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ABSTRACT:  Polycrystals and centimeter-sized BaTiO3-based single crystals were grown by top 

seeded solution growth from the BaTiO3-CaTiO3-BaZrO3 system. High effective partition 

coefficients of Zr ranging from 15 to 6 with small Zr content have been calculated from Castaing 

micro-probe measurements whereas those of Ca increase slightly from 0.45 to 0.7. A spinodal 

decomposition mechanism is emphasized during the growth leading to the emergence of two 

phases with close compositions. Chemical analysis displayed periodical Zr and Ca contents 

fluctuations within the whole boules and Rietveld measurements highlighted two phases belonging 

to perovskite structures with tetragonal P4mm and orthorhombic Amm2 space groups. Samples 

with various calcium and zirconium contents were characterized by means of dielectric and 

piezoelectric measurements. Most efficient samples are indistinctly polycrystals or oriented single 

crystals where electromechanical performances are compositional-dependent. Polycrystalline 

samples and single crystals oriented along (001)pc and (110)pc displayed Curie temperatures 

ranging from 50°C to 111°C. Electromechanical coupling factor up to 58% and piezoelectric 

charge coefficient d33=496 pC.N-1 were obtained at room temperature. The miscibility gap 

between the two perovskite solid solutions as well as Ca and Zr elements content variation in single 
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crystals lower crystal piezoelectric response which remains nonetheless of the same efficiency 

compared to that of ceramics of the same composition. 

1. Introduction 

Due to the environmental toxicity of lead, lead-free piezoelectric materials attract more and more 

attention. Lead-based ferroelectric materials such as lead zirconate titanate PbZr1-xTixO3 (PZT) 1,2 

are the most widely used piezoelectrics, because of their excellent properties. In last years, the 

environmental and health hazards of lead have been recognized, leading to an increased interest in 

the development of lead-free piezoelectric materials3–7. The main challenge is to find materials 

with equal or even higher piezoelectric response than the lead-based materials.  

While lead-free piezoelectric ceramics exhibit lower performance than PZT, among the three main 

families of promising lead-free piezoelectrics3,6,8,9 recent reports have shown outstanding 

piezoelectric constants up to 620 pC.N-1 in (1-x)BaTi0.8Zr0.2O3-xBa0.7Ca0.3TiO3 (BCTZ) solid 

solution 5,6,10,11. BCTZ solid solution properties make this system promising as alternative to lead-

containing materials. Furthermore, single crystals should display better electromechanical 

properties than ceramics so that it is expected that BCTZ single crystals would exhibit piezoelectric 

constants of about 1500-2000 pC.N-1 as predicted by Liu et al. 10. Recently, we reported 12,13 early 

growth attempt of BCTZ single crystals in BaTiO3-CaTiO3-BaZrO3 pseudo-ternary solid-solution 

with various zirconium (Zr) and calcium (Ca) contents where a continuous evolution of their 

electrical properties from relaxor to pure ferroelectric behavior was highlighted with Ca and Zr 

contents.  

In the present paper, we focus on single crystal growth by Top-Seeded Solution Growth method 

of BCTZ following the methodology reported in literature13 where various compositions were 

obtained in order to reach enhanced piezoelectric properties. Centimeter-sized polycrystalline 
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boules and single crystals with varying compositions were obtained. DSC and high temperature 

XRD analysis as well as chemical mapping performed by Castaing Electron Probe Microscopy 

Analysis (EPMA) are presented. Effective segregation of elements and periodical oscillations of 

their contents are discussed with respect to the growth direction. The correlation between chemical 

contents and Rietveld XRD analysis is undertaken and a spinodal decomposition in the BCTZ 

system is highlighted. Large-sized boules allowed to extract oriented centimeter-sized single 

crystal samples. Finally, dielectric measurements are presented and highlight the broadening of 

the tetragonal to orthorhombic phase transition featuring the spinodal decomposition. Piezoelectric 

measurements on some as-grown and annealed polycrystals and single crystals are displayed. The 

results are discussed with respect to data of literature about ceramics samples over a wide range of 

compositions. 

 

2. Experimental procedure 

2.1 Chemical and physical analysis 

Castaing Electron Probe Microscopy Analysis (EPMA) were performed with a CAMECA SX-100 

apparatus with a wavelength dispersive spectrometer working at 15 kV. Reference samples for 

quantitative analysis of elements 13 were chosen in order to reach an experimental accuracy of 

∆%Zr=∆%Ca=±0.3mol.% per analysis point in the investigated concentrations range. 

