤ m. The column

degree cdeg(P) is defined similarly. More generally, we will consider

row degrees shifted by some additive columnweights: for a shift s =
(s1, . . . , sm) ∈ Z

m
the s-row degree of P is rdegs(P) = (r1, . . . , rm)

where ri = max(deg(Pi,1) + s1, . . . , deg(Pi,m) + sm).
We use | · | to denote the sum of integer tuples: for example

|rdegs(P)| is the sum of the s-row degree of P (note that this sum

might contain negative terms). The comparison of integer tuples

is entrywise: cdeg(F) < d means that the column j of F has degree

less than dj , for 1 ≤ j ≤ n. When adding a constant to a tuple, say

for example s − 1, this stands for the tuple (s1 − 1, . . . , sm − 1).
In existing approximant basis algorithms, the output bases may

take different forms: essentially, they can be s-minimal (also called

s-reduced [27]), s-weak Popov [23], or s-Popov [3]. For formal

definitions and for motivating the use of shifts, we direct the reader

to these references and to those above about approximant basis

algorithms; here the precise form of the basis will not play an

important role. What is however at the core of the efficiency of our

algorithms is the impact of these forms on the degrees in the basis.

In what follows, by size of a matrix we mean the number of field

elements used for its dense representation. We define the quantity

Size(P) =m2 +
∑

1≤i, j≤m
max(0, deg(pi j))

for a matrix P = [pi j] ∈ K[X]m×m . In the next paragraph, we

discuss degree bounds on P when it is the output of any of the

approximant basis algorithms mentioned above; note that these

bounds all imply that P has size in O(mD).
There is no general degree bound for approximant bases: any

unimodular matrix is a basis of Ad(0) = K[X]1×m . Still, a basis P
of Ad(F) always satisfies deg(det(P)) ≤ D. Now, for an s-minimal

P, we have |rdeg(P)| ∈ O(D) as soon as |s − min(s)| ∈ O(D) [27,
Thm. 4.1], and it was shown in [28] that P has size in O(mD) if
|max(s) − s| ∈ O(D). Yet, without such assumptions on the shift,

there are s-minimal bases whose size is in Θ(m2D) [15, App. B],
ruling out the feasibility of finding them in timeO˜(mω−1D). In this

case, the fastest known algorithms return the more constrained

s-Popov basis P, for which |cdeg(P)| ≤ D holds independently of s.

Problem and contribution. Certifying that a matrix P is an s-
minimal approximant basis for a given instance (d, F, s) boils down
to the following three properties of P:

(1) Minimal: P is in s-reduced form. By definition, this amounts

to testing the invertibility of the so-called s-leading matrix

of P (see Step 1 of Algorithm 1 for the construction of this

matrix), which can be done using O(mω) operations in K.
(2) Approximant: the rows of P are approximants. That is, we

should check that PF = 0 mod Xd
. The difficulty is to avoid

computing the full truncated product PF mod Xd
, since this

costs O˜(mω−1D). In Section 3, we give a probabilistic algo-

rithm which verifies more generally PF = G mod Xd
using

O(Size(P) +mD) operations, without requiring a certificate.
(3) Basis: the rows of P generate the approximant module

1
. For

this, we prove that it suffices to verify first that det(P) is of the
form cXδ

for some c ∈ K \ {0} and where δ = |rdeg(P)|, and
second that some constantm × (m + n) matrix has full rank;

this matrix involves P(0) and the coefficient C of degree 0 of

PFX−d . In Section 2, we show thatC can serve as a certificate,

and that a probabilistic algorithm can assess its correctness

at a suitable cost.

Our (non-interactive) certification protocol is as follows. Given

(d, F, s), the Prover computes a matrix P, supposedly an s-minimal

basis ofAd(F), along with a constant matrixC ∈ Km×n , supposedly
the coefficient of degree 0 of the product PFX−d . Then, the Prover
communicates these results to theVerifier whomust solve Problem 1

within a cost asymptotically better than O˜(mω−1D).

Problem 1: Approximant basis certification

Input:
• order d ∈ Zn>0,
• matrix F ∈ K[X]m×n with cdeg(F) < d,
• shift s ∈ Zm ,

• matrix P ∈ K[X]m×m ,

• certificate matrix C ∈ Km×n .
Output:
• True if P is an s-minimal basis of Ad(F) and C is the

coefficient of degree 0 of PFX−d , otherwise False.

1
This is not implied by (1) and (2): for d = max(d), then Xd Im is s-reduced and

Xd ImF = 0 mod Xd
holds; yet, Xd Im is not a basis of Ad(F) for most (F, d).

The main result in this paper is an efficient solution to Problem 1.

Theorem 1.1. There is a Monte-Carlo algorithm which solves
Problem 1 using O(mD +mω−1(m + n)) operations in K, assuming
Size(P) ∈ O(mD). It choosesm + 2 elements uniformly and indepen-
dently at random from a finite subset S ⊂ K. If S has cardinality at
least 2(D + 1), then the probability that a True answer is incorrect is
less than 1/2, while a False answer is always correct.

A detailed cost bound showing the constant factors is described

in Proposition 2.5. If Size(P) ∈ O(mD), then the size of the input of

Problem 1 is in O(mD); the cost bound above is therefore optimal

(up to constant factors) as soon asmω−2(m + n) ∈ O(D).
If K is a small finite field, there may be no subset S ⊂ K of cardi-

nality #S ≥ 2(D + 1). Then, our approach still works by performing

the probabilistic part of the computation over a sufficiently large

extension ofK. Note that an extension of degree about 1+ ⌈log
2
(D)⌉

would be suitable; this would increase our complexity estimates by

a factor logarithmic in D, which remains acceptable in our context.

Our second result is the efficient computation of the certificate.

Theorem 1.2. Let d ∈ Zn>0, let F ∈ K[X]
m×n with cdeg(F) < d

and m ∈ O(D), and let P ∈ K[X]m×m . If |rdeg(P)| ∈ O(D) or
|cdeg(P)| ∈ O(D), there is a deterministic algorithm which computes
the coefficient of degree 0 of PFX−d usingO(mω−1D) operations inK
ifm ≥ n and O(mω−1D log(n/m)) operations in K ifm < n.

