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Abstract

In this paper, a certified synthesis technique is presented for the design of matching filters that com-
bines convex optimisation with the Fano-Youla matching theory. This technique is applicable to any
rational load and provides lower hard bounds for the best matching level, as well as a practical synthesis
of a matching filter approaching those bounds. Furthermore, if the load is a rational function of degree
1, the optimal matching filter is synthesized, yielding in this case an extension of the classical filter syn-
thesis for resistive loads. As example, a dual-band matching filter is conceived for a dual-band antenna.
Additionally a single-band filter is implemented in SIW technology to match a single-band antenna.

1. INTRODUCTION

There exists a remarkable literature in the field of broadband matching. In [1–3] broad-band matching was
first introduced based on the use of the Darlington two port equivalent and extraction procedures. The
theory was first reviewed in [1] where the problem of matching an RC-load is considered as the design of
a lowpass filtering network where an RC-element is fixed. In [2] this problem was extended to the case
of a generic load by using the Darlington equivalent and reformulated in [3] as a complex interpolation
problem. The theory was, for example, used to synthesize matching networks with a Tchebychev type
power gain transducer [4], nevertheless this type of responses are known to be non optimal in terms of
matching performances unless the load is a constant impedance. This approach was therefore progressively
replaced by the optimization based real frequency technique of Carlin [5] which is more oriented to practical
applications. Additionally in [6] the matching problem was solved optimally by considering the broader
class of infinite dimension functions H∞ and therefore providing hard bounds for the matching problem in
finite dimension.

In this work we use the Fano-Youla matching theory combined with convex optimisation to formulate
the matching problem. Within this framework, we introduce in section 2 a convex relaxation of the gen-
eralised matching problem available in the literature providing hard lower bounds for the original problem
when rational filters of finite degree are considered. In section 3 we show an example of matching filter
synthesis for a dual-band antenna. Finally, in section 3.1 a practical example is presented to validate the
proposed algorithm.

2. THEORY

The matching problem aims to minimise the reflection of the power transmitted to a given load within a
specified frequency band. The load is represented as a 2-port device (A) in Fig. 1. Usually the power is
transmitted to the load through a filter (F) that rejects out of band signals. Both devices, the filter connected
to the load compose the global system (S). It is important to specify that if only the input reflection of the
load A11 is known, a Darlington equivalent of the load (see [7]) yields a loss-less two port network with
the same input reflection A11. Following the Fano-Youla approach to the matching problem, the system S
is conceived first, followed by the de-embedding of the load.

Let us introduce first some notations and definitions. Consider the complex variable λ = ω+ jσ where
ω is the frequency variable. We denote by C+ the open upper half plane, C+ = {λ : =(λ) > 0} and by C−
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Figure 1: System (S = F ◦A) and reflection coefficients.

the open lower half plane; C− denotes the closed lower half plane C− = {λ : =(λ) ≤ 0}. In this work we
consider C− as the analyticity domain.

Definition 2.1 (Scattering matrix). We call scattering matrix a rational 2x2 matrix of the complex variable
λ, unitary for λ ∈ R and analytic in C−. Its elements are scalar rational functions contractive in C−,
namely Schur functions.

Consider the scattering matrices S, F and A represented in the Belevitch form [8]

S =

(
S11 S12

S21 S22

)
=

1

q

(
εp∗ −εr∗
r p

)
(1)

with ε a uni-modular constant, and q, p, r polynomials satisfying qq∗ = pp∗+rr∗ with p∗(λ) = p(λ). Note
that q is a stable polynomial, that is, with all roots in C+.

Definition 2.2 (Chaining). We define the chaining F22 ◦ A of a Schur function F22 and a matrix A in the
form (1) as the output reflection of the global system S22 composed of the cascade of F and A (see Fig. 1).

S22 = F22 ◦A = A22 +
A21F22A12

1−A11F22
(2)

Definition 2.3 (Feasibility). We define a function S22 as feasible for a given load A if there exists a Schur
function F22, such that F22 ◦ A = S22. Additionally we denote by F the set of feasible functions S22 for a
given load A.

Note that F is the image of the set of Schur functions under the application f → f ◦ A. If S22 is
admissible for a load A, then the function F22 such that F22 ◦A = S22 expresses as:

F22 =
A22 − S22

detA −A11S22
(3)

Next we present a characterisation of F by a set of interpolation conditions at the transmission zeros of A.