 

Dielectric and piezoelectric measurements were performed by electroding the major faces of 

crystals using gold sputtering and silver wires attached to these electrodes with silver paste. The 

samples were set in a homemade cell enabling the temperature to be scanned from -160°C up to 

227°C. Prior to such low temperature run, the cell was pumped down and a slight underpressure 
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of dry Helium (P=10-1mPa) was introduced so as to avoid moisture adsorption. The samples were 

electrically connected to the output port of a HP4194 impedance analyzer with an operating 

frequency range of 100Hz–10MHz. Samples were poled under a DC electric field by the increasing 

field method up to 1 kV.cm-1 at room temperature. The dielectric and piezoelectric properties were 

recorded during poling with un impedance analyzer (4294A Agilent). The temperature dependence 

of dielectric constant and dielectric losses were characterized using an environmental chamber 

Pyrox. The d33 values of the poled samples were measured by Berlincourt method with a 

Pennebaker Piezo d33 meter (Model 8000). The piezoelectric constant along with corresponding 

electromechanical coupling coefficient for the length thickness mode were determined at different 

temperatures on the basis of IEEE standards [6]. 

Differential scanning calorimetry (Netzsch STA 449) was performed between room temperature 

and 1350°C in platinum crucibles under air atmosphere. Both heating and cooling signals were 

recorded using 10°C.mn-1 rate. DSC signal was corrected from baseline obtained for empty 

crucibles.  

In situ High temperature X-ray diffraction measurements were performed on a Bruker D8 Advance 

Bragg-Brentano (CuKα1,2 radiation) diffractometer equipped with a linear Vantec detector. 

Powders were placed on a platinum ribbon in an HTK16 Anton Paar chamber. The temperature 

behavior of this ribbon was previously calibrated using the known phase transitions and thermal 

expansion of a corundum reference. Diffractograms were collected between 15 and 70° (2θ) with 

a 0.024° step size. The samples were heated from 1150°C to 1450°C at a rate of 10°C.min-1, and 

the ramp was stopped for each diffractogram every 25°C to avoid any change during the data 

collection. 
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X-ray diffraction (XRD) patterns were collected on a Bragg-Brentano θ-2θ geometry 

diffractometer (PANalitycal X'pert MPD-PRO, Cu Kα1, λ = 0.15056 nm), equipped with a primary 

germanium monochromator, a sample spinner and a planar detector (X’celerator). The data were 

collected over an angular range of 2θ = 10°-130° and each acquisition lasted for 25 hours. The 

powders were ground and sifted with a 40 microns sieve for a better homogeneity of the particles 

size. The samples were carefully prepared on stainless steel sample holder using a razor blade to 

prevent preferential orientations. XRD patterns were studied by Rietveld refinements (Jana 2006 

software15) using the known space groups of BaTiO3
16. Using a conventional notation for 

perovskite compounds, the pseudo-cubic Miller indices will be hereafter written using “pc” 

indices. 

Laue back-scattering patterns were recorded using a CCD-camera device (Photonic Science dual 

lens coupled X-rays Laue system) after a 3–5 min stationary crystal irradiation with polychromatic 

X-rays supplied by a molybdenum anticathode. Single crystals were cut along pseudo-cubic (pc) 

directions with a diamond wire saw with an absolute accuracy less than 1°.  

The grains morphology of the polycrystalline samples was observed with an optical microscope 

Zeiss Axio Scope. 

 

2.2 Synthesis and crystal growth 

Synthesis of initial loads were prepared from BaCO3, CaCO3, TiO2, ZrO2  raw powders with 

99.99%-purity from Fox Chemicals GmbH. Based on previous works 12,13, growth attempts were 

carried out with a self-flux composed of an excess of BaO and TiO2. Initial load compositions 

(Table 1) are considered as a global solid solution including the solvent and the solute to be grown, 

so that 100% of Ba and Ca cations are in A site and 100% of Ti and Zr cations  
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Table 1. Normalized compositions of initial liquid solutions for BCTZ for growth and resulting 

obtained crystals. 

 

The solid state reaction was performed by thermal treatment as described by Benabdallah et al.12 

in a platinum crucible under air atmosphere. Single crystals were grown in 40X40mm or 

80X80mm iridium crucibles by using the Top-Seeded Solution Growth technique (TSSG). 