Note that the assumptionm ∈ O(D) in this theorem is commonly

made in approximant basis algorithms, since when D ≤ m most

entries of a minimal approximant basis have degree inO(1) and the
algorithms then rely on methods from dense K-linear algebra.

2 CERTIFYING APPROXIMANT BASES
Here, we present our certification algorithm. Its properties, given

in Proposition 2.5, prove Theorem 1.1. One of its core components

is the verification of truncated polynomial matrix products; the

details of this are in Section 3 and are taken for granted here.

First, we show the basic properties behind the correctness of this

algorithm, which are summarized in the following result.

Theorem 2.1. Let d ∈ Zn>0, let F ∈ K[X]
m×n , and let s ∈ Zm . A

matrix P ∈ K[X]m×m is an s-minimal basis of Ad(F) if and only if
the following properties are all satisfied:

(i) P is s-reduced;
(ii) det(P) is a nonzero monomial in K[X];
(iii) the rows of P are in Ad(F), that is, PF = 0 mod Xd ;
(iv) [P(0) C] ∈ Km×(m+n) has full rank, where C is the coefficient

of degree 0 of PFX−d .

We remark that having both PF = 0 mod Xd
and C the constant

coefficient of PFX−d is equivalent to the single truncated identity

PF = CXd
mod Xt

, where t = (d1 + 1, . . . ,dn + 1).
As mentioned above, the details of the certification of the latter

identity is deferred to Section 3, where we present more generally

the certification for truncated products of the form PF = G mod Xt
.

Concerning Item (ii), the fact that the determinant of any basis

of Ad(F) must divide XD
, where D = |d|, is well-known; we refer

to [2, Sec. 2] for a more general result.

The combination of Items (i) and (iii) describes the set of matrices

P ∈ K[X]m×m which are s-reduced and whose rows are in Ad(F).

For P to be an s-minimal basis of Ad(F), its rows should further

form a generating set forAd(F); thus, our goal here is to prove that
this property is realized by the combination of Items (ii) and (iv).

For this, we will rely on a link between approximant bases and

kernel bases, given in Lemma 2.3. We recall that, for a given matrix

M ∈ K[X]µ×ν of rank r ,

• a kernel basis for M is a matrix in K[X](µ−r)×µ whose rows

form a basis of the left kernel {p ∈ K[X]1×µ | pM = 0},
• a column basis for M is a matrix in K[X]µ×r whose columns

form a basis of the column space {Mp, p ∈ K[X]ν×1}.
In particular, by definition, a kernel basis has full row rank and

a column basis has full column rank. The next result states that the

column space of a kernel basis is the whole space (that is, the space

spanned by the identity matrix).

Lemma 2.2. Let M ∈ K[X]µ×ν and let B ∈ K[X]k×µ be a kernel
basis forM. Then, any column basis for B is unimodular. Equivalently,
BU = Ik for some U ∈ K[X]µ×k .

Proof. Let S ∈ K[X]k×k be a column basis for B. By definition,

B = SB̂ for some B̂ ∈ K[X]k×µ . Then 0 = BM = SB̂M, hence

B̂M = 0 since S is nonsingular. Thus, B being a kernel basis forM,

we have B̂ = TB for some T ∈ K[X]k×k . We obtain (ST − Ik)B = 0,
hence ST = Ik since B has full row rank. Thus, S is unimodular. □

This arises for example in the computation of column bases and

unimodular completions in [29, 30]; the previous lemma can also be

derived from these references, and in particular from [29, Lem. 3.1].

Here, we will use the property of Lemma 2.2 for a specific kernel

basis, built from an approximant basis as follows.

Lemma 2.3. Let d ∈ Zn>0, F ∈ K[X]
m×n , and P ∈ K[X]m×m .

Then, P is a basis of Ad(F) if and only if there exists Q ∈ K[X]m×n

such that [P Q] is a kernel basis for [FT − Xd]T. If this is the
case, then we have Q = PFX−d and there exist V ∈ K[X]m×m and
W ∈ K[X]n×m such that PV + QW = Im .

Proof. The equivalence is straightforward; a detailed proof can

be found in [24, Lem. 8.2]. If [P Q] is a kernel basis for [FT −Xd]T,

then we have PF = QXd
, hence the explicit formula for Q. Besides,

the last claim is a direct consequence of Lemma 2.2. □

This leads us to the following result, which forms the main

ingredient that was missing in order to prove Theorem 2.1.

Lemma 2.4. Let d ∈ Zn>0 and let F ∈ K[X]
m×n . Let P ∈ K[X]m×m

be such that PF = 0 mod Xd and det(P) is a nonzero monomial, and
let C ∈ Km×(m+n) be the constant coefficient of PFX−d . Then, P is a
basis of Ad(F) if and only if [P(0) C] ∈ Km×(m+n) has full rank.

Proof. First, assume that P is a basis of Ad(F). Then, defining
Q = PFX−d ∈ K[X]m×n , Lemma 2.3 implies that PV + QW = Im
for some V ∈ K[X]m×m and W ∈ K[X]n×m . Since Q(0) = C, this
yields P(0)V(0) + CW(0) = Im , and thus [P(0) C] has full rank.

