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Abstract
We develop and analyze new protocols to verify the correctness of

various computations on matrices over Frxs, where F is a field. The prop-
erties we verify concern an Frxs-module and therefore cannot simply rely
on previously-developed linear algebra certificates which work only for
vector spaces. Our protocols are interactive certificates, often random-
ized, and feature a constant number of rounds of communication between
the Prover and Verifier. We seek to minimize the communication cost so
that the amount of data sent during the protocol is significantly smaller
than the size of the result being verified, which can be useful when com-
bining protocols or in some multi-party settings. The main tools we use
are reductions to existing linear algebra certificates and a new protocol to
verify that a given vector is in the Frxs-linear span of a given matrix.

1 Introduction
Increasingly, users or institutions with large computational needs are relying
on untrusted sources of computational results, which could be remote (“cloud”)
servers, unreliable hardware, or even just Monte Carlo randomized algorithms.
The rising area of verifiable computing seeks to maintain the benefits in cost or
speed of using such untrusted sources, without sacrificing accuracy. Generally
speaking, the goal is to develop certificates for the correctness of some result,
which can be verified much more efficiently than re-computing the result itself.

1.1 Interactive certificates
In this paper, we propose new interactive certificates for computations per-
formed on univariate polynomial matrices; we refer to (Dumas and Kaltofen,
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2014; Kaltofen, Nehring, and Saunders, 2011; Kaltofen, Li, Yang, and Zhi, 2012)
for definitions related to such certificates. Generically, we consider protocols
where a Prover performs computations and provides additional data structures
or exchanges to a Verifier, who will use these to check the validity of a result,
at a cheaper cost than by recomputing it.

The general flow of an interactive certificate is as follows.

1. The Prover first publishes a Commitment, which is the result of some
computation.

2. The Verifier then answers with a Challenge, usually consisting of some
uniformly sampled random values.

3. The Prover replies with a Response, used by the Verifier to ensure the
validity of the commitment

4. In some cases, several additional rounds of Challenge/Response might be
necessary for the Verifier to accept an answer.

These certificates can be simulated non-interactively in a single round follow-
ing the Fiat-Shamir heuristic derandomization (Fiat and Shamir, 1987): random
values produced by the Verifier are replaced by cryptographic hashes of the input
and previous messages, and the Prover publishes once both the Commitment
and Response to the derandomized Challenge.

There are several metrics to assess the efficiency of an interactive certificate,
namely

Communication: the volume of data exchanged throughout the protocol;

Verifier cost: the worst-case number of arithmetic operations performed by
the Verifier in the protocol, no matter what data was sent by the Prover;

Prover cost: the number of arithmetic operations performed by an honest
Prover that is trying to prove a statement which is actually true with-
out fooling the Verifier.

Note that some data, namely the input and output to the original problem, are
considered as public data and do not count towards the communication cost.
This is to remove those parts which are somehow inherent in the problem itself,
as well as to separate the functions of computing and verifying a result, which
can be quite useful when verification protocols are combined, as we will see.

Such protocols are said complete if the probability that a true statement
is rejected by a Verifier can be made arbitrarily small; they are said perfectly
complete if true statements are never rejected. For simplicity’s sake, as all the
protocols in this paper are perfectly complete, we will sometimes just describe
them as complete. Similarly, a protocol is sound if the probability that a false
statement is accepted by the Verifier can be made arbitrarily small. Note that
all our protocols are probabilistically sound, which means the Verifier may be
tricked into accepting a wrong answer. This is not an issue, as in practice
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this probability can be reduced by simply repeating the protocol with new ran-
domness, or by computing over a larger field. As our protocols are perfectly
complete, any single failure means that the Prover did something wrong; the
Verifier is never to blame.

Several approaches to verified computation exist: generic approaches based
on protocol check circuits (Goldwasser, Kalai, and Rothblum, 2008) or on ho-
momorphic encryption (Costello, Fournet, Howell, Kohlweiss, Kreuter, Naehrig,
Parno, and Zahur, 2015); approaches working for any protocol where the Prover
uses specific operations, as (Kaltofen et al., 2011, Section 5) which certifies any
protocol where matrix multiplications are performed. Another approach con-
sists in designing problem-specific certificates, as for instance (Freivalds, 1979;
Kaltofen et al., 2011; Dumas, Lucas, and Pernet, 2017) on dense linear algebra
and (Dumas and Kaltofen, 2014; Dumas, Kaltofen, Thomé, and Villard, 2016)
on sparse linear algebra.

1.2 Polynomial matrices
This paper concerns computations on matrices whose entries are univariate poly-
nomials. While certification for matrices over fields and over integer rings have
been studied over the past twenty years, there are only few results on polynomial
matrices (Giorgi and Neiger, 2018), and to the best of our knowledge, there are
no certificates on most classical results for polynomial matrices.

Formally, a polynomial matrix is a matrix M P Frxsmˆn whose entries are
univariate polynomials over a field F. There is an isomorphism with matrix
polynomials (univariate polynomials with matrices as coefficients) which we will
sometimes use implicitly, such as when considering the evaluationMpαq P Fmˆn

of M at a point α P F.
Computations with polynomial matrices are of central importance in com-

puter algebra and symbolic computation, and many efficient algorithms for poly-
nomial matrix computations have been developed.

One general approach for computing with polynomial matrices is based on
evaluation and interpolation. The basic idea is to first evaluate the polynomial
matrix, say M P Frxsnˆn at a set of points α1, α2, . . . P F in the ground field,
then to separately perform the desired computation on each Mpαiq over Fnˆn,
and finally reconstruct the entries of the result using fast polynomial interpola-
tion. This kind of approach works well for computations such as (nonsingular)
system solving (Dixon, 1982), matrix multiplication (Bostan and Schost, 2005,
Section 5.4), or determinant computation. These computations essentially con-
cern the vector space in the sense that M may as well be seen as a matrix over
the fractions Fpxq without impact on the results of the computations.

Other computational problems with polynomial matrices intrinsically con-
cern Frxs-modules and thus cannot merely rely on evaluation and interpolation.
Classic and important such examples are that of computing normal forms such
as the Popov form and the Hermite form (Popov, 1972; Villard, 1996; Neiger,
Rosenkilde, and Solomatov, 2018) and that of computing modules of relations
such as approximant bases (Beckermann and Labahn, 1994; Giorgi, Jeannerod,
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and Villard, 2003; Neiger and Vu, 2017). The algorithms in this case must
preserve the module structure attached to the matrix and thus deal with the
actual polynomials in some way; in particular, an algorithm which works with
evaluations of the matrix at points α P F is oblivious of this module structure.

1.3 Our contributions
In this paper, after giving some preliminary material in Section 2, we propose
certificates for classical properties on polynomial matrices — singularity, rank,
determinant and matrix product — with sub-linear communication space with
respect to the input size (Section 3). Those certificates are based on evaluating
considered matrices at random points, which allows us to reduce the commu-
nication space and to use existing certificates for matrices over fields. Then,
in Section 4 we give the main result of this paper, which is certifying that a
given polynomial row vector is in the row space of a given polynomial matrix,
which can either have full rank or be rank-deficient. Section 5 shows how to use
this result to certify that for two given polynomial matrices A and B, the row
space of A is contained in the row space of B; and then gives certificates for
some classical normal forms of polynomial matrices. In Section 6, we present
certificates related to saturations and kernels of polynomial matrices. Finally,
Section 7 gives a conclusion and comments on a few perspectives.

A summary of our contributions is given in Table 1, based on the following
notations: the input matrix has rank r and size n ˆ n if it is square or m ˆ n
if it can be rectangular; if there are several input matrices, then r stands for
the maximum of their ranks, m for the maximum of their row dimensions, and
n for the maximum of their column dimensions. Where appropriate, r is the
maximum of the actual ranks of the matrices and the claimed rank by the
prover. We write d for the maximum degree of any input matrix or vector.
Finally, #S stands for the cardinality of the finite subset S Ď F from which
we choose random evaluation points. The last column of the table specifies
a lower bound on #S which is needed to ensure both perfect completeness of
the protocol and soundness with probability at least 1

2 . (Iterating any protocol
improves the soundness probability exponentially.)

The Prover and Verifier costs are in arithmetic operations over the base field
F. We use rOp¨q for asymptotic cost bounds with hidden logarithmic factors, and
ω ď 3 is the exponent of matrix multiplication, so that the multiplication of two
nˆn matrices over F uses Opnωq operations in F; see Section 2 for more details
and references.

2 Preliminaries
Fields and rings. We use F to indicate an arbitrary field, Frxs for the ring
of polynomials in one variable x with coefficients in F, and Fpxq for the field of
rational fractions, i.e., the fraction field of Frxs. The ring of mˆn matrices, for
example over Frxs, is denoted by Frxsmˆn.
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Prover Comm. Verifier #S
Deter. Cost Cost

Singularity Yes O
`

n2d` nrω´1
˘

Opnq O
`

n2d
˘

2nd
NonSingularity No O

`

n2d` nω
˘

Opnq O
`

n2d
˘

nd` 1

RankLowerBound No rO
`

mnrω´2d
˘

Oprq O
`

r2d
˘

rd` 1

RankUpperBound No rO
`

mnrω´2
`mnd

˘

Opnq Opmndq 2rd` 2

Rank No rO
`

mnrω´2d
˘

Opnq Opmndq 2rd` 2

Determinant Yes rO
`

n2d` nω
˘

Opnq O
`

n2d
˘

2nd` 2
SystemSolve N/A N/A 0 O

`

n2d
˘

4d
MatMul N/A N/A 0 O

`

n2d
˘

4d` 2

FullRankRowSpaceMembership Yes rO
`

nmω´1d
˘

Opmdq Opmndq 6md` 2d` 2

RowSpaceMembership No rO
`

mnrω´2d
˘

rOpmd` nq rOpmndq 8rd` 2d` 2

RowSpaceSubset No rO
`

mnrω´2d
˘

rOpmd` nq rOpmndq 8rd` 2d` 4

RowSpaceEquality No rO
`

mnrω´2d
˘

rOpmd` nq rOpmndq 8rd` 2d` 4

RowBasis No rO
`

mnrω´2d
˘

rOpmd` nq rOpmndq 8rd` 2d` 6

HermiteForm No rO
`

mnrω´2d
˘

rOpmd` nq rOpmndq 8rd` 2d` 4

ShiftedPopovForm No rO
`

mnrω´2d
˘

rOpmd` nq rOpmndq 8rd` 2d` 4

Saturated (m ď n) No rO
`

nmω´1d
˘

rOpndq rOpmndq 8md` 4

Saturated (m ą n) No rO
`

mnω´1d
˘

rOpmdq rOpmndq 8nd` 4

SaturationBasis No rO
`

mnrω´2d
˘

rOpndq rOpmndq 8nd` 2d` 4

UnimodularCompletable No rO
`

nmω´1d
˘

rOpndq rOpmndq 8md` 4

KernelBasis No rO
`

pm` nqmω´1d
˘

rOpmdq rOpmpm` nqdq 8md` 4

Table 1: This paper’s contributions
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Asymptotic complexity bounds. We use the “soft-oh” notation rOp¨q to
represent big-oh hiding logarithmic factors. Specifically, for two cost functions
f, g, we say that f P rOpgq if and only if f P Opg logpgqcq for some constant c ě 1.