Cyberstar Oxypuller™ induction furnaces working under controlled argon atmosphere were used. 

The growing crystal weight was monitored continuously during the whole process. Longitudinal 

and transversal temperature gradients were estimated to be around 50°C.cm-1. Growth attempts 

were performed manually in a 40X40mm crucible and with automatic crystal shape control 

software designed by Cyberstar in a 80X80mm crucible. After synthesis and growth, no defined 

compounds nor secondary parasitic phases have been obtained in the temperature range where the 

growth took place.  

First growth attempts were performed on both (001)-oriented BaTiO3 and SrTiO3 seeds with 

BCTZ4 and BCTZ6 compositions respectively (Figure 1a and 1b). Because the 1st order 

hexagonal-cubic phase transition of BaTiO3 at T≈1460°C 17 occurs in the growth temperature 

range, the boule featured cracks and mm-sized grains as well as large polycrystalline zones without 

defects. In addition, we noted that creeping of the solution all along the seed during the growth has 

been detrimental to control the seeding and thus the boule quality. During the growth along (001)-

No. Attempt Ba Ca Ti Zr 40X40mm crucible 80X80mm crucible Reference

1st attempt - BCTZ1 85.0% 15.0% 90.0% 10.0% Polycrystal X 12,13

2nd attempt - BCTZ2 77.0% 23.0% 98.0% 2.0% Polycrystal X 12,13

3rd attempt - BCTZ3 76.5% 23.5% 97.6% 2.4% mm-sized single crystal X 12,13

4th attempt - BCTZ4 76.8% 23.2% 97.8% 2.2% mm-sized single crystal X This work

5th attempt - BCTZ5 77.3% 22.7% 97,9% 2,1% mm-sized single crystal mm-sized single crystal This work

6th attempt - BCTZ6 88,7% 11,3% 98,7% 1,3% mm-sized single crystal cm-sized  single crystal This work

7th attempt - BCTZ7 92,5% 7,5% 98,7% 1,3% cm-sized single crystal X This work

Solution composition (mol.%)        As-grown boule
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oriented SrTiO3 seed, which does not exhibit any phase transition in the BCTZ growth temperature 

range, the growth was out of control. We observed both the continuous decrease of SrTiO3 seed's 

weight dissolving in the Sr-free BCTZ4 solution and, simultaneously, the crystallization of a 

BCTZ ring around the seed in the solution which was assumed to be supersaturated with other 

elements than Sr. Indeed, SrTiO3-BaTiO3 and SrTiO3-CaTiO3 systems18,19 exhibit large solid 

solutions where the solubility of SrTiO3 is allowed in both BaTiO3 and CaTiO3. Since the 

considered initial liquid BCTZ6 solution is mainly composed of Ba (88.7 mol.%) titanate and Ca 

(11.3 mol.%) titanate with a global Ti content of 98.7 mol.% (see Table 1), the phase diagrams 

confirm that SrTiO3 dissolved in Sr-free BCTZ6 solution. 

 Despite a high temperature orthorhombic-tetragonal phase transition20, CaTiO3 may have been 

considered as a suitable seed for BCTZ growth because crackless CaTiO3 can be grown directly 

from its liquid phase 21,22. However, due to the unavailability of other kind of perovskite-related 

compounds with same elements containing either Ba, Ca, Ti or Zr elements, a 3-mm-thick iridium 

wire was finally used in order to initiate the nucleation and crystal growth. The rod was dipped 

into the melt after homogenization of the liquid solution for 24h. A rotation speed ranging from 

0.5 to 30 rpm and pulling velocity varying from 0.01 to 1.5 mm.h-1 were investigated. The growth 

was driven by decreasing the temperature at a rate ranging in between 0.5°C.h-1 and 1,5°C.h-1. At 

the end of the growth process, the boules were set 5 mm above the liquid surface in order to reduce 

the thermal stress and cooled down to room temperature in 72 h.  

 

3. Results and discussion 

3.1 Crystal growth 
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Crystal growth attempts exhibited saturation temperatures ranging from 1485 to 1570 °C 

indicating that the saturation temperature is mainly a function of Ca and Zr contents in the crystals. 

Owing to the narrow investigated ranges of Zr and Ca concentrations, crystal shape and habits in 

the following are assumed to be related only to the growth parameters.    