Now, assume that P is not a basis of Ad(F). If P has rank < m,

then [P(0) C] has rank < m as well. If P is nonsingular, P = UA for

some basis A ofAd(F) and some U ∈ K[X]m×m which is nonsingu-

lar but not unimodular. Then, det(U) is a nonconstant divisor of the
nonzero monomial det(P); hence det(U)(0) = 0 = det(U(0)), and

thus U(0) has rank < m. Since [P Q] = U[A AFX−d], it directly
follows that [P(0) C] has rank < m. □

Proof of Theorem 2.1. If P is an s-minimal basis ofAd(F), then
by definition Items (i) and (iii) are satisfied. Since the rows of

Xmax(d)Im are in Ad(F) and P is a basis, the matrix Xmax(d)Im
is a left multiple of P and therefore the determinant of P divides

Xmmax(d)
: it is a nonzero monomial. Then, according to Lemma 2.4,

[P(0) C] has full rank. Conversely, if Items (ii) to (iv) are satisfied,

then Lemma 2.4 states that P is a basis ofAd(F); thus if furthermore

Item (i) is satisfied then P is an s-minimal basis of Ad(F). □

Algorithm 1: CertifApproxBasis
Input:

• order d = (d1, . . . ,dn) ∈ Zn>0,
• matrix F ∈ K[X]m×n with cdeg(F) < d,
• shift s = (s1, . . . , sm) ∈ Zm ,

• matrix P ∈ K[X]m×m ,

• certificate matrix C ∈ Km×n .
Output: True if P is an s-minimal basis of Ad(F) and C is the

constant term of PFX−d , otherwise True or False.
1. /* P not in s-reduced form ⇒ False */

L← the matrix in Km×m whose entry i, j is the coefficient

of degree rdegs(Pi,∗) − sj of the entry i, j of P
If L is not invertible then return False

2. /* rank([P(0) C]) not full rank ⇒ False */

If rank([P(0) C]) < m then return False
3. /* det(P) not a nonzero monomial ⇒ False */

S ← a finite subset of K
∆← |rdegs(P)| − |s|
α ← chosen uniformly at random from S
If det(P(α)) , det(P(1))α∆ then return False

4. /* certify truncated product PF = CXd
mod Xt */

t← (d1 + 1, . . . ,dn + 1)
Return VerifTruncMatProd(t, P, F,CXd)

In order to provide a sharp estimate of the cost of Algorithm 1,

we recall the best known cost bound with constant factors of the

LQUP factorization of anm × n matrix over K, which we use for

computing ranks and determinants. Assumingm ≤ n, we have:

C(m,n) =

(⌈ n
m

⌉
1

2
ω−1 − 2

−
1

2
ω − 2

)
MM(m)

operations in K [6, Lem. 5.1], where MM(m) is the cost for the

multiplication ofm ×m matrices over K.

Proposition 2.5. Algorithm 1 uses at most

5Size(P) + 2m(D +max(d)) + 3C(m,m) + C(m,m + n)

+ (4m + 1)n + 4 log
2
(Dd1 · · ·dn)

∈ O(Size(P) +mD +mω−1(m + n))

operations in K, where D = |d|. It is a false-biased Monte Carlo
algorithm. If P is not an s-minimal basis ofAd(F), then the probability
that it outputs True is less than D+1

#S , where S is the finite subset of K
from which random field elements are drawn.

Proof. By definition, P is s-reduced if and only if its s-leading
matrix L computed at Step 1 is invertible. Thus, Step 1 correctly

tests the property in Item (i) of Theorem 2.1. It uses at most C(m,m)
operations in K. Furthermore, Step 2 correctly tests the first part of

Item (iv) of Theorem 2.1 and uses at most C(m,m + n) operations.
Step 3 performs a false-biasedMonte Carlo verification of Item (ii)

of Theorem 2.1. Indeed, since P is s-reduced (otherwise the algo-

rithm would have exited at Step 1), we know from [16, Sec. 6.3.2]

that deg(det(P)) = ∆ = |rdegs(P)| − |s|. Thus, det(P) is a nonzero
monomial if and only if det(P) = det(P(1))X∆

. Step 3 tests the latter
equality by evaluation at a random point α . The algorithm only

returns False if det(P(α)) , det(P(1))α∆, in which case det(P) is
indeed not a nonzero monomial. Furthermore, if we have det(P) ,
det(P(1))X∆

, then the probability that the algorithm fails to detect

this, meaning that det(P(α)) = det(P(1))α∆, is at most
∆
#S . Since

∆ ≤ D according to [27, Thm. 4.1], this is also at most
D
#S <

D+1
#S .

The evaluations P(α) and P(1) are computed using respectively at

most 2(Size(P) −m2) operations and at most Size(P) −m2
additions.

Then, computing the two determinants det(P(α)) and det(P(1)) uses
at most 2C(m,m) + 2m operations. Finally, computing det(P(1))α∆

uses at most 2 log
2
(∆) + 1 ≤ 2 log

2
(D) + 1 operations.

Summing the cost bounds for the first three steps gives

3(Size(P) −m2) + 3C(m,m) + C(m,m + n) + 2m + 2 log
2
(D) + 1

≤ 3Size(P) + 3C(m,m) + C(m,m + n) + 2 log
2
(D). (2)

Step 4 tests the identity PF = CXd
mod Xt

, which corresponds

to both Item (iii) of Theorem 2.1 and the second part of Item (iv).

Proposition 3.2 ensures that:

• If the call to VerifTruncMatProd returns False, we have
PF , CXd

mod Xt
, and Algorithm 1 correctly returns False.

• If PF , CXd
mod Xt

holds, the probability that Algorithm 1

fails to detect this (that is, the call at Step 4 returns True) is
less than

max(d)+1
#S .

A cost bound for Step 4 is given in Proposition 3.2, with a minor

improvement for the present case given in Remark 3.3. Summing it

with the bound in Eq. (2) gives a cost bound for Algorithm 1, which

is bounded from above by that in the proposition.

Thanks to Theorem 2.1, the above considerations show that when

the algorithm returns False, then P is indeed not an s-minimal basis

ofAd(F). On the other hand, if P is not an s-minimal basis ofAd(F),
the algorithm returns True if and only if one of the probabilistic

verifications in Steps 3 and 4 take the wrong decision. According

to the probabilities given above, this may happen with probability

less than max(D+1
#S ,

max(d)+1
#S) = D+1

#S . □

3 VERIFYING A TRUNCATED PRODUCT
In this section, we focus on the verification of truncated products

of polynomial matrices, and we give the corresponding algorithm

VerifTruncMatProd used in Algorithm 1.

Given a truncation order t and polynomial matrices P, F, G, our
goal is to verify that PF = G mod Xt

holds with good probability.