We write ω for the exponent of matrix multiplication over F, so that any two
matrices A,B P Fnˆn can be multiplied using Opnωq field operations; we have
2 ď ω ď 3 and one may take ω ă 2.373 (Coppersmith and Winograd, 1990;
Le Gall, 2014).

Cantor and Kaltofen (1991) have showed that multiplying two univariate
polynomials of degree ď d over any algebra uses rOpdq additions, multiplications,
and divisions in that algebra. In particular, multiplying two matrices in Frxsnˆn

of degree at most d uses rOpnωdq operations in F.

Schwartz-Zippel lemma. Many of our protocols rely on the fact that when
picking an element uniformly at random from a sufficiently large finite subset
of the field, this element is unlikely to be a root of some given polynomial. This
was stated formally in (Schwartz, 1980; Zippel, 1979; DeMillo and Lipton, 1978)
and is customarily referred to as the Schwartz-Zippel lemma.

Specifically, it states that for any nonzero k-variate polynomial fpx1, . . . , xkq
with coefficients in a field F, and any finite subset S Ď F, if an evaluation point
pα1, . . . , αkq P Fk has entries chosen at random uniformly and independently
from S, then the probability that fpα1, . . . , αkq “ 0 is at most d{#S where d is
the total degree of f .

Rational fractions. For a rational fraction f P Fpxq, define its denominator
denompfq to be the unique monic polynomial g P Frxs of minimal degree such
that gf P Frxs. Correspondingly, define its numerator numerpfq “ f ¨denompfq.
Note that denompaq “ 1 if and only if a P Frxs. More generally, for a matrix
of rational fractions A P Fpxqmˆn, define denompAq to be the unique monic
polynomial g P Frxs of minimal degree such that gA P Frxsmˆn, and again
write this polynomial matrix gA as numerpAq. Note that we have the identity
denompAq “ lcmi,jpdenompAi,jqq.

Row space, kernel, and row basis. For a given matrix A P Frxsmˆn, two
basic sets associated to it are its row space

RowSpFrxspAq “ tpA, p P Frxs
1ˆmu,

and its left kernel
tp P Frxs1ˆm | pA “ 0u.

Accordingly, a row basis of A is a matrix in Frxsrˆn whose rows form a basis of
the former set, where r is the rank of A, while a left kernel basis of A is a matrix
in Frxspm´rqˆn whose rows form a basis of the latter set. We use similar notions
and notations for column spaces and column bases, and for right kernels and
right kernel bases. We will also often consider the Fpxq-row space of A, denoted
by RowSpFpxqpAq, which is an Fpxq-vector space.
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Matrices which preserve the row space under left-multiplication, that is,
U P Frxsmˆm such that the Frxs-row space of UA is the same as that of A, are
said to be unimodular. They are characterized by the fact that their determinant
is a nonzero constant; or equivalently that their inverse has polynomial entries.

Protocols. In protocols, S is always a finite subset of the base field F, which
we use to sample field elements uniformly and independently at random. One
may use S “ F if the field F is finite. We denote by

α
$
ÐÝ S and v

$
ÐÝ Snˆ1

the actions of drawing a field element uniformly at random from S and of drawing
a vector of n field elements uniformly and independently at random from S.

To ensure that they are perfectly complete, our protocols require lower
bounds on the cardinality #S of this subset; when this bound exceeds the car-
dinality of F then one may use a field extension, possibly causing an increase by
a logarithmic factor in the Prover/Verifier/communication costs.

Besides, many of our analyzes of protocols use the notation

dA “ maxp1,degpAqq and rA “ rankpAq

for any polynomial matrix A that appears in this protocol.

3 Vector space computations
In this section, we give some certificates to compute classical linear algebra prop-
erties on polynomial matrices. The certificates we present here all rely on the
same general idea, which consists in picking a random point and evaluating the
input polynomial matrix (or matrices) at that point. This allows us to achieve
sub-linear communication space. Note that this technique has been used before
by Kaltofen et al. (2011) to certify the same properties for integer matrices: in
that setup, computations were performed modulo some prime number, while,
in our context, this translates into evaluating polynomials at some element of
the base field.

In several of our certificates, the Prover has to solve a linear system over
the base field. For a linear system whose matrix is in Fmˆn and has rank r,
this can be done in O

`

mnrω´2
˘

operations in F, see (Jeannerod, Pernet, and
Storjohann, 2013, Algorithm 6).

The following lemma will be frequently used when analyzing protocols: it
bounds the probability of picking a “bad” evaluation point.

Lemma 3.1. Let A P Frxsmˆn with rank at least r. For any finite subset
S Ď F and for a point α P S chosen uniformly at random, the probability that
rankpApαqq ă r is at most r degpAq{#S.

Proof. Any rˆr minor of A has degree at most r degpAq, and at least one must
be nonzero since rankpAq ě r. On the other hand, rankpApαqq ă r if and only
if α is a root of every such determinant.
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3.1 Certificates for the singularity of polynomial matrices
We start by certifying the singularity of a matrix. Here, the Verifier picks a
random evaluation point and sends it to the Prover, who evaluates the input
matrix at that point and sends back a nontrivial kernel vector, which the Prover
will always be able to compute since a singular polynomial matrix is still singular
when evaluated at any point. Then, all the Verifier needs to do is to check that
the vector received is indeed a kernel vector. Note that the evaluation trick here
is really what allows us to have a sub-linear — with respect to the input size
— communication space, as the answer the Prover provides to the challenge is
a vector over the base field, and not over the polynomials.

Protocol 1: Singularity

Public: A P Frxsnˆn
Certifies: A is singular

Prover Verifier

1. α
$
ÐÝ S

α
ÐÝÝÝÝÝÝÝÝÝÝ

2. Find v P F1ˆnzt0u s.t.
vApαq “ 0

v
ÝÝÝÝÝÝÝÝÝÝÑ

3. v
?
‰ 0

vApαq
?
“ 0

In the next theorem, and for the remainder of the section, for convenience
we write d “ maxp1,degpAqq.

Theorem 3.2. Protocol 1 is a complete and probabilistically sound interactive
protocol which requires Opnq communication and Verifier cost O

`

n2d
˘

. The
probability that the Verifier incorrectly accepts is at most nd{#S. If A is singu-
lar, there is an algorithm for the Prover which costs O

`

n2d` nrω´1
˘

.

Proof. If A is singular, Apαq must also be singular and there exists a nontrivial
nullspace vector that the Verifier will accept.

IfA is nonsingular, then the Prover will be able to cheat if the Verifier picked
an α such that Apαq is singular which happens only with probability nd{#S
according to Lemma 3.1.

Now, for the complexities: the Prover will have to evaluate A at α, which
costs O

`

n2d
˘

and to find a nullspace vector over the base field, which costs
O
`

nrω´1
˘

, hence the Prover cost. The Verifier computes the evaluation and a
vector-matrix product over F, for a total cost of O

`

n2d
˘

operations. Finally, a
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vector over Fn and a scalar are communicated, which yields a communication
cost of Opnq

We now present a certificate for nonsingularity. This relies on the same
evaluation-based approach, with one variation: here, we let the Prover provide
the evaluation point. Indeed, if the Verifier picked a random point, they could
choose an “unlucky” point for which a nonsingular matrix evaluates to a singular
one, and in that case, the protocol would be incomplete as the Prover will not
be able to convince the Verifier of nonsingularity. Instead, we let the Prover pick
a point as they have the computational power to find a suitable point (Step 1
in NonSingularity). Once this value is committed to the Verifier, in Steps 2 to 4
we use the certificate for nonsingularity over a field due to Dumas and Kaltofen
(2014, Theorem 3).

Protocol 2: NonSingularity

Public: A P Frxsnˆn
Certifies: A is nonsingular

Prover Verifier

1. Find α P S s.t.
detpApαqq ‰ 0

α
ÝÝÝÝÝÝÝÝÝÝÑ

2. b
$
ÐÝ Snˆ1

b
ÐÝÝÝÝÝÝÝÝÝÝ

3. Find w P Fnˆ1 s.t.
Apαqw “ b

w
ÝÝÝÝÝÝÝÝÝÝÑ

4. Apαqw
?
“ b

Theorem 3.3. Protocol 2 is a probabilistically sound interactive protocol and
is complete assuming that #S ě nd ` 1. It requires Opnq communication and
Verifier cost O

`

n2d
˘

. The probability that the Verifier incorrectly accepts is at
most 1{#S. There is a deterministic algorithm for the Prover with cost rOpnωdq.

Proof. If A is nonsingular, then, as the field is large enough, there exists an α
for which the rank of Apαq does not drop, and as Steps 2 to 4 form a complete
certificate, NonSingularity is complete.

If A is singular, it is not possible to find an α such that Apαq is nonsingular.
This means the Prover successfully cheats if they manage to convince the Verifier
that Apαq is nonsingular, which only happens with probability 1{#S (Dumas
and Kaltofen, 2014, Theorem 3), hence the soundness of NonSingularity.
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Now, for the complexities: the Prover needs to find a suitable α. The
Prover first computes the detpAq P Frxs using the deterministic algorithm of
Labahn, Neiger, and Zhou (2017, Theorem 1.1) in rOpnωdq time. Then, using
fast multipoint evaluation, the determinant is evaluated at nd ` 1 points from
S in time rOpndq (von zur Gathen and Gerhard, 2003, Corollary 10.8); since
degpdetpAqq ď nd, at least one evaluation will be nonzero. Computing this
determinant dominates the later cost for the Prover to evaluate Apαq and solve
a linear system over the base field, hence a total cost of rOpnωdq.

The Verifier needs to evaluate A at α and to perform a matrix-vector mul-
tiplication over the base field, hence a cost of O

`

n2d
˘

. Finally, total communi-
cations are two vectors of size n over the base field and a scalar, hence the cost
of Opnq.

3.2 Certificates for the rank of polynomial matrices
From the certificate for nonsingularity, we can immediately infer one for a lower
bound ρ on the rank: the Prover commits a set of indices which locate a ρˆ ρ
submatrix which is nonsingular, and then the certificate for nonsingularity is
run on this submatrix.