Definition 2.4 (Transmission zeros). We define the transmission zeros associated to a matrix function S in
the form (1) as the zeros in C− (possibly at∞) of S12S21(λ):

tz [S] =
{
λ ∈ C− : S12S21(λ) = 0

}
(4)

where we consider the classical multiplicity of the transmission zeros in C− and half of the multiplicity for
the transmission zeros in R. Also remark that the transmission zeros, being in C−, cannot simplify with the
zeros of q.

Note that, if S12 is assumed to be minimum phase1 (i.e. has no zeros in C−), then, the finite transmission
zeros of S22 are the zeros of r. In that case r is uniquely determined by spectral factorisation of the positive
polynomial R = qq∗ − pp∗ and therefore the matrix S is recovered from the polynomials p, q, up to the
uni-modular constant ε.

A core result of Fano’s-Youla’s matching theory is the necessary and sufficient conditions for F22 to be
Schur in C−. These conditions represent the characterisation of the set F.

Proposition 2.5 (Characterisation of F). Consider a lossless load A with transmission zeros αi, and F its
feasible set. A rational Schur function S22 belongs to F iff 2

1Minimum phase functions, also called outer, have many useful properties for our purpose, see e.g. [9, Th.4.6]
2Equivalent forms of (5b) and (5c) can be used if the transmission zeros αi occurs at λ = ∞.



• At each transmission zero αi of multiplicity mi of A, the following interpolation conditions hold 3:(
DkS22

)
[αi] = ξi,k 0 ≤ k ≤ mi − 1 ∀αi ∈ C− (5a)(

DkS22

)
[αi] = ξi,k 0 ≤ k ≤ 2mi − 2 ∀αi ∈ R (5b)(

Dkj lnS22

)
[αi] ≤ ψi,2mi−1 ∀αi ∈ R (5c)

with ξi,k =
(
DkA22

)
[αi] and ψi,k =

(
Dkj lnA22

)
[αi].4

2.1. A Convex Relaxation of the Matching Problem

With these definitions, we can state the general form of the matching problem. Notice that in [6] the
matching problem is stated as the minimisation of the reflection level without any additional constraints on
S22 ∈ F. It is only supposed that S22 belong to the infinite dimensional class of functions H∞. In this
work however, we constrain S22 ∈ F to be rational in the form (1) with p, r ∈ PN (the set of polynomials
of degree N ). Additionally we suppose that the polynomial r is fixed as it is customary in classical filter
synthesis. Furthermore we assume that the transmission zeros αi are also roots of r. Thus r will have roots
at the transmission zeros αi as well as any other possible transmission zeros fixed in advance. Applying the
change of variable: pp∗ = P , rr∗ = R we denote with FN

R the set of rational functions S22 ∈ F of degree
N with the transmission polynomial R ∈ P2N

+ .

FN
R =

{
S22 ∈ F | ∃P ∈ P2N

+ : |S22(ω)|2 =
P (ω)

P (ω) +R(ω)
;∀ω ∈ R

}
(6)

where P2N
+ denotes the set of positive polynomials of degree at most 2N . Therefore S22(P ) is obtained as

the minimum phase factor of |S22(P )|2 =
(
1 + R

P

)−1
. We state the problem as

Problem (P).

Find: l = min
S22∈FN

R

max
ω∈I1

|S22(ω)|2

Subject to: γ ≤ |S22(ω)|2 ∀ω ∈ I2

where I1 represents the passband, I2 the stopband and γ the desired rejection level in the interval I2.

We introduce now a convex relaxation of problem P by considering the notion of admissibility.

Definition 2.6 (Admissibility). A minimum phase Schur function U is admissible for a load A iff there
exists S22 ∈ F such that for all ω ∈ R, |S22(ω)| ≤ |U(ω)|. We denote by G the set of admissible U .

For every admissible U there exist S22 ∈ F such that S22U
−1 is a Schur function. Thus G can be

characterised by reformulating (5a) to (5c) on B where B = S22U
−1.