Without loss of generality, we assume that the columns of F and G
are already truncated with respect to the order t, that is, cdeg(F) < t
and cdeg(G) < t. Similarly, we assume that P is truncated with

respect to δ = max(t), that is, deg(P) < δ .

Problem 2: Truncated matrix product verification

Input:
• truncation order t ∈ Zn>0,
• matrix P ∈ K[X]m×m with deg(P) < max(t),
• matrix F ∈ K[X]m×n with cdeg(F) < t,
• matrix G ∈ K[X]m×n with cdeg(G) < t.

Output:
• True if PF = G mod Xt

, otherwise False.

Obviously, our aim is to obtain a verification algorithm which

has a significantly better cost than the straightforward approach

which computes the truncated product PF mod Xt
and compares it

with the matrix G. To take an example: if we have n ∈ O(m) as well
as |rdeg(P)| ∈ O(|t|) or |cdeg(P)| ∈ O(|t|), as commonly happens

in approximant basis computations, then this truncated product

PF mod Xt
can be computed using O˜(mω−1 |t|) operations in K.

For verifying the non-truncated product PF = G, the classical
approach would be to use evaluation at a random point, following

ideas from [5, 25, 32]. However, evaluation does not behave well

with regards to truncation. A similar issue was tackled in [13]

for the verification of the middle product and the short products

of univariate polynomials. The algorithm of [13] can be adapted

to work with polynomial matrices by writing them as univariate

polynomials with matrix coefficents; for example, P is a polynomial

P =
∑
0≤i<δ PiX i

with coefficients Pi ∈ Km×m . While this leads to

a verification of PF = G mod Xt
with a good probability of success,

it has a cost which is close to that of computing PF mod Xt
.

To lower down the cost, we will combine the evaluation of trun-

cated products from [13] with Freivalds’ technique [11]. The latter

consists in left-multiplying the matrices by some random vector

u ∈ K1×m , and rather checking whether uPF = uG mod Xt
; this

effectively reduces the row dimension of the manipulated matrices,

leading to faster computations. Furthermore, this does not harm

the probability of success of the verification, as we detail now.

In what follows, given a matrix A ∈ K[X]m×n and an order

t ∈ Zn>0, we write A rem Xt
for the (unique) matrix B ∈ K[X]m×n

such that B = A mod Xt
and cdeg(B) < t. For simplicity, we will

often write A1A2 rem Xt
to actually mean (A1A2) rem Xt

.

Lemma 3.1. Let S be a finite subset ofK. Let u ∈ K1×m with entries
chosen uniformly and independently at random from S , and let α ∈ K
be chosen uniformly at random from S . Assuming PF , G mod Xt ,
the probability that (uPF rem Xt)(α) = uG(α) is less than max(t)

#S .

Proof. Let A = (PF − G) rem Xt
. By assumption, there exists a

pair (i, j) such that the entry (i, j) ofA is nonzero. Since this entry is

a polynomial inK[X] of degree less than δ = max(t), the probability
that α is a root of this entry is at most

δ−1
#S . As a consequence, we

haveA(α) , 0 ∈ Km×n with probability at least 1− δ−1
#S . In this case,

uA(α) = 0 occurs with probability at most
1

#S (see [22, Sec. 7.1]).

Thus, altogether the probability that uA(α) = 0 is bounded from
above by

δ−1
#S +

(
1 − δ−1

#S

)
1

#S <
δ
#S , which concludes the proof. □

We deduce an approach to verify the truncated product: compute

uA(α) = ((uPF − uG) rem Xt)(α) and check whether it is zero or

nonzero. The remaining difficulty is to compute uA(α) efficiently:

we will see that this can be done in O(Size(P) +m |t|) operations.
For this, we use a strategy similar to that in [13, Lem. 4.1] and

essentially based on the following formula for the truncated product.

Consider a positive integer t ≤ δ and a vector f ∈ K[X]m×1 of

degree less than t ; one may think of f as a column F∗, j of F and

of t as the corresponding order tj . Writing f =
∑
0≤k<t fkXk

with

fk ∈ Km×1 and uP =
∑
0≤k<δ pkXk

with pk ∈ K1×m , we have

uPf rem X t =

t−1∑
k=0

(t−1−k∑
i=0

piX i

)
fkX

k

= X t−1
t−1∑
k=0

(t−1−k∑
i=0

pt−1−k−iX
−i

)
fk .

Thus, the evaluation can be expressed as

(uPf rem X t)(α) = α t−1
t−1∑
k=0

ct−1−k fk , (3)

where we define, for 0 ≤ k < δ ,

ck = (uP rem Xk+1)(α−1) =
k∑
i=0

pk−iα
−i ∈ K1×m . (4)

These identities give an algorithm to compute the truncated

product evaluation (uPf rem X t)(α), which we sketch as follows:

• apply Horner’s method to the reversal of uP rem X t
at the

point α−1, storing the intermediate results which are exactly

the t vectors c0, . . . , ct−1;
• compute the scalar products λk = ct−1−k fk for 0 ≤ k < t ;
• compute α t−1 and then α t−1

∑
0≤k<t λk .

The last step gives the desired evaluation according to Eq. (3). In

our case, this will be applied to each column f = F∗, j for 1 ≤ j ≤ n.
We will perform the first item only once to obtain the δ vectors

c0, . . . , cδ−1, since they do not depend on f .

Proposition 3.2. Algorithm 2 uses at most

2Size(P) + (6m + 1)|t| + 2n log
2
(δ) ∈ O(Size(P) +m |t| + n log

2
(δ))

operations in K, where δ ≤ |t| is the largest of the truncation orders.
It is a false-biased Monte Carlo algorithm. If PF , G mod Xt , the
probability that it outputs True is less than δ

#S , where S is the finite
subset of K from which random field elements are drawn.

Proof. The discussion above shows that this algorithm correctly

computes [ej]1≤j≤n = uG(α) and [e ′j]1≤j≤n = (uPF rem Xt)(α). If

it returns False, then there is at least one j for which e ′j , ej , thus

we must have uPF rem Xt , uG and therefore PF , G mod Xt
.