Protocol 3: RankLowerBound

Public: A P Frxsmˆn, ρ P N

Certifies: rankpAq
?
ě ρ

Prover Verifier

1. Find I, J two sets of
size ρ such that AI,J

is nonsingular
I, J

ÝÝÝÝÝÝÝÝÝÝÑ

2. #I
?
“ ρ,#J

?
“ ρ,

I
?
Ď t1, . . . ,mu

J
?
Ď t1, . . . , nu

3. Use NonSingularity(AI,J)

Theorem 3.4. Let r be the actual rank of A. Protocol 3 is a probabilistically
sound interactive protocol and is complete assuming #S ě ρd` 1 in its subpro-
tocol. It requires Opρq communication and Verifier cost O

`

ρ2d
˘

. If ρ is indeed a
lower bound on the rank of A, then there is a Las Vegas randomized algorithm
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for the Prover with expected cost rO
`

mnrω´2d
˘

. Otherwise, the probability that
the Verifier incorrectly accepts is at most 1{#S.

Proof. If ρ is indeed a lower bound on the rank of A, there exist two sets
I Ď t1, . . . ,mu and J Ď t1, . . . , nu of size ρ such that AI,J is nonsingular, and
since NonSingularity is complete, so is this certificate. Note that the completeness
of the subcertificate is ensured only if #S ě ρd` 1.

If ρ is not a lower bound on the rank of A, meaning rankpAq ě ρ, then the
Prover will not be able to find suitable I and J and hence the sets provided by
a cheating Prover yield a singular submatrix AI,J . Now, if the Prover provided
sets which do not contain ρ elements or which contain elements outside the
allowed dimension bounds, this will always be detected by the Verifier. If the
Prover provided sets with enough elements, the Verifier incorrectly accepts with
the same probability as in NonSingularity, which is 1{#S.

Regarding the complexities, the Prover has to find a ρˆ ρ nonsingular sub-
matrix of anmˆn degree dmatrix. This can be achieved, by first computing the
rank using a Las Vegas randomized algorithm (Storjohann and Villard, 2005)
which runs in rO

`

mnrω´2d
˘

, with r the actual rank of A and then picking a
random evaluation point, random sets I and J and checking that those sets are
still made of linearly independent elements over the base field by using Jean-
nerod et al. (2013). Because ρ ď r, running the subprotocol NonSingularity on
a ρ ˆ ρ matrix does not dominate the complexity, and the total Prover cost is
rO
`

mnrω´2d
˘

. From Theorem 3.3, the Verifier cost is O
`

ρ2d
˘

. Finally, here two
sets of ρ integers are transmitted, which with the communications in NonSingu-
larity adds up to a communication cost of Opρq.

Now, we give a certificate for an upper bound on the rank. Note that Steps 2
and 3 come from the certificate for an upper bound on the rank for matrices
over a field (see Dumas and Kaltofen, 2014, Theorem 4). In this protocol, we
use the notation | ¨ |H to refer to the Hamming weight: |γ|H ď ρ means that
the vector γ as at most ρ nonzero entries.

Theorem 3.5. Let r be the actual rank of A. Then, Protocol 4 is a complete and
probabilistically sound interactive protocol which requires Opnq communication
and Verifier cost Opmndq. If ρ is indeed an upper bound on the rank of A,
then there is a Las Vegas randomized algorithm for the Prover with expected
cost rO

`

mnrω´2 `mnd
˘

. Otherwise, the probability that the Verifier incorrectly
accepts is at most prd` 1q{#S.

Proof. If ρ is indeed an upper bound on the rank of A, then, whichever evalu-
ation point the Verifier picked, ρ will be an upper bound on the rank of Apαq
and, as the certificate from (Dumas and Kaltofen, 2014, Theorem 4) is complete,
this certificate is complete.

If ρ is not an upper bound on the rank of A, there are two possibilities of
failure. Either the Verifier picked an evaluation point for which the rank of A
drops, which happens with probability at most rd{#S by Lemma 3.1; or the
Prover managed to cheat during the execution of Steps 2 to 3 which happens
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Protocol 4: RankUpperBound

Public: A P Frxsmˆn, ρ P N

Certifies: rankpAq
?
ď ρ

Prover Verifier

1. α
$
ÐÝ S

v
$
ÐÝ Snˆ1

α,v
ÐÝÝÝÝÝÝÝÝÝÝ

2. Find γ P Fnˆ1 such
that Apαqγ “ Apαqv
and |γ|H ď ρ

γ
ÝÝÝÝÝÝÝÝÝÝÑ

3. |γ|H
?
ď ρ

Apαqγ
?
“ Apαqv

with probability at most 1{#S (Dumas and Kaltofen, 2014, Theorem 4). Then,
the union bound gives a total probability of prd`1q{#S for the Verifier to accept
a wrong answer.

The Prover has to evaluate the matrix at α for a cost of Opmndq, and to
find at most ρ linearly independent rows of the matrix over the base field, which
costs rO

`

mnrω´2
˘

, hence a total cost of rO
`

mnrω´2 `mnd
˘

. The Verifier has to
evaluate the matrix at α and to perform two matrix-vector products over the
base field, which yields a cost of Opmndq. The communication cost is the one of
sending a scalar and two vectors of size n over the base field, that is, Opnq.

From those two certificates, one can immediately infer a certificate for the
rank.

Corollary 3.6. Let r be the actual rank of A. Protocol 5 is a probabilistically
sound interactive protocol and is complete assuming #S ě rd` 1 in its subpro-
tocol. It requires Opnq communication and Verifier cost Opmndq. If ρ is indeed
the rank of A, then there is a Las Vegas randomized algorithm for the Prover
with expected cost rO

`

mnrω´2d
˘

. Otherwise, the probability that the Verifier
incorrectly accepts is at most prd` 1q{#S.

3.3 Determinant of polynomial matrices
We follow with a certificate for the determinant of a polynomial matrix. The
trick is still the same: the Verifier checks the degree of the provided determinant
in order to ensure it is suitable, and then a random evaluation point is sampled
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Protocol 5: Rank

Public: A P Frxsmˆn, ρ P N
Certifies: rankpAq

?
“ ρ

Prover Verifier

1. Use RankLowerBound(A, ρ)

2. Use RankUpperBound(A, ρ)

and the actual verification occurs on evaluated input. There are two choices
available for the certificate to use over the base field: either Dumas et al. (2016,
Section 2), which runs in a constant number of rounds, but requires a minimum
field size of n2, or Dumas et al. (2017, Section 4.1) which runs in n rounds but
only requires a minimum field size of 2. Whichever certificate is chosen here,
this has no impact on the asymptotic complexities, which are the same for both
or on the completeness, as both are complete.

Protocol 6: Determinant

Public: A P Frxsnˆn, δ P Frxs
Certifies: detA “ δ

Prover Verifier

1.
degpδq

?
ď nd

α
$
ÐÝ S

β Ð δpαq
α

ÐÝÝÝÝÝÝÝÝÝÝ

2. Use FieldDeterminant(Apαq, β)

Theorem 3.7. Protocol 6 is a complete and probabilistically sound interactive
protocol which requires Opnq communication and Verifier cost O

`

n2d
˘

. If δ is
indeed the determinant of A, there is an algorithm for the Prover which costs
O
`

n2d` nω
˘

. Otherwise, the probability that the Verifier incorrectly accepts is
at most pnd` 1q{#S.

Proof. For the sake of the proof, write g P Frxs as the actual determinant of A.
If δ “ g and therefore δ “ detA, then it must be the case that degpδq ď nd.

Then, as FieldDeterminant is complete, the final check will hold.
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If δ ‰ g and therefore δ ‰ detA, there are two possibilities of failure.
Either the Verifier picked an α such that δpαq “ gpαq, and in that case the
checks from FieldDeterminant will always pass. This is the case if α is a root
of δ ´ g, which, by Schwartz-Zippel lemma, happens with probability nd{#S;
or the Verifier picked an α which is not a root of δ ´ g which means they will
accept δ as the determinant with the probability of failure of FieldDeterminant,
1{#S. Overall, the probability that the Verifier accepts a wrong statement is at
most pnd` 1q{#S by union bound.

The Prover has to evaluate the matrix at α and to compute a determinant
over the base field, hence the cost of O

`

n2d` nω
˘

, the Verifier has to evaluate
A at α, which yields a cost of O

`

n2d
˘

and the communication cost is the one
of FieldDeterminant, Opnq.

3.4 Certificates based on matrix multiplication
Finally, we propose some certificates related to matrix multiplication. While
they are once again based on evaluation techniques, unlike the previous cer-
tificates, the ones given here are non-interactive and thus have no Prover or
communication cost. We first give a certificate for linear system solving:

Protocol 7: SystemSolve

Public: A P Frxsmˆn, b P Frxsmˆ1,v P Frxsnˆ1, δ P Frxs
Certifies: Av “ δb

Prover Verifier

1. α
$
ÐÝ S

Apαqvpαq ´ δpαqbpαq
?
“ 0

Theorem 3.8. Let d be an upper bound on the degree of A, v, b, and δ.
Then, Protocol 7 is a complete and probabilistically sound non-interactive proto-
col which has Verifier cost Opmndq. The probability that the Verifier incorrectly
accepts is at most 2d{#S.

Proof. If Av “ δb, then the same holds when evaluating at α which leads to
the completeness of this certificate.

Otherwise, we have Av ´ δb “ ∆ for some nonzero polynomial vector ∆. If
the Prover manages to cheat, it means the Verifier picked an α which is a root
of every entry of ∆. The probability of this event is at most the probability of
α being a root of one nonzero entry of ∆. Now, let f be a nonzero element of
∆. Its degree must be at least one, for the Verifier to be tricked, and can be at
most 2d. Then, by the Schwartz-Zippel lemma, the Verifier picked an α such
that fpαq “ 0 with probability at most 2d{#S.
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The dominating step in the Verifier’s checks is evaluating A at α, which
costs Opmndq using Horner’s rule.

Similarly, we propose a certificate for matrix multiplication following an
approach from (Freivalds, 1979).

Protocol 8: MatMul

Public: A P Frxsmˆn,B P Frxsnˆ`,C P Frxsmˆ`

Certifies: C ?
“ AB

Prover Verifier

1.

degpCq
?
ď degpAq ` degpBq

α
$
ÐÝ S

v
$
ÐÝ S`ˆ1

ApαqpBpαqvq ´Cpαqv
?
“ 0

Theorem 3.9. Let dA “ maxp1,degpAqq and similarly for dB, dC . Protocol 8 is
a complete and probabilistically sound non-interactive protocol which has Verifier
cost OpmndA ` n`dB `m`dCq. The probability that the Verifier incorrectly
accepts is at most pdA ` dB ` 1q{#S.

Proof. Let D be the actual result of A ˆ B, and denote by ∆ the matrix
AB´C. Note that the value computed on the left hand side on the final check
by the Verifier is exactly ∆pαqv.

If C “ D, then ∆ “ 0 and whichever evaluation point α the Verifier picks,
∆pαq will always be 0. The degree bound checked initially by the Verifier is
also valid whenever AB “ C, hence this certificate is complete.