On the one hand, crystal growth with BCTZ4 to BCTZ6 (Figure 1c to 1f) compositions performed 

in a 40x40mm iridium crucible with manual crystal geometry control led to polycrystalline 

centimeter-sized BCTZ boules with rough cylindrical shape (Figure 1c and 1d). Boules exhibit 

mm-sized grains when using a pulling rate above 0.05 mm.h-1, a cooling rate above 1.5 °C.h-1 and 

a rotation speed about 30 rpm. Crystal growth with BCTZ7 composition performed below these 

values with low rotation speed about 6-8 rpm resulted in facetted boules (Figure 1f) with 

centimeter-sized single crystals at the bottom of the boule. Most of the boules are delimited by 

radial cracks around the Ir rod (Figure 1c) and they frequently exhibit a foot shape adjacent to a 

concave interface at the bottom. In some case, manually as-grown boules exhibit an apparent 6-

fold axis-like faceting at the top of the BCTZ6 boule (Figure 1e).  
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Figure 1. Growth into a 40X40mm iridium crucible with manual shape control:  (a) BCTZ4 boule 

grown onto a BaTiO3 seed. Insert:  Optical microscopy micrograph with the individual component 

crystallites and grain boundaries; (b) BCTZ6 growth attempt onto a SrTiO3 seed; (c) BCTZ5 boule; 

(d) BCTZ6 boule; (e) Top facetting around a 6-fold axis-like in BCTZ6 as-grown crystals; (f) 

BCTZ7 boule. Insert: Laue pattern of single crystal extracted from the bottom of the boule.  

 

However, unlike it is observed for BaTiO3 17,23 and (Ba,Ca)TiO3 solid solution, no 1st order cubic-

hexagonal high-temperature phase transition 24, which may cause severe cracks, was detected up 

to the saturation temperature as showed by DSC analysis up to 1300 °C (Figure 2) and HT XRD 

up to 1450°C (Figure 3).  
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Figure 2. Differential Scanning Calorimetry patterns of three BCTZ samples with various 

composition. No sign of high temperature phase transition is detected up to 1300°C. Peak 

observed on the red curve around 460°C is attributed to an experimental artefact.  

 

Figure 3. (a) High temperature XRD pattern of a BCTZ polycrystal sample containing 1%Zr and 

25%Ca. Except thermal expansion and transition from tetragonal (diffractogram at 30°C)  to cubic 

structure (diffractogram at 1150°C) , no additional phase transition is detected up to 1450°C. (b) 
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Zoom on typical (hkl) peaks showing the transition from tetragonal (green) to cubic (blue) 

structure. 

Hence, assuming that no high temperature phase transition occurs in BCTZ because modified-

BaTiO3 should exhibit lower cubic-hexagonal transition temperature than that of pure BaTiO3 
17, 

such cracks are assumed to be caused during the cooling by the different thermal expansion 

coefficients between Ir and BCTZ25,26. Apparent faceting is attributed to crystal habit in the thermal 

configuration of the furnace. On the other hand, crystal growth with BCTZ5 composition 

performed in 80X80mm Ir crucible with automatic boule shape control software displayed single 

crystal with a spiral shape (Figure 4a).  

As previously referenced for the Czochralski growth of similar perovskite such as DyScO3 27 and  

SrTiO3 28, foot or spiral formation in BCTZ occurred because the heat transport via the crystal is 

hindered by low thermal conductivity as well as by the plausible low infrared transparency induced 

by the reduction of Ti(+IV) into Ti(+III) and the decreasing of band gap energy with temperature 

Automatic crystal geometry control generates particularly spiral shaped boules because of the 

continuous mass regulation which occurs at the crystal foot tip during the crystal growth process. 

Finally, in order to avoid foot or spiral growth and to reduce as much as possible cracks, a growth 

attempt with BCTZ6 composition on a 2 mm-thick iridium rod has been performed at 0.5 rpm and 

1.5 mm.h-1. This led to a single crystal with cylindrical shape about 50 mm wide and weighing 

330 g. Centimeter-sized oriented single crystals were successfully extracted from the boule (Figure 

4b).  
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Figure 4. Growth into a 80X80mm iridium crucible with automatic crystal geometry control: (a) 

Spiral as-grown boule obtained on a 2mm-thick iridium wire and pulled from BCTZ5 composition 

(b) 330-g crystal grown from BCTZ6 composition with 50mm diameter. Insert: (001)pc oriented 

centimeter-sized single crystal with (Ba0.905Ca0.095)(Ti0.943Zr0.057) average composition. 