Besides, the algorithm correctly returns True if PF = G mod Xt
.

The analysis of the probability of failure (the algorithm returns

True while PF , G mod Xt
) is a direct consequence of Lemma 3.1.

Step 2 uses at most 2Size(P) + (2m − 1)|t| operations in K. The
Horner evaluations at Steps 3 and 4 require at most 2(|t| −n) and at
most 1 + 2m(δ − 1) operations, respectively. Now, we consider the
j-th iteration of the loop at Step 5. The scalar products (λk)0≤k<tj
are computed using at most (2m − 1)tj operations; the sum and

multiplication by α tj−1 giving e ′j use at most tj + 2 log
2
(tj − 1)

operations. Summing over 1 ≤ j ≤ n, this gives a total of at most

Algorithm 2: VerifTruncMatProd

Input:

• truncation order t = (t1, . . . , tn) ∈ Zn>0,
• matrix P ∈ K[X]m×m such that deg(P) < δ = max(t),
• matrix F = [fi j] ∈ K[X]m×n with cdeg(F) < t,
• matrix G ∈ K[X]m×n with cdeg(G) < t.

Output: True if PF = G mod Xt
, otherwise True or False.

1. /* Main objects for verification */

S ← a finite subset of K
α ← element of K chosen uniformly at random from S
u ← vector in K1×m with entries chosen uniformly and

independently at random from S
2. /* Freivalds: row dimension becomes 1 */

p← uP // in K[X]1×m, degree < δ
g← uG // in K[X]1×n, cdeg(g) < t

3. /* Evaluation of right-hand side: uG(α) */
write g = [д1 · · · дn] with дj ∈ K[X] of degree < tj
For j from 1 to n:

ej ← дj (α)
4. /* Truncated evaluations c0, . . . , cδ−1 */

write p =
∑
0≤k<δ pkXk

with pk ∈ K1×m

c0 ← p0
For k from 1 to δ − 1:

ck ← pk + α−1ck−1
5. /* Evaluation of left-hand side: (uPF rem Xt)(α) */

For j from 1 to n: // process column F∗, j
write F∗, j =

∑
0≤k<tj fkX

k

(λk)0≤k<tj ← (ctj−1−k · fk)0≤k<tj
e ′j ← α tj−1

∑
0≤k<tj λk

6. If ej , e ′j for some j ∈ {1, . . . ,n} then return False
Else return True

2m |t| + 2 log
2
((t1 − 1) · · · (tn − 1)) operations for Step 5. Finally,

Step 6 uses at most n comparisons of two field elements. Summing

these bounds for each step yields the cost bound

2Size(P)+(4m+1)|t|+2m(δ−1)−n+2 log
2
((t1−1) · · · (tn−1)), (5)

which is at most the quantity in the proposition. □

In the certification of approximant bases, we want to verify a

truncated matrix product in the specific case where each entry in

the column j of G is simply zero or a monomial of degree tj − 1.
Then, a slightly better cost bound can be given, as follows.

Remark 3.3. Assume that t = (d1 + 1, . . . ,dn + 1) and G = CXd
,

for some d = (d1, . . . ,dn) ∈ Zn>0 and some constant C ∈ Km×n .
Then, the computation of uG at Step 2 uses at most (2m − 1)n
operations in K. Besides, since the polynomial дj at Step 3 is either

zero or a monomial of degree dj , its evaluation ej is computed using

at most 2 log
2
(dj)+1 operations via repeated squaring [12, Sec. 4.3].

Thus, Step 3 uses at most 2 log
2
(d1 · · ·dn)+n operations. As a result,

defining D = |d|, the cost bound in Eq. (5) is lowered to

2Size(P) + 2m(|t| + δ − 1 + n) + n + 4 log
2
(d1 · · ·dn) + 1

= 2Size(P) + 2m(D +max(d) + 2n) + n + 4 log
2
(d1 · · ·dn) + 1. □

4 COMPUTING THE CERTIFICATE
4.1 Context
In this section, we show how to efficiently compute the certificate

C ∈ Km×n , which is the term of degree 0 of the product PFX−d ,
whose entries are Laurent polynomials (they are inK[X] if and only
if the rows of P are approximants). Equivalently, the column C∗, j is
the term of degree dj of the column j of PF, where d = (d1, . . . ,dn).

We recall the notation D = d1 + · · · +dn . Note that, without loss
of generality, we may truncate P so that deg(P) ≤ max(d).

For example, suppose that the dimensions and the order are

balanced: m = n and d = (D/m, . . . ,D/m). Then, C ∈ Km×m is

the coefficient of degree D/m of the product PF, where P and F are

m ×m matrices over K[X]. Thus C can be computed using D/m
multiplications ofm ×m matrices over K, at a total costO(mω−1D).

Going back to the general case, themain obstacle to obtain similar

efficiency is that both the degrees in P and the order d (hence the

degrees in F) may be unbalanced. Still, we have cdeg(F) < d with

sum |d| = D and, as stated in the introduction, we may assume

that either |rdeg(P)| ∈ O(D) or |cdeg(P)| ≤ D holds. In this context,

both F and P are represented by O(mD) field elements.

We will generalize the method above for the balanced case to this

general situation with unbalanced degrees, achieving the same cost

O(mω−1D). As a result, computing the certificate C has negligible

cost compared to the fastest known approximant basis algorithms.

Indeed, the latter are in O˜(mω−1D), involving logarithmic factors

in D coming both from polynomial arithmetic and from divide and

conquer approaches. We refer the reader to [28, Thm. 5.3] and [15,

Thm. 1.4] for more details on these logarithmic factors.