If C ‰D, then ∆ is a nonzero matrix with degree at most dA ` dB. There
are two events that would lead to the Verifier accepting a wrong answer: either
the Verifier picked an evaluation point which cancels each coefficient in ∆, which
is at most the probability that α is a root of a single entry, namely pdA`dBq{#S
by the Schwartz-Zippel lemma and in that case, whichever verification vector
v is picked afterwards, the Verifier will always accept; or the Verifier picked
an evaluation point for which ∆pαq ‰ 0 but they picked a unlucky verification
vector v in the right kernel of ∆pαq, which happens with probability 1{#S
by Freivalds (1979). The union bound of these two events gives the stated
probability that the Verifier incorrectly accepts.

The cost for the Verifier comes from evaluating all three matrices at α using
Horner’s rule and then performing three matrix-vector products over the base
field.
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Verifying a matrix inverse is a straightforward application of the previous
protocol.

Corollary 3.10. For A P Frxsnˆn and B P Frxsnˆn, there exists a non-
interactive protocol which certifies that B is the inverse of A in Verifier cost
O
`

n2d
˘

, where d “ maxp1,degpAq,degpBqq. If B ‰ A´1, the probability that
the Verifier incorrectly accepts is at most p2d` 1q{#S.

4 Row space membership
In this section we present the main tool for verification problems that are es-
sentially about Frxs-modules, which is to determine whether a given row vector
v P Frxs1ˆn is in the Frxs-linear row span of a given matrix A P Frxsmˆn.

The approach is in two steps. First, FullRankRowSpaceMembership shows
how to solve the problem in case A has full row rank. Then, in RowSpaceMem-
bership, we extend this to the general setting by means of two calls to the full
row rank case.

4.1 Full row rank case
In order to prove the soundness of this protocol, we start with a few simple
lemmas. The first is a standard extension of the soundness proof of Freivalds’
algorithm (1979).

Lemma 4.1. Let A P Fmˆn be an arbitrary matrix with at least one nonzero
entry. If S Ď F and w P Sn has its entries chosen uniformly at random from S,
then PrrAw “ 0s ď 1{#S.

Proof. Consider each of the n entries of w as an indeterminate. Because A is
not zero, Aw has at least one nonzero entry, which is a nonzero polynomial in n
variables with total degree 1. Then a trivial application of the Schwartz-Zippel
lemma gives the stated result.

Lemma 4.2. Let v P Fpxq1ˆn be a rational function vector with denompvq ‰ 1,
and S Ď F. For a vector of scalars w P Snˆ1 chosen uniformly at random, the
probability that their inner product is a polynomial, i.e., that denompvwq “ 1,
is at most 1{#S.

Proof. Write g “ denompvq and v̂ “ numerpvq. By the condition of the lemma
we know that degpgq ě 1. We see that the inner product of v and w is a
polynomial if and only if the inner product of v̂ and w is divisible by g.

Now let h be any irreducible factor of g, and consider the inner product over
the extension field Frxs{xhy. Because h � denompvq, we know that v̂ mod h is
not zero; otherwise the degree of the denominator g is not mininal.

Then, since F Ď Frxs{xhy, the stated bound follows from Lemma 4.1.
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Protocol 9: FullRankRowSpaceMembership

Public: A P Frxsmˆn with full row rank, v P Frxs1ˆn
Certifies: rankpAq ě mñ v P RowSpFrxspAq

Prover Verifier

1. c
$
ÐÝ Smˆ1

c
ÐÝÝÝÝÝÝÝÝÝÝ

2. u P Frxs1ˆm s.t. uA “ v
g Ð uc

g
ÝÝÝÝÝÝÝÝÝÝÑ

3.
degpgq

?
ď

mdegpAq ` degpvq

α
$
ÐÝ S

α
ÐÝÝÝÝÝÝÝÝÝÝ

4. w Ð upαq
w

ÝÝÝÝÝÝÝÝÝÝÑ

5. wApαq
?
“ vpαq

wc
?
“ gpαq
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The final ingredient in our full row space membership algorithm is a subrou-
tine the Prover may use to actually compute the solution to the linear system,
shown in Algorithm 1. It will also used in the non-full-rank protocol presented
in the next section.

Algorithm 1: Rational linear solving with full row rank
Input: A P Frxsmˆn,v P Frxs1ˆn
Output: Either LOW_RANK, NO_SOLUTION, or a vector u P Fpxq1ˆm such

that uA “ v
1 r, i1, . . . , ir Ð column rank profile of A
2 if r ă m then return LOW_RANK
3 B Ð columns i1, . . . , ir from A
4 y Ð columns i1, . . . , ir from v
5 uÐ yB´1

6 if uA ‰ v then return NO_SOLUTION
7 return u

To simplify the cost bounds, for the remainder of this section we write dA “
maxp1,degpAqq and dv “ maxp1,degpvqq.

Lemma 4.3. Algorithm 1 has worst-case cost bound rO
`

mω´1ndA `m
ω´1dv

˘

.
If rankpAq ă m, then LOW_RANK is returned. Otherwise, if v P RowSpFpxqpAq,
then the unique rational solution u to uA “ v is returned.

Proof. (Zhou, 2012, Chapter 11) presents a deterministic algorithm to compute
the column rank profile on Line 1 using rO

`

mω´1ndA
˘

field operations. This
guarantees that LOW_RANK is returned whenever A does not have full row rank.

Now assume that rankpAq “ m. Then B is nonsingular, (Gupta, Sarkar,
Storjohann, and Valeriote, 2012) showed how to de-randomize the high-order
lifting technique in order to solve the rational linear system on Line 5 determin-
istically using rO

`

mωdA `m
ω´1dv

˘

operations. Let u be the rational solution
to uB “ y computed on Line 5.

Assume that there exists some rational solution w P Fpxq1ˆm such that
wA “ v. Then wB “ y also. But because B is nonsingular, the solution u is
unique; hence w “ u and uA “ v.

Finally, we present the main result of this subsection.

Theorem 4.4. Protocol 9 is a complete and probabilistically sound interac-
tive protocol which requires OpmdA ` dvq communication and with Verifier cost
OpmndA ` ndvq. If rankpAq “ m and v P RowSpFrxspAq, there is a determinis-
tic algorithm for the Prover with cost rO

`

nmω´1dA `m
ω´1dv

˘

. Otherwise, the
probability that the Verifier incorrectly accepts is at most p3mdA ` dv ` 1q{#S.

Proof. If v is the zero vector, then the protocol easily succeeds when the Prover
sends all zeros for g and w. And if rankpAq ă m, the implication being verified
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is vacuously true. So assume for the remainder of the proof that v is nonzero
and A has full row rank m.

The degree check by the Verifier assures that g contains at mostmdA`dv`1
field elements, bringing the total communication over Steps 2 to 5 to at most
pdA ` 2qm` dv ` 2 field elements.

The work of the verifier is dominated by computing the evaluations Apαq
and vpαq on the last step. Using Horner’s rule the total cost for these is
OpmndA ` ndvq, as claimed.

We now divide the proof into three cases, depending on whether v is in the
polynomial row span of A (as checked by the protocol), the rational row span
of A, or neither.

Case 1: v P RowSpFrxspAq. Here we want to prove that an honest Prover and
Verifier succeed with costs as stated in the theorem.

The vector u as defined in Step 2 must exist by the definition of RowSpFrxs,
and computing u can be completed by the Verifier according to Lemma 4.3 in
the stated cost bound.

If the computations of u and g are performed correctly by the Prover on
Step 2, then the Verifier’s checks on Step 5 will succeed for any choice of α.

This proves the completeness of the protocol.

Case 2: v P RowSpFpxqpAqzRowSpFrxspAq. In this case, the assertion of the
protocol is false, and we want to show probabilistic soundness.

Let c P Fmˆ1 be the random vector chosen by the Verifier on Step 1. By the
assumption of this case, there is a unique rational solution u P Fpxq1ˆm with
uA “ v, and Lemma 4.2 tells us the probability that uc is a polynomial is at
most 1{#F. If uc is not a polynomial, then uc´g is a nonzero rational function
with numerator degree at most

degpgq ` degpdenompuqq ď 2mdA ` dv. (4.1)

From Lemma 3.1, the probability that Apαq is singular is at most mdA{#F.
Otherwise, the vector w “ upαq is the unique solution to wApαq “ vpαq, so
the Prover is obliged to send this w on Step 4.

If the Verifier incorrectly accepts, we must have wc “ gpαq, which means
that upαqc “ gpαq. The degree bound in (4.1) gives an upper bound on the
number of α P F which could satisfy this equation.

Therefore the Verifier accepts only when either uc P Frxs, or Apαq is singu-
lar, or α is a root of uc´ g, which by the union bound has probability at most
p3mdA ` dv ` 1q{#F , as stated.

Case 3: v R RowSpFpxqpAq. Again, the assertion of the protocol is false, and
our goal is to prove probabilistic soundness. As with the last case, assume by
way of contradiction that the Verifier accepts.
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Consider the augmented system

Ã “

ˆ

A
v

˙

.

By the assumption of this case, rankpÃq “ rankpAq ` 1 “ m ` 1. But the
solution vector w provided to solve wApαq “ vpαq on the last step corresponds
to a nonzero vector in the left kernel of Ãpαq, which therefore has rank at most
m.

The proof of Lemma 3.1 shows that the probability that rankpÃpαqq ď m is
at most pmdA ` dvq{#F .

4.2 Arbitrary rank case
Now we move to the general case that rankpAq ď m.

The idea of the protocol is inspired by Mulders and Storjohann (2004). Con-
sider a matrix C P Frxsrˆm such that CA has full row rank and therefore the
same rational row span asA. Then there is a unique rational vectorw P Fpxq1ˆr
such that wCA “ v. If denomw “ 1, the verification is already complete.

But even when w has nontrivial denominator, this approach can still be used
for verification by considering multiple such matrices C and rational solutions
w. In fact, the greatest common divisor of all such rational solutions is 1 if and
only if v P RowSpFrxspAq, as we show in the next lemma.

Lemma 4.5. Let A P Frxsmˆn with r “ rankpAq, v P Frxs1ˆn, C1, . . . ,Ct P
Frxsrˆn, and d1, . . . , dt P Frxs, such that, for every i “ 1, 2, . . . , t, we have:

• rankpCiAq “ rankpAq “ r; and

• div P RowSpFrxspCiAq.

If gcdpd1, . . . , dtq “ 1, then v P RowSpFrxspAq.

Proof. Let I be the set td P Frxs | dv P RowSpFrxspAqu. We see that I is an
ideal in Frxs.

For each i P t1, . . . , tu, there exists a polynomial vector w P Frxs1ˆr such
that wCiA “ div. Then wCi P Frxs1ˆm is also a polynomial vector, which
shows that each di P I.

Because Frxs is a principal ideal domain, gcdpd1, . . . , dtq P I also, and there-
fore 1 P I. By the definition of I, this means that v P RowSpFrxspAq.