Proposition 2.7 (Characterisation of G). A minimum phase rational Schur reflection U is admissible for a
load A with transmission zeros αi of multiplicity mi if and only if

• There exists a Schur function B satisfying (7a) to (7c) at every transmission zero αi of A.(
DkB

)
[αi] = Ξi,k 0 ≤ k ≤ mi − 1 ∀αi ∈ C− (7a)(

DkB
)

[αi] = Ξi,k 0 ≤ k ≤ 2mi − 2 ∀αi ∈ R (7b)(
Dkj lnB

)
[αi] ≤ Ψi,2mi−1 ∀αi ∈ R (7c)

where we denote Ξi,k =
(
DkA22U

−1) [αi] and also Ψi,k =
(
Dkj lnA22U

−1) [αi].
3Note this condition does not require the transmission zeros of A to be present in the system S as long as the interpolation

conditions are satisfied. Nevertheless if the transmission zeros of A are not present in S, the matching filter obtained after de-
embedding will include those transmission zeros αi at the expense of not being of minimal degree. In this paper, we assume that the
transmission zeros of the loadA are also present in S with at least the same multiplicity, thus obtaining a matching filter F of minimal
degree.

4The symbol Dk stands for the k-th derivative.



As before, we are interested in the admissible functions that are rational with a given transmission
polynomial. Therefore, as it was done for F, we define GN

R the set of functions S22 ∈ G of minimum phase
whose modulus square can be expressed in a rational form as |S22(ω)|2 = P (ω)

P (ω)+R(ω) with P,R ∈ P2N
+ .

Now define UP (ω) as the outer spectral factor of (1 +R(ω)/P (ω))
−1 with P,R ∈ P2N

+ . At this point
it is possible to find a convex parametrisation of UP ∈ GN

R in function of the polynomials P ∈ P2N
+ .

Definition 2.8 (Admissible polynomials). We denote by HN
R the set of P ∈ P2N

+ such that UP ∈ GN
R .

Proposition 2.9 (Convexity). The set HN
R is a convex set.

Proof. Suppose P1, P2 ∈ HN
R , then there exists S1, S2 ∈ F such that ω ∈ R, |S1(ω)| ≤ |UP1

(ω)| and

|S2(ω)| ≤ |UP2(ω)|. We verify now that P3 = λP1 + (1 − λP2) ∈ HN
R . Notice |UP | =

√(
1 + R

P

)−1
is

concave in P . The concavity implies:

|UP3(ω)| ≥ λ|UP1(ω)|+ (1− λ)|UP2(ω)| ∀ω ∈ R (8)

The function S3 = λS1+(1−λ)S2 satisfies (5a) to (5c). Therefore S3 ∈ GN
R . From the triangle inequality:

|S3(ω)| ≤ λ|S1(ω)|+ (1− λ)|S2(ω)| ∀ω ∈ R (9)

It follows from (9) and (8) that |S3(ω)| ≤ |UP3
(ω)|. Thus UP3

∈ GN
R and therefore P3 ∈ HN

R .

Remark 1. In problem P the optimisation is done with respect of the rational functions S22 feasible for
the given load (FN

R ). Note that FN
R is not a convex set. Therefore, in order to state a convex optimisation

problem, we have defined a relaxed set GN
R of functions that are not necessarily feasible. However if a

reflection g ∈ GN
R is not feasible for the load, then there must exist a feasible reflection f ∈ FN

R whose
modulus is equal or better than the modulus of g, namely |f(ω)| ≤ |g(ω)|, ∀ω ∈ R. Note that FN

R ⊂ GN
R .

In this section we parametrise each function UP ∈ GN
R by a positive polynomial P . This parametrisation

leads to the set of positive polynomials P such that UP ∈ GN
R , namely HN

R . Finally we prove that HN
R is a

convex set.

2.1.1. Generalised Matching Problem

We state next the matching problem with respect of the set of polynomials HN
R (a convex set). Note that the

maximisation of the reflection level with respect to ω is already convex. Thus we obtain a convex relaxation
of problem P .

Problem (PC). Find L = min
P∈HN

R

max
ω∈I1

P
R (ω)

Proposition 2.10 (Convexity and unicity). Problem PC is convex and admits a unique solution.