We first remark that C can be computed by naive linear algebra

using O(m2D) operations. Indeed, writing rdeg(P) = (r1, . . . , rm),
we have the following explicit formula for each entry in C:

Ci, j =
min(ri ,dj)∑

k=1

Pi,∗,k F∗, j,dj−k ,

where Pi,∗,k is the coefficient of degree k of the row i of P and

similar notation is used for F. Then, since min(ri ,dj) ≤ dj , the
column C∗, j is computed viamdj scalar products of lengthm, using

O(m2dj) operations. Summing this for 1 ≤ j ≤ n yields O(m2D).
This approach considers each column of F separately, allowing

us to truncate at precision dj + 1 for the column j and thus to rule

out the issue of the unbalancedness of the degrees in P. However,
this also prevents us from incorporating fast matrix multiplication.

In our efficient method, we avoid considering columns or rows

separately, while still managing to handle the unbalancedness of

the degrees in both P and F. Our approach bears similarities with

algorithms for polynomial matrix multiplication with unbalanced

degrees (see for example [31, Sec. 3.6]).

4.2 Sparsity and degree structure
Below, we first detail our method assuming |rdeg(P)| ∈ O(D); until
further notice, γ ≥ 1 is a real number such that |rdeg(P)| ≤ γD.

To simplify the exposition, we start by replacing the tuple d by

the uniform bound d = max(d). To achieve this, we consider the

matrix H = FXd−d
, where d − d stands for (d − d1, . . . ,d − dn):

then, C is the coefficient of degree d in PH.

Since cdeg(F) < d, we have deg(H) < d . The fact that F has

column degree less than d translates into the fact thatH has column

valuation at least d − d (and degree less than d); like F, this matrix

H is represented bymD field elements. Recalling the assumption

deg(P) ≤ d , we can write P =
∑d
k=0 PkX

k
and H =

∑d
k=0 HkX

k
,

where Pk ∈ Km×m and Hk ∈ K
m×n

for all k (note that Hd = 0).
Then, our goal is to compute the matrix

C =
d∑
k=1

PkHd−k . (6)

The essential remark to design an efficient algorithm is that each

matrix Pk has only few nonzero rows when k becomes large, and

each matrix Hd−k has only few nonzero columns when k becomes

large. To state this formally, we define two sets of indices, for the

rows of degree at least k in P and for the orders at least k in d:

Rk = {i ∈ {1, . . . ,m} | rdeg(Pi,∗) ≥ k},

Dk = {j ∈ {1, . . . ,n} | dj ≥ k}.

The latter corresponds to the set of indices of columns of F which

are allowed to have degree ≥ k − 1 or, equivalently, to the set of

indices of columns ofHwhich are allowed to have valuation ≤ d−k .

Lemma 4.1. For a given k ∈ {1, . . . ,d}: if i < Rk , then the row i of
Pk is zero; if j < Dk , then the column j of Hd−k is zero. In particular,
Pk has at most #Rk ≤ γD/k nonzero rows and Hd−k has at most
#Dk ≤ D/k nonzero columns.

Proof. The row i of Pk is the coefficient of degree k of the row i
of P. If it is nonzero, we must have i ∈ Rk . Similarly, the column j of

Hd−k is the coefficient of degreed−k of the column j ofH = FXd−d
.

If it is nonzero, we must have d − k ≥ d − dj , hence k ∈ Dk .

The upper bounds on the cardinalities of Rk and Dk follow by

construction of these sets: we have k · #Dk ≤ |d| = D, and also

k · #Rk ≤ |rdeg(P)| with |rdeg(P)| ≤ γD by assumption. □

4.3 Algorithm and cost bound
Following Lemma 4.1, in the computation of C based on Eq. (6) we

may restrict our view of Pk to its submatrix with rows in Rk , and

our view of Hk to its submatrix with columns in Dk . For example,

if k > γD/m and k > D/n, the matrices in the product PkHk have

dimensions at most ⌊γD/k⌋ ×m andm × ⌊D/k⌋. These remarks on

the structure and sparsity of Pk and Hk lead us to Algorithm 3.

Proposition 4.2. Algorithm 3 is correct. Assuming thatm ∈ O(D)
and |rdeg(P)| ∈ O(D), where D = |d|, it uses O(mω−1D) operations
in K if n ≤ m and O(mω−1D log(n/m)) operations in K if n > m.

Proof. For the correctness, note that for all j the coefficient of

degree dj − k of F∗, j is the coefficient of degree d − k of H∗, j . Thus,
using notation from Section 4.2, the matrix B at the iteration k of

the loop is exactly the submatrix of Hd−k of its columns in Dk .

Therefore, the loop in Algorithm 3 simply applies Eq. (6), discarding

from Pk and Fd−k rows and columns which are known to be zero.

Now, we estimate the cost of updating C at each iteration of the

loop. Precisely, the main task is to compute AB, where the matrices

A and B have dimensions #R ×m and m × t . Then, adding this

product to the submatrix CR,D only costs #R · t additions in K.

Algorithm 3: CertificateComp
Input:

• order d ∈ Zn>0,
• matrix F ∈ K[X]m×n such that cdeg(F) < d,
• matrix P ∈ K[X]m×m such that deg(P) ≤ max(d).

Output: the coefficient C ∈ Km×n of degree 0 of PFX−d .
1. (r1, . . . , rm) ← rdeg(P)
2. C← 0 ∈ Km×n

3. For k from 1 to max(d):
R ← {i ∈ {1, . . . ,m} | ri ≥ k}
D = {c1, . . . , ct } ← {j ∈ {1, . . . ,n} | dj ≥ k}

A ∈ K#R×m ← coefficient of degree k of PR,∗
B ∈ Km×t ← for all 1 ≤ j ≤ t , B∗, j is the coefficient of

degree dj − k of F∗,c j
CR,D ← CR,D + AB

4. Return C

Consider γ = ⌈|rdeg(P)|/D⌉ ≥ 1 (indeed, if |rdeg(P)| = 0, then

P is constant and C = 0). By Lemma 4.1, at the iteration k we have

#R ≤ min(m,γD/k) and t = #D ≤ min(n,D/k). We separate the

cases n ≤ m and n > m, and we use the bound ⌈γD/m⌉ ∈ O(D/m),
which comes from our assumptionsm ∈ O(D) and γ ∈ O(1).