Before giving the full protocol for row membership, we first present a sub-
protocol in CoPrime to confirm that the greatest common divisor of a set of
polynomials is 1.

Lemma 4.6. Let d “ maxi degpfiq, and suppose #S ě 2d. Then Proto-
col 10 is a complete and probabilistically sound interactive protocol which re-
quires Opd` tq communication and Verifier cost Opdtq. If gcdpf1, . . . , ftq ‰ 1,
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Protocol 10: CoPrime

Public: f1, . . . , ft P Frxs
Certifies: gcdpf1, . . . , ftq “ 1

Prover Verifier

1.

Compute polynomials s1, s2 P Frxs
and scalars β3, . . . , βt P F
s.t. f1s1 ` hs2 “ 1,

where h “ f2 `
řt
i“3 βifi

s1, s2, β3, . . . , βt
ÝÝÝÝÝÝÝÝÝÝÝÝÑ

2.

degps1q
?
ă maxiě2 degpfiq

degps2q
?
ă degpf1q

α
$
ÐÝ S

f1pαqs1pαq ` hpαqs2pαq
?
“ 1

the probability that the Verifier incorrectly accepts is at most p2d´ 1q{#S. Oth-
erwise, there is a Las Vegas randomized algorithm for the Prover with expected
cost bound rOpdtq which will cause the Verifier to accept.

Proof. The communication and Verifier costs are clear.
Write g “ gcdpf1, . . . , ftq, and suppose first that g ‰ 1. Then g � pf1s1 `

hs2q, so the polynomial f1s1`hs2´1 is nonzero and has degree at most 2d´1.
If the Verifier incorrectly accepts, then α must be a root of this polynomial,
which justifies the probability claim.

If g “ 1, then a well-known argument (von zur Gathen and Gerhard, 2003,
Theorem 6.46) says that, for β3, . . . , βt chosen randomly from a subset S Ď F,
the probability that gcdpf1, hq ‰ gcdpf1, . . . , ftq is at most d{#S. Based on
the assumption that #S ě 2d, the Prover can find such a tuple β3, . . . , βt after
expected Op1q iterations. Then computing the Bézout coefficients s1, s2 is a
matter of computing the extended Euclidean algorithm on f1 and h, which has
the stated cost.

Protocol RowSpaceMembership shows an interactive certificate for row space
membership which relies on Lemma 4.5. The Verifier first selects t matrices Ci
so that the corresponding denominators di of the rational solutions to wCiA “
v have no common factor. As we will see, it suffices to choose the Ci’s to
be Toeplitz matrices; then sending these as well as the denominators di only
requires Opm` r degpAqq communication. The Verifier then confirms that the
gcd of all denominators is 1 using CoPrime. Finally, Protocols RankLowerBound
and FullRankRowSpaceMembership are used for each i “ 1, . . . , t to confirm that
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the conditions of Lemma 4.5 hold.

Protocol 11: RowSpaceMembership

Public: A P Frxsmˆn, v P Frxs1ˆn
Certifies: v P RowSpFrxspAq

Prover Verifier

1.

ρÐ rankpAq
tÐ 1` rlog#S{ρp2r degpAqqs

Compute Toeplitz Ci, . . . ,Ct P Fρˆm
and polynomials d1, . . . , dt, s1, s2 P Frxs
s.t. @i, rankpCiAq “ ρ,
and @i, div P RowSpFrxspCiAq,

and gcdpd1, . . . , dtq “ 1
ρ,C1, . . . ,Ct, d1, . . . , dt
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

2. ρ
?
ď minpm,nq

@i,degpdiq
?
ď ρdegpAq

3. Check rankpAq
?
ď ρ using RankUpperBound

4.
for i “ 1, . . . , t do

check rankpCiAq
?
ě ρ using RankLowerBound

5. Check gcdpd1, . . . , dtq
?
“ 1 using CoPrime

6.

for i “ 1, . . . , t do

check div
?
P RowSpFrxspCiAq

using FullRankRowSpaceMembership

We now proceed to show how the Prover can actually find the values required
on Step 1. We write r “ rankpAq; if the Prover is honest, then in fact r “ ρ.

For the purposes of the proof, we need a factorization AP “ UB, where
AP is a subset of r linearly independent pivot columns from A, and B is a
reduced row basis for AP .

Definition 4.7. For a matrix A P Frxsmˆn with rankpAq “ r, a pivot-only
row basis for A is a triple of matrices P ,U ,B such that AP “ UB and we
have:

• P P t0, 1unˆr selects r linearly independent columns of A;

• B P Frxsrˆr is nonsingular and has the same Frxs-linear span as AP ;
and
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• U P Frxsmˆr can be completed to a square unimodular matrix, meaning
there exists some matrix V P Frxsmˆpm´rq such that detpU |V q P Fzt0u.

Such a factorization always exists, for example by computing the Hermite or
Popov form of A and discarding the information from the non-pivot columns.
See Neiger et al. (2018) for the currently-best algorithms to compute such row
bases efficiently.

The next lemma is inspired by Mulders and Storjohann (2004, Lemmas
19 & 20).

Lemma 4.8. Let A P Frxsmˆn and v P Frxs1ˆn such that rankpAq “ r and
v P RowSpFrxspAq, and let p P Frxs be an irreducible polynomial. If C P Frˆm

is a Toeplitz matrix with entries chosen uniformly at random from a subset S of
F, and w P Fpxq1ˆn is any rational solution to wCA “ v, then the probability
that rankpCAq ă r or that p divides denomw is at most r{#S.

Proof. Let P ,U ,B be a pivot-only row basis of A.
First we bound the probability that p � detpCUq, by working over the

quotient field Frxs{xpy.
Recall from Definition 4.7 that U completes to a unimodular matrix over

Frxs, which must also be unimodular (hence nonsingular) over Frxs{xpy. There-
fore rankpUq “ r over Frxs{xpy. Treating the r`m´ 1 distinct entries of C as
new indeterminates z1, z2, . . ., then detpCUq mod p is a nonzero polynomial in
Frxs{xpyrz1, z2, . . .s with total degree r. All entries of S are distinct modulo p,
so by the Schwartz-Zippel lemma, the probability that detpCUq mod p “ 0 is
at most r{#S.

If p - detpCUq, then the matrixCU must have full rank r, which also implies
that rankpCAq “ r since

rankpCUq “ rankpCUBq “ rankpCAP q ď rankpCAq.

Next we show that whenever CA has rank r, denomw divides detpCUq.
By Definition 4.7 we have AP “ UB, and B is nonsingular with the

same polynomial row space as AP . Because v P RowSpFrxspAq, then vP P

RowSpFrxspBq, so there exists y P Frxs1ˆr such that yB “ vP . Finally, assum-
ing CU is nonsingular, there exists an adjugate matrix D P Frxsrˆr such that
detpCUqpCUq´1 “D. Putting these facts together, we have

wCA “ v

wCAP “ vP

wCUB “ yB

wCU “ y

w detpCUq “ yD.

Because the right-hand side of the last equation has entries in Frxs, then so does
the left-land side, which means that detpCUq must be a multiple of denomw.

In summary, we see that p - denompCUq with probability at least 1´ r{#S,
which in turn implies that CA has full rank r and that p - denomw.
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Repeatedly applying the previous lemma leads to a Las Vegas randomized
algorithm for an honest Prover, based on repeated calls to the rational linear
solver of Algorithm 1.

Algorithm 2: Honest Prover for RowSpaceMembership
Input: A P Frxsmˆn,v P RowSpFrxspAq, S Ď F
Output: r,C1, . . . ,Ct, d1, . . . , dt satisfying the conditions of Step 1

from Protocol 11.
1 r Ð rankpAq
2 tÐ 1` rlog#S{rp2r degpAqqs

3 repeat
4 iÐ 1
5 while i ď t do
6 Ci Ð random pr ˆmq Toeplitz matrix with entries from S
7 wi Ð solution to wiCiA “ v from Algorithm 1
8 if wi is not LOW_RANK then
9 di Ð denomwi

10 iÐ i` 1

11 until gcdpd1, . . . , dtq “ 1
12 return r, C1, . . . ,Ct, and d1, . . . , dt

Lemma 4.9. If v P RowSpFrxspAq and #S ě 2 rankpAq, then Algorithm 2 is a
correct Las Vegas randomized algorithm with expected cost bound

rO
`

mnrω´2dA ` r
ω´1dv

˘

.

Proof. To compute the rank deterministically in the stated cost bound, we may
use the column rank profile algorithm from Section 11 of (Zhou, 2012), just as
was used in Algorithm 1.

Each matrix product CiA can be explicitly computed in rOpmndAq oper-
ations using fast Toeplitz-vector products and fast polynomial multiplication
(Bini and Pan, 1994, Problem 5.1).

If the algorithm returns, correctness is clear from the correctness of Algo-
rithm 1.

What remains is to prove the expected number of iterations of each nested
loop.

The inner while loop on Lines 5 to 10 iterates until t random Toeplitz ma-
trices Ci are found all with denominators not divisible by x. Lemma 4.8 tells
us that the probability of finding such a matrix Ci and incrementing i at each
iteration is at least 1 ´ r{#S, and therefore the expected number of iterations
of the while loop until i reaches t is at most 2t.

Finally, to discover the expected number of iterations of the outer loop on
Lines 3 to 11, we need the probability that gcdpd1, . . . , dtq “ 1 given that each
CiB has full row rank r.
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If gcdpd1, . . . , dtq ‰ 1, then there must be some irreducible factor p of d1
which is also a factor of every other denominator d2, . . . , dt. For a single factor
p, according to Lemma 4.8 and because the di’s are chosen independently of
each other, the probability that this happens is at most pr{#Sqt´1.

The degree of d1 is at most detpCiBq, which is at most rdA; this also gives
an upper bound on the number of distinct irreducible factors p of d1. Taking
the union bound we see that the probability of any factor being shared by all
other denominators is at most

rtdA
p#Sqt´1

,

which is at most 1
2 from the definition of t. Therefore the expected number of

iterations of the outer loop on Line 3 is Op1q.
The stated cost bound follows from Lemma 4.3. It does not depend explicitly

on t because we can see that t P OplogprdAqq, which is subsumed by the soft-oh
notation.

For the sake of simplicity in presentation, and because they do not affect
the asymptotic cost bound, we have omitted a few optimizations to the Prover’s
algorithm that would be useful in practice, namely:

• The Prover can reduce to the full column rank case by computing a col-
umn rank profile of A once at the beginning (using Zhou (2012, Chapter
11)), and then removing corresponding non-pivot columns from A and v.
This does not change the correctness, but means that each matrix CiA is
square.

• When each CiA is square, instead of calling Algorithm 1, we may in-
stead first check that CiA mod x is nonsingular to confirm the rank, and
then use the high-order lifting algorithm of Storjohann (2003) directly to
compute wi.

• The column rank profile and rank-preserving evaluation point α “ 0 may
be re-used in the sub-protocols RankLowerBound confirming that each
rankpCiAq ě r.