For simplicity we consider here no rejection constraints. However, as it is known in classical filter
synthesis, linear constraints on the modulus of UP can be transformed to linear constraints on the filtering
function P/R [10].

|UP (ω)|2 =
P (ω)

R(ω) + P (ω)
≥ γ ⇐⇒ P (ω) ≥ Γ ·R(ω) Γ = (1/γ − 1)

−1 (10)

2.2. Practical Implementation of the Relaxed Problem PC

In order to assure the admissibility of UP in problem PC it is necessary to guarantee the existence of B
verifying (7a) to (7c). If we consider the simplest case, where the load has only simple transmission zeros in
C−, the problem is equivalent to the classical Nevanlinna-Pick interpolation problem. The Nevanlinna-Pick
theorem states [9]:

Theorem 2.11 (Nevanlinna-Pick Interpolation Theorem). Given γ1, γ2 ... γn ∈ D and α1, α2 ... αn ∈ C−.
There exist a Schur function B : C− → D satisfying B(αi) = γi if and only if the Pick matrix

∆i,k = j

(
1− γiγk
αi − αk

)
(11)

is positive semi-definite. Furthermore, B is unique iff ∆ is singular. In this case B is a Blaschke product.



The Nevanlinna-Pick Interpolation Theorem is generalised in [11] to consider interpolating points αi ∈
C− and interpolation conditions on the derivatives. The generalised Nevanlinna-Pick Interpolation Theorem
states the necessary and sufficient condition for the existence of a Schur function B satisfying (7a) to (7c).
Additionally Nevanlinna’s theory also provides a parametrisation of all possible functionsB. For simplicity
consider a load with only simple transmission zeros αi ∈ C−.

Proposition 2.12 (Admissibility condition). Consider a load A with simple transmission zeros αi ∈ C−
and the transmission polynomial R ∈ P2N

+ . A polynomial P ∈ P2N
+ is admissible iff ∆(P ) � 0 where

∆(P )i,k = j

(
1−

(
A22U

−1
P

)
[αi] ·

(
A22U

−1
P

)
[αk]

αi − αk

)
(12)

Considering a load A of degree M with simple transmission zeros αi ∈ C−, we can use the previous
theorem to state PC as the minimisation of P/R on the passband over all P ∈ P2N

+ under the condition
∆(P ) � 0 to ensure that P ∈ HN

R .

2.2.1. Bounds for the solution of problem P

For each UP ∈ G, there exist a function BP such that S22 = UP · BP ∈ F. Consider P̂ the optimal P of
PC . Denote Û = UP̂ , B̂ = BP̂ and Ŝ22 = Û · B̂. Then it can be proved that

1. The degree of BP equals the rank of ∆(P ).

2. The matrix ∆(P̂ ) is singular. Therefore the unique function B̂ verifying (7a) to (7c) is a Blaschke
product of degree L ≤M − 1.

B̂(ω) =

∏L
i=1(ω − βi)∏L
i=1(ω − βi)

(13)

3. The degree of Ŝ22 is bounded between N and N+M-1.

From a formal point of view, problem PC provides hard lower bounds for the attainable matching level in
problem P since FN

R ⊂ GN
R . Additionally we can construct a function Ŝ22 = Û · B̂ that attains such bound.

However this feasible function is not always in FN
R since some complex transmission zeros (as many as the

degree of B̂) may be required. Therefore Ŝ22 ∈ FN
R̂

with R̂ = R ·
∏L

i=1(ω − βi).
Additionally note that for a load of degree M = 1, the obtained Blaschke product is always of degree

0. In this case the relaxation made in problem PC is exact providing the optimal solution to problem P .

2.2.2. Implementation as a Semi-definite Program

Problem PC can be solved optimally by non-linear semi-definite programming techniques. Indeed, the
constraint on the positivity of P in PC can be recasted by means of linear matrix inequalities by imposing
the positive semi-definiteness of a matrix A [12]. We obtain then a semi-definite program with one non-
linear constraint ∆(P ) � 0 that ensures the admissibility of P . Those constraints are implemented by
using a barrier/penalty function. Linear matrix inequalities are handled by the standard logarithmic barrier
meanwhile the non-linear matrix inequality is ensure by the penalty function presented in [13]. Note that
adding more passbands or some rejection constraints amounts to add some extra positive definite matrices
to ensure the positivity of LR(ω) − P (ω) in the ith-passband, or to guarantee that P (ω) ≥ Γ · R(ω) is
satisfied in the jth-stopband.