First, suppose n ≤ m. At the iterations k < ⌈γD/m⌉ the matrices

A and B both have dimensions at mostm ×m, hence their product

can be computed inO(mω) operations. These iterations have a total

cost ofO(mω ⌈γD/m⌉) ⊆ O(mω−1D). At the iterations k ≥ ⌈γD/m⌉,
A and B have dimensions at most (γD/k) ×m andm × (D/k), with
D/k ≤ γD/k ≤ m; computing their product costsO((D/k)ω−1m) ⊆
O(mDω−1k1−ω). Thus, the total cost for these iterations is in

O
©«mDω−1

max(d)∑
k= ⌈γD/m ⌉

k1−ω
ª®¬

⊆ O
(
mDω−1(⌈γD/m⌉)2−ω

∑+∞
i=0 2

i(2−ω)
)
⊆ O(mω−1D).

For the first inclusion, we apply Lemma 4.3 with µ = ⌈γD/m⌉,
ν = max(d), and θ = 1 − ω. For the second, the sum is finite since

2
2−ω < 1. Hence Algorithm 3 costs O(mω−1D) in the case n ≤ m.

Now, suppose n > m. At the iterations k < ⌈D/n⌉, A and B have

dimensions at mostm ×m andm × n, hence their product can be

computed in O(mω−1n). The total cost is in O(mω−1D) since there
are ⌈D/n⌉ − 1 < D/n iterations (with n ≤ D by definition). For the

iterations k ≥ ⌈γD/m⌉, we repeat the analysis done above for the
same values of k : these iterations cost O(mω−1D) here as well.

Finally, for the iterations ⌈D/n⌉ ≤ k < ⌈γD/m⌉, A and B
have dimensions at most m ×m and m × (D/k), with D/k ≤ n.
Thus the product AB can be computed in O(mω +mω−1D/k) op-
erations. Summing the term mω

over these O(D/m) iterations
yields the cost O(mω−1D). Summing the other term gives the cost

O(mω−1D log(n/m)) since, by the last claim of Lemma 4.3, we have

⌈γD/m ⌉−1∑
k= ⌈D/n ⌉

k−1 ≤ 1 +

⌊
log

2

(
⌈γD/m⌉ − 1

⌈D/n⌉

)⌋
≤ 1 + log

2
(γn/m).

Adding the costs of the three considered sets of iterations, we obtain

the announced cost for Algorithm 3 in the case n > m as well. □

Lemma 4.3. Given integers 0 < µ < ν and a real number θ ≤ 0,
ν∑

k=µ

kθ ≤ µθ+1
ℓ−1∑
i=0

2
i(θ+1)

holds, where ℓ = ⌊log
2
(ν/µ)⌋ + 1. In particular,

∑ν
k=µ k

−1 ≤ ℓ.

Proof. Note that ℓ is chosen such that 2
ℓµ − 1 ≥ ν . Then, the

upper bound is obtained by splitting the sum as follows:

ν∑
k=µ

kθ ≤
ℓ−1∑
i=0

2
i+1µ−1∑
k=2i µ

kθ ≤
ℓ−1∑
i=0

2
i+1µ−1∑
k=2i µ

(2i µ)θ =
ℓ−1∑
i=0
(2i µ)θ+1,

where the second inequality comes from the fact that x 7→ xθ is

decreasing on the positive real numbers. □

Finally, we describe minor changes in Algorithm 3 to deal with

the case of small average column degree cdeg(P) ∈ O(D); precisely,
we replace the assumption |rdeg(P)| ≤ γD by |cdeg(P)| ≤ γD.
Then, instead of the set Rk used above, we rather define

Ck = {j ∈ {1, . . . ,m} | cdeg(P∗, j) ≥ k}.

Then we have the following lemma, analogous to Lemma 4.1.

Lemma 4.4. For k ∈ {1, . . . ,m} and j < Ck , the column j of Pk is
zero. In particular, Pk has at most #Ck ≤ γD/k nonzero columns.

Thus, we canmodify Algorithm 3 to take into account the column

degree of P instead of its row degree. This essentially amounts to

redefining the matrices A and B in the loop as follows:

• A ∈ Km×#Ck is the coefficient of degree k of P∗,Ck .
• B ∈ K#Ck×t is such that for all i ∈ Ck and 1 ≤ j ≤ t , Bi, j is
the coefficient of degree dj − k of Fi,c j

Thesemodifications have obviously no impact on the correctness.

Furthermore, it is easily verified that the same cost bound holds

since we obtain a similar matrix multiplication cost at each iteration.

5 PERSPECTIVES
As noted in the introduction, our certificate is almost optimal since

we can verify it at a cost O(mD +mω−1(m + n)) while the input
size ismD. One should notice that the extra term O(mω−1(m + n))
corresponds to certifying problems of linear algebra overK, namely

the rank and the determinant. These could actually be dealt with

in O(m(m + n)) operations using interactive certificates built upon

the results in [7, 9, 18], thus yielding an optimal certificate. Still, for

practical applications, our simpler certification should already be

significantly faster than the approximant basis computation, since

the constants involved in the cost are small as we have observed in

our estimates above. We plan to confirm this for the approximant

bases implementations in the LinBox library.

Finally, our verification protocol needs (m + 2) log
2
(#S) random

bits, yielding a probability of failure less than
D+1
#S . The majority

of these bits is required by Algorithm 2 when choosingm random

elements for the vector u. As proposed in [19], it may be worthwhile

to pick a single random value ζ and to use u = [1 ζ · · · ζm−1].
In the case where max(d) < D/2, this choice would not affect the

probability of failure while decreasing the number of random bits

to 3 log
2
(#S). In particular, at the price of the same number of bits

as we currently use in our algorithm, we could run our verification

(m+ 2)/3 times and decrease the probability of failure to (D+1
#S)

m+2
3 .

REFERENCES
[1] B. Beckermann and G. Labahn. 1994. A Uniform Approach for the Fast Computa-

tion of Matrix-Type Padé Approximants. SIAM J. Matrix Anal. Appl. 15, 3 (1994),
804–823.