• The solution vectorswi may be re-used in the sub-protocols FullRankRowS-
paceMembership confirming that each div P RowSpFrxspCiAq.

We conclude the section by proving RowSpaceMembership is complete, sound,
and efficient. As in the previous section, write dA “ maxp1,degpAqq and dv “
maxp1,degpvqq, and let r “ rankpAq.

Theorem 4.10. Whenever #S ě 2 minpm,nqdA, then Protocol 11 is a complete
and probabilistically sound interactive protocol which requires Opn`mdAt` dvtq
communication and Verifier cost OpmndAt` ndvtq. If v P RowSpFrxspAq,
there is a Las Vegas randomized algorithm for the Prover with expected cost
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rO
`

mnrω´2dA ` r
ω´1dv

˘

. Otherwise, the probability that the Verifier incorrectly
accepts is at most

4rdA ` dv ` 1

#S
.

Proof. For the communication, note that because each Ci is a Toeplitz matrix
over the ground field, sending each Ci requires only ρ `m ´ 1 field elements,
which is Opmq. Furthermore, the Verifier does not actually compute the prod-
ucts CiA, but rather uses these as a black box for matrix-vector products in the
two sub-protocols. For any scalar α P F, the complexity of computing CiApαq
times any vector of scalars on the left or right-hand side is OpmndAq.

Along with the degree conditions on each di and Theorems 3.4, 3.5 and 4.4
and Lemma 4.6, this proves the communication and Verifier cost claims.

The Prover’s cost comes from Lemma 4.9, which dominates the cost for the
Prover in any of the sub-protocols.

If all the statements being verified on Steps 3 to 6 are true, then the condi-
tions of Lemma 4.5 are satisfied, which proves that v P RowSpFrxspAq.

Finally, when this statement being proven is not true, we want to know an
upper bound on the probability that the Verifier incorrectly accepts. For the
remainder of the proof, assume that v R RowSpFrxspAq, and divide into cases
depending on which sub-protocol incorrectly accepted:

Case 1: ρ ă rankpAq. According to Theorem 3.5, the probability that the
Verifier incorrectly accepts in RankUpperBound on Step 3 is at most prdA `
1q{#S.

Case 2: rankpAq ď ρ and Di P t1, . . . , tu s.t. rankpCiAq ă ρ. In this
case, the statement being checked in the ith iteration of Step 4 is false, and
the Verifier will only accept in sub-protocol RankLowerBound with probability
at most 1

#S according to Theorem 3.4.
Now observe that if rankpAq ď ρ and for any i, rankpCiAq ě ρ, then it

must be the case that rankpAq “ rankpCiAq “ ρ. Further cases make this
assumption.

Case 3: @i P t1, . . . , tu, rankpAq “ rankpCiAq “ ρ and gcdpd1, . . . , dtq ‰
1. In this case, we know that each degpdiq ď rdA, where r is the true rank
of A. By Lemma 4.6, the probability that the Verifier incorrectly accepts in
sub-protocol CoPrime is at most pmaxi degpdiqq{#S, which is at most rdA{#S.

Case 4: @i P t1, . . . , tu, rankpAq “ rankpCiAq “ ρ and gcdpd1, . . . , dtq “
1. In this sub-case, according to Lemma 4.5, there must exist i P t1, . . . , tu such
that div R RowSpFrxspCiAq. By the assumption of this case, we know that CiA
has full row rank δ ď r, and also that degpdivq ď rdA`dv. Therefore from The-
orem 4.4, the probability that the Verifier incorrectly accepts in FullRankRowS-
paceMembership on the ith iteration of Step 6 is at most p4rdA ` dv ` 1q{#S.

Observe that the four cases are disjoint and cover all possibilities. In every
case, the probability that the Verifier incorrectly accepts is at most that in Case
4, which confirms the last part of the Theorem statement.

We note that it is always possible to conduct the checks on Step 4 and Step 6
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of RowSpaceMembership in parallel, so that the total rounds of communication
in the protocol is Op1q.

A crucial factor in the communication and Verifier costs as seen in Theo-
rem 4.10 is the value of t, which in any case satisfies t P Oplogpminpm,nqqq due
to the condition on the size of S, so this adds only a logarithmic factor to the
cost. Indeed, when the set S of field elements is large enough, t can be as small
as 2. For clarity, we state as a corollary the conditions in which this logarithmic
factor can be eliminated.

Corollary 4.11. If A has full row rank or #S ě 2mndA, then Protocol 11 re-
quires only Opn`mdA ` dvq communication and Verifier cost OpmndA ` ndvq.

5 Row spaces and normal forms
In this section, we use the row space membership protocol from the previous
section in order to certify the equality of the row spaces of two matrices. Along
with additional non-interactive checks by the Verifier, this can also be applied to
prove the correctness of certain important normal forms of polynomial matrices.

5.1 Row space subset and row basis
We will use row space membership to give a protocol for the certification of row
space subset ; by this we mean the problem of deciding whether the row space
of A is contained in the row space of B, for two given matrices A and B.

Our approach is the following: take a random vector λ and certify that the
row space element λA is in the row space of B, the latter being done via row
space membership (Section 4). We will see that taking λ with coefficients from
F is enough to ensure good probability of success.

Lemma 5.1. Let A P Frxsmˆn and B P Frxs`ˆn. Assuming that

RowSpFrxspAq Ę RowSpFrxspBq,

then the F-vector space

R “
!

λ P F1ˆm | λA P RowSpFrxspBq
)

has dimension at most m ´ 1. If the entries of λ are chosen uniformly at
random from a finite subset S Ď F then λA R RowSpFrxspBq with probability at
least 1´ 1

#S .

Proof. Suppose that the vector space R has dimension at leastm. Then R is the
entire space F1ˆm, and every row ofA is in RowSpFrxspBq; hence RowSpFrxspAq Ď
RowSpFrxspBq, a contradiction.

Then the probability that a uniformly random vector belongs to a proper
subspace of F1ˆm comes from Lemma 4.1.
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Protocol 12: RowSpaceSubset

Public: A P Frxsmˆn, B P Frxs`ˆn

Certifies: RowSpFrxspAq Ď RowSpFrxspBq

Prover Verifier

1. λ
$
ÐÝ S1ˆm

2. v Ð λA
λ

ÐÝÝÝÝÝÝÝÝÝÝ

3. Check v
?
P RowSpFrxspBq using RowSpaceMembership

In the following, let rA and rB denote respectively the rank of A and B and
dA “ maxp1,degpAqq, dB “ maxp1,degpBqq.

Theorem 5.2. Protocol 12 is a probabilistically sound interactive protocol, and
is complete assuming #S ě 2`dB in its subprotocols. It requires Opn` p`dB ` dAq logp`qq
communication and Verifier cost

Opp`ndB ` ndAq logp`q `mndAq.

If RowSpFrxspAq Ď RowSpFrxspBq, there is a Las Vegas randomized algorithm
for the Prover with expected cost

rO
`

`nrω´2
B dB ` r

ω´1
B dA `mndA

˘

.

Otherwise, the probability that the Verifier incorrectly accepts is at most

4rBdB ` dA ` 2

#S
.

Proof. The verifier may incorrectly accept if either

λ P R “
!

λ P F1ˆr | λA P RowSpFrxspBq
)

which happens with probability ď 1
#S by Lemma 5.1, or the sub-protocol RowS-

paceMembership has incorrectly accepted. From Theorem 4.10, and the union
bound, we obtain the claimed probability bound.

Repeating this check in both directions proves that two matrices have the
same row space.
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Protocol 13: RowSpaceEquality

Public: A P Frxsmˆn, B P Frxs`ˆn

Certifies: RowSpFrxspAq “ RowSpFrxspBq

Prover Verifier

1. Check RowSpFrxspAq
?
Ď RowSpFrxspBq using RowSpaceSubset

2. Check RowSpFrxspBq
?
Ď RowSpFrxspAq using RowSpaceSubset

Theorem 5.3. Let #S ě 2 maxpmdA, `dBq. Let r “ maxprA, rBq and d “
maxpdA, dBq. Then, Protocol 13 is a complete and probabilistically sound inter-
active protocol which requires

Oppm logpmq ` ` logp`qqd` nq Ă rOpmd` `d` nq

communication and Verifier cost

Oppm logpmq ` ` logp`qqndq Ă rOpmnd` `ndq.

If RowSpFrxspAq “ RowSpFrxspBq, there is a Las Vegas randomized algorithm
for the Prover with expected cost rO

`

pm` `qnrω´2d
˘

. Otherwise, the probability
that the Verifier incorrectly accepts is at most p4rd` d` 2q{#S.

Protocol 14: RowBasis

Public: A P Frxsmˆn, B P Frxs`ˆn

Certifies: B is a basis of the row space of A

Prover Verifier

1. Check rankpBq
?
ě ` using RankLowerBound

2. Check RowSpFrxspBq
?
“ RowSpFrxspAq using RowSpaceEquality

Corollary 5.4. Let #S ě 2 maxprAdA,mdBq. Let r “ maxprA, rBq and
d “ maxpdA, dBq. Then, Protocol 14 is a complete and probabilistically sound
interactive protocol which requires

Oppm logpmq ` ` logp`qqd` nq Ă rOpmd` `d` nq
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communication and Verifier cost

Oppm logpmq ` ` logp`qqndq Ă rOpmnd` `ndq.

If B is a row basis of RowSpFrxspAq, there is a Las Vegas randomized algorithm
for the Prover with expected cost rO

`

mn`ω´2d
˘

. Otherwise, the probability that
the Verifier incorrectly accepts is at most p4rd` d` 3q{#S.

5.2 Normal forms
Here, we give protocols for certifying normal forms of polynomial matrices,
including the Hermite form (Hermite, 1851; MacDuffee, 1933; Newman, 1972)
and the Popov form (Popov, 1972; Kailath, 1980). These forms are specific row
bases with useful properties such as being triangular for the former or having
minimal degrees for the latter, and being unique in the sense that a given matrix
in Frxsmˆn has exactly one row basis in Hermite (resp. Popov) form.

Roughly speaking, the Hermite form is a row echelon form that stays within
the underlying ring.

Definition 5.5. A matrix B “ rbi,js P Frxsrˆn with r ď n is in Hermite form
if there are pivot indices 1 ď k1 ă ¨ ¨ ¨ ă kr ď n such that:

(i) (Pivots are monic, hence nonzero)

bi,ki is monic for all 1 ď i ď r,

(ii) (Entries right of pivots are zero)

bi,j “ 0 for all i ď i ď r and ki ă j ď n,

(iii) (Entries below pivots have smaller degree)

degpbi1,kiq ă degpbi,kiq for all 1 ď i ă i1 ď r.