3. RESULTS

As proof of concept, we present a synthesis example for a GNSS receiver matching a dualband antenna
in the GPS/GALILEO bands: L2 (1.21-1.24GHz), E6 (1.26-1.3GHz), L1 (1.55-1.6GHz). Fig. 2 shows a
comparison between the reflection of the antenna (A11) and the results of PC (S22) by taking N = 7. By
using the matching filter, the reflection at the right edge of the band E6 (1.3GHz) has been improved from
−1.4dB to−7.95dB representing an improvement of 450%. Parameters F22 and F21 of the matching filter
that provides this result are shown in Fig. 3 together with the load reflection A11. Furthermore we show in
Fig. 4 the bound for the optimal reflection level attainable in P .
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Figure 2: Result of PC with a load of degree 2 and a system of degree 6.
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Figure 3: Matching filter providing the response in Fig. 2.
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3.1. EM validation

Finally, we present a practical result considering a microstrip patch antenna for a GNSS receiver. The
specifications are the coverage of the band L1 (from 1.55GHz to 1.6GHz). At hand of these specifications,
problem PC yields the best possible response S22 of order 4 (SOPT

22 in Fig. 6). Note that this is a load of
degree 1, therefore the optimal solution to P is reached. After de-embedding the antenna at port 2 of the
system, the Belevitch model of the matching filter of order 3 is obtained. In this example the Pick matrix
at the optimal point (∆(P opt)) is of rank 0. Therefore the matching filter has no additional transmission
zeros and can be implemented by a coupled resonators network with an in-line topology. This filter is
realized in SIW planar technology fed with CPWG input and output lines (Fig. 7) by using the substrate
Rogers RT/duroid 6010LM. It is important to remark that, in contrast with the traditional filter synthesis,
synthesising the right phase of F22 is a crucial point here in order to obtain a filter that is matched at port 2
to the antenna. Therefore, a transmission line of 10.5mm has been required to adjust the phase of S22.

The practical design of the filter is done via the classical coupling matrix approach [10] using the simu-
lation software Ansoft Electronic Desktop. The target matrix MT is obtained from the previous algorithm.

MT =


0 1.195 0 0 0

1.195 0 1.018 0 0
0 1.018 −0.007 0.7 0
0 0 0.7 −0.404 1.009
0 0 0 1.009 0

 (14)

However this kind of filtering functions differs from the classical Tchebyshev responses in the sense that
they do not present all reflection zeros distributed on the frequency axis but inside the complex plane. For
this reason and in order to achieve a good agreement between the circuital response and the EM response,
the design has been assisted with the circuit - extraction software PRESTO-HF [14] comparing the target
coupling matrix (MT ) with the one extracted from the EM response (MEM ) and adjusting the physical
dimensions in consequence. The final error in the coupling matrix is computed as E = MT −MEM :

E =


0 −3.2 0 0.5 0

−3.2 −0.4 0.3 −0.3 0.5
0 0.3 −1.1 0.8 0

0.5 −0.3 0.8 −0.6 −2.1
0 0.5 0 −2.1 0

 · 10−2 (15)

Fig. 5 shows the comparison between the S-parameters of the filter, obtained in one case from the EM sim-
ulation (F22 EM and F21 EM ) and in the other case from the circuital analogue (F22 Goal and F21 Goal)
where a quality factor of Q = 200 has been considered. Moreover, the line SEM

22 in Fig. 6 represents the
input reflection when the designed SIW filter is connected to the antenna.

Note that in this example we implement the filter providing the best matching to the load at port 2.
Indeed an excellent match between SEM

22 and SOPT
22 is obtained in spite of the quality factor of the matching

filter Q = 200. Thus validating the employed synthesis and tuning technique for SIW filters. However, due
to the finite quality factor, this filter will not provide the optimal transmission loss for the global system.
Nevertheless when low quality factors are considered, we can use the optimal response obtained in the
lossless case to initialize a local optimisation with the goal of maximising the system efficiency.

4. CONCLUSION

A practical implementation of the Fano-Youla matching theory by means of convex optimisation has been
presented. This approach provides hard lower bounds for the best achievable matching level in a set of
frequency bands. Furthermore, if the load to be matched is of degree 1, our algorithm yields the guaranteed
best matching response. In this case it is the generalization of the classical quasi-elliptic synthesis technique
considering a resistive load to the case of a frequency varying load. Otherwise, for loads of higher degree,
our algorithm allows to compute hard lower bounds for the attainable toss level when system N is consid-
ered and provides a rational filter approaching the bound. Finally, a 3-poles SIW filter is implemented to
match a single-band antenna with an excellent match between the expected result and the EM simulation.
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