[2] B. Beckermann and G. Labahn. 1997. Recursiveness in matrix rational interpola-

tion problems. J. Comput. Appl. Math. 77, 1–2 (1997), 5–34.
[3] B. Beckermann, G. Labahn, and G. Villard. 1999. Shifted Normal Forms of Poly-

nomial Matrices. In ISSAC’99. ACM, 189–196.

[4] D. Coppersmith and S. Winograd. 1990. Matrix multiplication via arithmetic

progressions. J. Symbolic Comput. 9, 3 (1990), 251–280.
[5] R. A. DeMillo and R. J. Lipton. 1978. A Probabilistic Remark on Algebraic Program

Testing. Inform. Process. Lett. 7, 4 (1978), 193–195.
[6] J.-G. Dumas, P. Giorgi, and C. Pernet. 2008. Dense Linear Algebra over Word-Size

Prime Fields: The FFLAS and FFPACK Packages. ACM Trans. Math. Softw. 35, 3,
Article 19 (2008), 42 pages.

[7] J.-G. Dumas and E. Kaltofen. 2014. Essentially Optimal Interactive Certificates in

Linear Algebra. In ISSAC’14. ACM, 146–153.

[8] J-G. Dumas, E. Kaltofen, E. Thomé, and G. Villard. 2016. Linear Time Interactive

Certificates for the Minimal Polynomial and the Determinant of a Sparse Matrix.

In ISSAC’16. ACM, 199–206.

[9] J.-G. Dumas, D. Lucas, and C. Pernet. 2017. Certificates for Triangular Equivalence

and Rank Profiles. In ISSAC’17. ACM, 133–140.

[10] Julius Farkas. 1902. Theorie der einfachen Ungleichungen. J. Reine Angew. Math.
124 (1902), 1–27. http://eudml.org/doc/149129

[11] R. Freivalds. 1979. Fast probabilistic algorithms. In Mathematical Foundations of
Computer Science, Vol. 74. Springer Berlin Heidelberg, 57–69.

[12] J. von zur Gathen and J. Gerhard. 2013. Modern Computer Algebra (third edition).
Cambridge University Press.

[13] P. Giorgi. 2017. Certification of Polynomial Middle Product. (2017). Available at

https://hal-lirmm.ccsd.cnrs.fr/lirmm-015384532 (accessed in May 2018).

[14] P. Giorgi, C.-P. Jeannerod, and G. Villard. 2003. On the complexity of polynomial

matrix computations. In ISSAC’03. ACM, 135–142.

[15] C.-P. Jeannerod, V. Neiger, É. Schost, and G. Villard. 2016. Fast computation of

minimal interpolation bases in Popov form for arbitrary shifts. In ISSAC’16. ACM,

295–302.

[16] T. Kailath. 1980. Linear Systems. Prentice-Hall.
[17] E. Kaltofen, B. Li, Z. Yang, and L. Zhi. 2012. Exact certification in global polynomial

optimization via sums-of-squares of rational functions with rational coefficients.

J. Symbolic Comput. 47, 1 (2012), 1–15.
[18] E. Kaltofen, M. Nehring, and B. D. Saunders. 2011. Quadratic-time Certificates in

Linear Algebra. In ISSAC’11. ACM, 171–176.

[19] T. Kimbrel and R. K. Sinha. 1993. A probabilistic algorithm for verifying matrix

products usingO (n2) time and log
2
(n)+O (1) random bits. Inform. Process. Lett.

45, 2 (1993), 107–110.

[20] T. Kleinjung, C. Diem, A. K. Lenstra, C. Priplata, and C. Stahlke. 2017. Compu-

tation of a 768-Bit Prime Field Discrete Logarithm. In Eurocrypt 2017. Springer
International Publishing, 185–201.

[21] F. Le Gall. 2014. Powers of Tensors and Fast Matrix Multiplication. In ISSAC’14.
ACM, 296–303.

[22] R. Motwani and P. Raghavan. 1995. Randomized Algorithms. Cambridge Univer-

sity Press, New York, NY, USA.

[23] T. Mulders and A. Storjohann. 2003. On lattice reduction for polynomial matrices.

J. Symbolic Comput. 35 (2003), 377–401. Issue 4.
[24] V. Neiger. 2016. Bases of relations in one or several variables: fast algorithms and

applications. Ph.D. Dissertation. École Normale Supérieure de Lyon.

[25] J. T. Schwartz. 1980. Fast Probabilistic Algorithms for Verification of Polynomial

Identities. J. ACM 27, 4 (1980), 701–717.

[26] A. Storjohann. 2006. Notes on computing minimal approximant bases. In Chal-
lenges in Symbolic Computation Software (Dagstuhl Seminar Proceedings).

[27] M. Van Barel and A. Bultheel. 1992. A general module theoretic framework for

vector M-Padé and matrix rational interpolation. Numer. Algorithms 3 (1992),
451–462.

[28] W. Zhou and G. Labahn. 2012. Efficient Algorithms for Order Basis Computation.

J. Symbolic Comput. 47, 7 (2012), 793–819.
[29] W. Zhou and G. Labahn. 2013. Computing Column Bases of Polynomial Matrices.

In ISSAC’13. ACM, 379–386.

[30] W. Zhou and G. Labahn. 2014. Unimodular Completion of Polynomial Matrices.

In ISSAC’14. ACM, 413–420.

[31] W. Zhou, G. Labahn, and A. Storjohann. 2012. Computing Minimal Nullspace

Bases. In ISSAC’12. ACM, 366–373.

[32] R. Zippel. 1979. Probabilistic algorithms for sparse polynomials. In EUROSAM’79
(LNCS), Vol. 72. Springer, 216–226.

http://eudml.org/doc/149129

	Abstract
	1 Introduction
	2 Certifying approximant bases
	3 Verifying a truncated product
	4 Computing the certificate
	4.1 Context
	4.2 Sparsity and degree structure
	4.3 Algorithm and cost bound

	5 Perspectives
	References