Each entry at row i and column ki is called a pivot. Observe that these
conditions guarantee B has full row rank, hence the use of the notation r for
the row dimension. For a matrix A P Frxsmˆn, its Hermite form B P Frxsrˆn

is the unique row basis of A which is in Hermite form.
Protocol HermiteForm certifies that a matrix B P Frxs`ˆn is the Hermite

form of A. It first checks that B is in Hermite form, and then it checks that B
and A have the same row space using RowSpaceEquality from Section 5.1.

Theorem 5.6. Let r “ maxprA, rBq and d “ maxpdA, dBq. Protocol 15 is
a probabilistically sound interactive protocol and is complete assuming #S ě
2 maxpmdA, `dBq in its subprotocol. It requires Opmd logpmq ` nq communica-
tion and Verifier cost Opmnd logpmqq. If B is the Hermite form of A, there is a
Las Vegas randomized algorithm for the Prover with expected cost rO

`

mnrω´2d
˘

.
Otherwise, the probability that the Verifier incorrectly accepts is at most p4rd`
d` 2q{#S.
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Protocol 15: HermiteForm

Public: A P Frxsmˆn, B P Frxs`ˆn

Certifies: B is the Hermite form of A
Prover Verifier

1. Check `
?
ď m

2. Check that B satisfies
Definition 5.5

3. Check RowSpFrxspAq
?
“ RowSpFrxspBq using RowSpaceEquality

Proof. To check that B is in Hermite form at Step 2, the Verifier first computes
the pivot indices as the index of the first nonzero on each row, then checks the
degree conditions specified in Definition 5.5. (If any row is zero, B is not in
Hermite form.) This is a deterministic check with complexity only Op`nq.

As discussed previously, the fact that B is in Hermite form immediately
implies that it has full row rank `, and hence checking the row space equality is
sufficient to confirm that B is a row basis for A.

The subprotocol RowSpaceEquality dominates the complexity and is also the
only possibility for the Verifier to incorrectly accept when the statement is false;
hence the stated costs follow directly from Theorem 5.3.

While the Hermite form has an echelon shape, it is also common in polyno-
mial matrix computations to resort to the Popov form, for which the pivot of
a row is no longer the rightmost nonzero entry but rather the rightmost entry
whose degree is maximal among the entries of that row. This form loses the
echelon shape, but has the advantage of having smaller-degree entries than the
Hermite form.

Here we consider the more general shifted forms (Van Barel and Bultheel,
1992; Beckermann, Labahn, and Villard, 2006), which encompass Hermite forms
and Popov forms via the use of the following degree measure. For a given tuple
s “ ps1, . . . , snq P Zn, the s-degree of the row vector v “ rv1 ¨ ¨ ¨ vns P Frxs1ˆn

is
degspvq “ maxpdegpv1q ` s1, . . . ,degpvnq ` snq.

We use the notation Bi,˚ to denote the ith row of the matrix B.

Definition 5.7. Let s “ ps1, . . . , snq P Zn. A matrix B “ rbi,js P Frxs
rˆn with

r ď n is in s-Popov form if there are indices 1 ď k1 ă ¨ ¨ ¨ ă kr ď n such that,

(i) (Pivots are monic and determine the row degree)

bi,ki is monic and degpbi,kiq ` ski “ degspBi,˚q for all 1 ď i ď r,
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(ii) (Entries right of pivots do not reach the row degree)

degpbi,jq ` sj ă degspBi,˚q for all 1 ď i ď r and ki ă j ď n,

(iii) (Entries above and below pivots have lower degree)

degpbi1,kiq ă degpbi,kiq 1 ď i1 ‰ i ď r.

The usual Popov form corresponds to the uniform shift s “ p0, . . . , 0q. Fur-
thermore, one can verify that, specifying the shift as s “ pnt, . . . , 2t, tq for any
given t ą degpBq, then the Hermite form is the same as the s-Popov form
(Beckermann et al., 2006, Lem. 2.6).

For a matrix A P Frxsmˆn, there exists a unique row basis B P Frxsrˆn of
A which is in s-Popov form (Beckermann et al., 2006, Thm. 2.7); B is called
the s-Popov form of A. Generalizing Protocol 15 to this more general normal
form yields Protocol 16 (although the former could be derived as a particular
case of the latter for a specific shift s, we preferred to write both explicitly for
the sake of clarity).

Protocol 16: ShiftedPopovForm

Public: A P Frxsmˆn, s “ ps1, . . . , snq P Zn, B P Frxs`ˆn

Certifies: B is the s-Popov form of A

Prover Verifier

1. Check `
?
ď m

2. Check that ps,Bq sat-
isfies Definition 5.7

3. Check RowSpFrxspAq
?
“ RowSpFrxspBq using RowSpaceEquality

The next result is identical to Theorem 5.6, in both statement and proof. The
only difference in the protocol is determining the indices of each pivot column
in order to confirm the conditions of s-Popov form; this can be accomplished
in linear time by first computing the s-degree of the row and then finding the
rightmost column which determines this shifted row degree.

Theorem 5.8. Let r “ maxprA, rBq and d “ maxpdA, dBq. Protocol 16 is
a probabilistically sound interactive protocol and is complete assuming #S ě
2 maxpmdA, `dBq in its subprotocol. It requires Opmd logpmq ` nq communica-
tion and Verifier cost Opmnd logpmqq. If B is the s-Popov form of A, there is a
Las Vegas randomized algorithm for the Prover with expected cost rO

`

mnrω´2d
˘

.
Otherwise, the probability that the Verifier incorrectly accepts is at most p4rd`
d` 2q{#S.
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6 Saturation and kernel bases
In this section, we use the protocols described in previous sections to design
certificates for computations related to saturations and kernels of polynomial
matrices.

6.1 Saturation and saturated matrices
The saturation of a matrix over a principal ideal domain is a useful tool in com-
putations; we refer to (Bourbaki, 1972, Section II.§2.4) for a general definition
of saturation. It was exploited for example in (Zhou and Labahn, 2013) where
a matrix is factorized as the product of a column basis times some saturation
basis, and in (Neiger et al., 2018) in order to find the location of pivots in the
context of the computation of normal forms. The saturation can be computed
from the Hermite form, as described in (Pernet and Stein, 2010, Section 8) for
integer matrices, and alternatively it can be obtained as a left kernel basis of a
right kernel basis of the matrix as we prove below (Lemma 6.3).

Definition 6.1. The saturation of a matrix A P Frxsmˆn is the Frxs-module

SaturationpAq “ Frxs1ˆn X RowSpFpxqpAq;

it contains RowSpFrxspAq and has rank r “ rankpAq. A saturation basis of A is
a matrix in Frxsrˆn whose rows form a basis of the saturation of A. A matrix
is said to be saturated if its saturation is equal to its Frxs-row space.

Two matrices with the same saturation may have different Frxs-row spaces.
For example, the matrices

»

–

1 1
x2 x2 ` x
x x

fi

fl and
„

1 1` x2

0 x2



have the same saturation Frxs1ˆ2, but the Frxs-row space of the former matrix
contains r0 xs which is not in the Frxs-row space of the latter matrix. Remark
also that all nonsingular matrices in Frxsnˆn have saturation equal to Frxs1ˆn.

The saturation is defined in terms of the Fpxq-row space of the matrix: two
matrices have the same saturation if and only if they have the same Fpxq-row
space. In particular, A is saturated if and only if any row basis ofA is saturated.
This yields the following characterization for matrices having full column rank.

Lemma 6.2. Let A P Frxsmˆn have full column rank. Then A is saturated if
and only if RowSpFrxspAq “ Frxs1ˆn.

Proof. Since A has full column rank, its row bases are nonsingular n ˆ n ma-
trices, or equivalently, RowSpFpxqpAq “ Frxs1ˆn. Hence the saturation of A is
Frxs1ˆn, and the equivalence follows by definition of being saturated.
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Thus, in this case, verifying that A is saturated boils down to verifying that
Frxs1ˆn is a subset of RowSpFrxspAq, which can be done using RowSpaceSubset.

To obtain a similar result in the case of matrices with full row rank, we will
rely on the following characterization of the saturation using kernel bases.

Lemma 6.3. Let A P Frxsmˆn have rank r, and let K P Frxsnˆpn´rq be a
basis for the right kernel of A. Then, SaturationpAq is the left kernel of K. In
particular, the saturation bases of A are precisely the left kernel bases of K.

Proof. Each row of A is in the left kernel of K, hence so is any polynomial
vector v P Frxs1ˆn which is an Fpxq-linear combination of rows of A, that is,
any v P SaturationpAq.

For the other direction, it is enough to prove that each row of a given left
kernel basis B P Frxsrˆn of K is in SaturationpAq. Let Â P Frxsrˆn be a set
of r linearly independent rows of A; since these rows are in the left kernel of
K, we have Â “ UB for some nonsingular U P Frxsrˆr. Thus each row of
B “ U´1Â is an Fpxq-linear combination of rows of A.

Combining this with (Zhou and Labahn, 2013, Lemma 3.3), it follows that
for any saturation basis B P Frxsrˆn of A and any factorization A “ CB with
C P Frxsmˆr, then C is a column basis of A. If A has full row rank we obtain
that C is nonsingular, and that A is saturated if and only if C is unimodular,
or equivalently ColSpFrxspAq “ Frxsmˆ1. For the sake of completeness, we now
present a concise proof of this characterization (Lemma 6.5); we will need the
following standard result which essentially says that any kernel basis is saturated
(see for example (Giorgi and Neiger, 2018, Lemma 2.2) for a proof).

Fact 6.4. Let K P Frxsnˆ`. For any left kernel basis B P Frxsrˆn of K, we
have ColSpFrxspBq “ Frxsrˆ1.

Lemma 6.5. Let A P Frxsmˆn have full row rank. Then, A is saturated if and
only if ColSpFrxspAq “ Frxsmˆ1.

Proof. If A is saturated, it is a basis of its own saturation since it has full row
rank. Then writing K for a right kernel basis of A, by Lemma 6.3, A is a left
kernel basis of K. Then Fact 6.4 gives ColSpFrxspAq “ Frxsmˆ1.

Conversely, assume ColSpFrxspAq “ Frxsmˆ1. Since the row space of A is
a submodule of its saturation, we have A “ UB where B P Frxsmˆn is a
saturation basis of A and U P Frxsmˆm is nonsingular. By assumption, we
have AV “ Im for some V P Frxsnˆm, hence UpBV q “ Im. Because these
are all polynomial matrices, this means that U is unimodular, and A “ UB
implies that A is saturated.

We are now ready to state Protocol 17 for the certification that a matrix is
saturated, assuming it has either full row rank or full column rank. The latter
restriction is satisfied in all the applications we have in mind, including the
two we present below (Section 6.2): unimodular completability and kernel basis
certification. We note that, if one accepts a communication cost similar to the
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size of the public matrix A, then removing this assumption is easily done by
making use of a row basis of A.

Protocol 17: Saturated

Public: A P Frxsmˆn with full rank
Certifies: A has full rank ñ A is saturated

Prover Verifier

1.

if m ď n: // full row rank
Check Frxsmˆ1 Ď ColSpFrxspAq using RowSpaceSubset
with public matrices Im and Aᵀ

else: // full column rank
Check Frxs1ˆn Ď RowSpFrxspAq using RowSpaceSubset
with public matrices In and A

Theorem 6.6. Let d “ maxp1,degpAqq, µ “ maxpm,nq, and ν “ minpm,nq.
Protocol 17 is a probabilistically sound interactive protocol and is complete as-
suming #S ě 2µd in its subprotocol. It requires Opµd logµq communication and
Verifier cost Opmnd logµq. Assuming that A has full rank and is saturated,
there is a Las Vegas randomized algorithm for the Prover with expected cost
rO
`

µνω´1d
˘

, and otherwise the probability that the Verifier incorrectly accepts is
at most p4νd` 2q{#S.

Proof. This directly follows from Lemmas 6.2 and 6.5 and Theorem 5.2. Remark
that in both cases m ď n and m ą n, the protocol RowSpaceSubset is applied
with public matrices Iν and a µ ˆ ν matrix of rank at most ν and degree at
most d.

Concerning the certification of a saturation basis of A, our protocol will rely
on the following characterization.

Lemma 6.7. Let A P Frxsmˆn. Then, a matrix B P Frxs`ˆn is a saturation
basis of A if and only if the following conditions are satisfied:

(i) RowSpFrxspAq Ď RowSpFrxspBq,

(ii) rankpBq “ ` and rankpAq ě `,

(iii) B is saturated.

Proof. If B is a saturation basis of A, then by definition B is saturated; B has
full row rank with ` “ rankpBq “ rankpAq; and RowSpFrxspBq is the saturation
of A and therefore contains RowSpFrxspAq.

Conversely, assume that the three items hold. The first two items together
imply both ` “ rankpBq “ rankpAq and RowSpFpxqpAq Ď RowSpFpxqpBq; hence
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the latter inclusion of Fpxq-vector spaces of same dimension is an equality. Thus
we have SaturationpAq “ SaturationpBq, and the latter saturation is equal to
RowSpFrxspBq since B is saturated by the third item. This concludes the proof
that B has full row rank and Frxs-row space equal to the saturation of A.

Protocol 18: SaturationBasis

Public: A P Frxsmˆn, B P Frxs`ˆn

Certifies: B is a saturation basis of A
Prover Verifier

1. Check `
?
ď minpm,nq

2. Check rankpAq
?
ě ` using RankLowerBound

3. Check RowSpFrxspAq
?
Ď RowSpFrxspBq using RowSpaceSubset

4. Check that B is saturated using Saturated

Theorem 6.8. Protocol 18 is a probabilistically sound interactive protocol and
is complete assuming #S ě maxp`dA ` 1, 2ndBq in its subprotocols. It requires
OpndB logpnq ` dA logp`qq communication and Verifier cost OpmndA ` `ndB logpnqq.
If B is a saturation basis of A, then there is a Las Vegas randomized algorithm
for the Prover with expected cost

rO
`

mn`ω´2dA ` n`
ω´1dB

˘

;

otherwise the probability that the Verifier incorrectly accepts is at most

4`dB ` dA ` 2

#S
.

Proof. The check on Step 1 has no arithmetic cost, but ensures that ` is less
than or equal to m, n, rankpAq, and rankpBq. Then the complexities follow
from Lemma 6.7 and Theorems 3.4, 5.2 and 6.6.

Note that rankpAq ě ` and RowSpFrxspAq Ď RowSpFrxspBq imply that
rankpBq “ `, so that the precondition for the Saturated protocol on Step 4 is
valid unless one of the previous checks failed.

For the probability bound, the worst case for the Verifier is when rankpAq ď
` and B is saturated, but RowSpFrxspAq Ę RowSpFrxspBq. Then only the
statement being checked on Step 3 is false, and this sub-protocol has the greatest
probability of the verifier incorrectly accepting, which matches the one in the
theorem statement.
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6.2 Kernel bases and unimodular completability
Here, we derive two protocols which follow from the ones concerning the satura-
tion. The second protocol is for the certification of kernel bases, while the first
protocol is about matrices that can be completed into unimodular matrices.

The fast computation of such completions was studied by Zhou and Labahn
(2014). We say that A P Frxsmˆn is unimodular completable if m ă n and there
exists a matrix B P Frxsmˆpm´nq such that rAᵀ Bᵀsᵀ is unimodular. Note
that if A does not have full row rank, then it is not unimodular completable.
Otherwise, Zhou and Labahn (2014, Lemma 2.10) showed that A is unimodular
completable if and only if A has unimodular column bases; by Lemma 6.5, this
holds if and only if A is saturated. This readily leads us to Protocol 19.

Protocol 19: UnimodularCompletable

Public: A P Frxsmˆn
Certifies: A is unimodular completable

Prover Verifier

1. Check m
?
ă n

2. Check rankpAq
?
ě m using RankLowerBound

3. Check that A is saturated using Saturated

Theorem 6.9. Protocol 19 is a probabilistically sound interactive protocol and is
complete assuming #S ě 2md in its subprotocols. It requires Opnd logpnqq com-
munication and Verifier cost Opmnd logpnqq. If A is unimodular completable,
then there is a Las Vegas randomized algorithm for the Prover with expected cost
rO
`

nmω´1d
˘

; otherwise the probability that the Verifier incorrectly accepts is at
most p4md` 2q{#S.

Proof. The costs follow from Theorems 3.4 and 6.6, noting that the protocol
aborts early if m ě n, and therefore m is an upper bound on the rank in
both sub-protocols. The worst case for the Verifier is that rankpAq ě m but
A is not saturated; then only the second statement is incorrect, which has
a higher probability of the Verifier incorrectly accepting in that subprotocol.
Therefore the probability of the Verifier incorrectly accepting here is the same
as in Saturated from Theorem 6.6.

Finally, Protocol 20 for the certification of kernel bases will follow from the
characterization in the next lemma.

Lemma 6.10. Let A P Frxsmˆn and let B P Frxs`ˆm. Then, B is a left kernel
basis of A if and only if
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(i) rankpBq “ ` and rankpAq ě m´ `,

(ii) BA “ 0,

(iii) B is saturated.

Proof. If B is a left kernel basis of A, then we have rankpBq “ ` “ m´rankpAq
as well as BA “ 0; the third item follows from Fact 6.4 and Lemma 6.5.

Now assume that the three items hold. Consider some left kernel basis K
of A. Then, rankpKq “ m ´ rankpAq ď ` by the first item, while the second
item implies that the row space of B is contained in the row space of K, hence
` “ rankpBq ď rankpKq; therefore rankpKq “ `. As a result,B “ UK for some
nonsingular U P Frxs`ˆ`. Item piiiq implies ColSpFrxspBq “ Frxs`ˆ1 according
to Lemma 6.5, hence I` “ BV “ UKV for some V P Frxsmˆ`. Then, U must
be unimodular, and thus B “ UK is a left kernel basis of A.

Protocol 20: KernelBasis

Public: A P Frxsmˆn, B P Frxs`ˆm

Certifies: B is a left kernel basis of A
Prover Verifier

1. Check `
?
ď m

2. Check rankpBq
?
ě ` using RankLowerBound

3. Check rankpAq
?
ě m´ ` using RankLowerBound

4. Check BA ?
“ 0 using MatMul

5. Check that B is saturated using Saturated

Theorem 6.11. Protocol 20 is a probabilistically sound interactive protocol and
is complete assuming #S ě maxppm ´ `qdA ` 1, 2mdBq in its subprotocols. It
requires OpmdB logpmqq communication and Verifier cost

Op`mdB logpmq `mndAq.

If B is a left kernel basis of A, then there is a Las Vegas randomized algorithm
for the Prover with expected cost

rO
`

m`ω´1dB `mnpm´ `q
ω´2dA

˘

;

otherwise the probability that the Verifier incorrectly accepts is at most

maxpdA ` dB ` 1, 4`dB ` 2q

#S
.
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Proof. The costs follow from Lemma 6.10 and Theorems 3.4, 3.9 and 6.6. As
before, the worst case for the Verifier is that only one of the four checked state-
ments is wrong, and the resulting maximum of probabilities comes either from
Step 3 or Step 5.

7 Conclusion and perspectives
We have developed interactive certificates for a variety of problems concerning
polynomial matrices. For rank, determinant, system solving, and matrix multi-
plication (Section 3), these amount to evaluating at some random point(s) and
reducing to field-based verifications. For row bases, saturation, normal forms,
and kernel basis computations (Sections 5 and 6), the verifications essentially
reduce to testing row space membership of a single vector (Section 4) and testing
that ranks are the expected ones.

Our protocols are efficient. The volume of data exchanged in communica-
tions is roughly the size of a single row of the matrix. The time complexity for
the Verifier is linear (or nearly-linear) in the size of the object being checked,
and the time for the Prover is roughly the same as it would take to perform the
computation being verified.

Still, there is some room for improvement in these costs. It would be nice
to remove the logarithmic factors in the complexities of most later protocols
for the Verifier time and communication cost; these come from the number of
repetitions t required in the RowSpaceMembership protocol.

Another possibility for improvement in our complexities would be to have
the same costs where d is the average matrix-vector degree, rather than the max-
imum degree. Such complexity refinements have appeared for related compu-
tational algorithms, frequently by “partial linearization” of the rows or columns
with highest degree (Gupta et al., 2012, Section 6), and it would be interesting
to see if similar techniques could work here. This would be especially helpful in
more efficiently verifying an unbalanced shifted Popov form, and the Hermite
form in particular, of a nonsingular matrix.

While we have presented protocols for a variety of basic problems on poly-
nomial matrices, there are still more for which we do not know yet whether any
efficient verification exists. These include:

• matrix division with remainder (see (Gantmacher, 1959, Section IV.§2)
and (Kailath, 1980, Theorem 6.3-15));

• matrix inversion (the current fastest algorithm is by Zhou, Labahn, and
Storjohann (2015));

• high-order terms in expansion of the inverse (see the high-order lifting
algorithm of Storjohann (2003));

• univariate relations, generalizing Hermite-Padé approximation (Becker-
mann and Labahn, 2000; Neiger and Vu, 2017); and

Page 39 of 43



Preprint dated July 2, 2018

• Smith form (see (Storjohann, 2003) for the fastest known algorithm).

Perhaps the most interesting direction for future work would be to adapt our
protocols to the case of Euclidean lattices, i.e., integer matrices and vectors. It
seems that most of our protocols in Section 3 should translate when we replace
evaluation at a point α with reduction modulo a sufficiently-large prime p, but
the analysis in terms of bit complexity rather than field operations will likely be
more delicate. Another seeming hurdle is in our central protocols in Section 4
on deciding row membership: while the general ideas of these protocols might
translate to integer lattices, the proof techniques we have used are particular
for polynomials.
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