 

3.2. Chemical analysis 

EPMA quantitative analysis allowed to calculate Zr and Ca effective partition coefficients keff 29 

(Figure 5) where the partition coefficient keff is defined as the molar ratio in between the content 

of a considered element at the early beginning of the crystal and its initial content in liquid solution. 
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Figure 5. Effective partition coefficient of (a) Zr and (b) Ca as a function of their molar content in 

liquid solution. 

 

Effective partition coefficient of Zr is significantly greater than 1 contrary to that of Ca which 

remains lower than 1. Consequently, as depicted on Figure 6, a strong decreasing of Zr content 

and an increasing of Ca content with respect to the radius and the length of boule is measured.  
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Figure 6. Transversal evolution of (a) Zr and (b) Ca contents in as-grown BCTZ4 boule for 4 

different altitudes h in the crystal depicted in figure 1a. The radial distance 0mm corresponds to 

the center of the boule.  

 

However, analysis show a reverse tendency at the end of the boules. Zr and Ca contents 

respectively increase and decrease with the length and radius. This is meaningful of the change of 

the interface shape which become concave at the end of growth as it is observed on crystals of 

Figure 1a and Figure 1f. At the end of the growth, crystallization occurs from the periphery to the 

core of the boule. This feature confirms that the release of the heat of crystallization is particularly 

hindered at the core of the boule, inducing thus a change of the interface shape, then, the emergence 

of a growth foot on the side of the boule. In addition, chemical analysis systematically reveals 
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periodical fluctuations of the Zr content and, to a lower extent, of Ca content with amplitudes well 

beyond the accuracy limit (e.g. 0.3 mol.%) of the analysis (Figure 7). 

  

 

Figure 7. Molar fluctuations of Ca and Zr contents measured by EPMA analysis for (a) BCTZ4, 

(b) BCTZ5 and (c) BCTZ7 crystals extracted randomly in as-grown boules. 

 

 It has been observed that the amplitudes of these periodical fluctuations are ranged from ±0.5 

mol.% and raise up to ±5 mol.% for Zr and ±2 mol.% for Ca. The particular case of BCTZ6 single 

crystal is relevant of such fluctuations. BCTZ6 sample with (Ba0.905Ca0.095)(Ti0.943Zr0.057)O3 

average composition shows typical periodical Ca and Zr content fluctuations, with a wavelength 

about 1-1.5 mm, which evolve like waves in phase opposition (Figure 8).  
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Figure 8. Molar fluctuations of Ca and Zr contents in a single crystal grown from BCTZ6 solution. 

Crystal with (Ba0.905Ca0.095)(Ti0.943Zr0.057) average composition shows oscillations of Ca and Zr 

contents similar to phase opposition and features the presence of two solid solutions due to 

spinodal decomposition.  

 

That suggests strongly the existence of two solid solutions with extreme compositions 

corresponding to (Ba0.884Ca0.116)(Ti0.977Zr0.023)O3 and (Ba0.922Ca0.078)(Ti0.867Zr0.133)O3. As already 

observed in BaZrO3-CaZrO3 30 and BaTiO3-CaTiO3 24 systems from which the BCTZ solid 

solution derives, a miscibility gap allows for the coexistence of two solid solutions through a phase 

segregation mechanism. Investigated BCTZ compositions range exhibits the same trend where two 

Ca- and Zr-substituted BaTiO3 solid solutions are coexisting through a spinodal decomposition at 

high temperature. Such a phenomenon has not been observed in BCTZ ceramics of same 

compositions because the synthesis time and temperature (∼15H and 1350°C) 31 are drastically 

lower to those (∼ up to 2 weeks and 1570°C) of single crystal growths and prevent then the 

ceramics from phase separation. As the BCTZ compositional disorder implies Ca and Zr low 

amplitude concentrations fluctuations through the boules, the system becomes unstable at high 

temperature and finally decomposes. Hence, the spinodal demixion is favored by the resulting 
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continuous annealing of the already-as-grown crystal during the whole growth process. This out 

of equilibrium process leads to pseudo-periodic distribution of the precipitated phases when 

interrupted before end. This is similar in some respect to Ostwald ripening of precipitate particles 

but with uphill diffusion since the diffusion takes place against the concentration gradient.  

Since BCTZ6 samples exhibit an outstanding signature of a spinodal decomposition in BCTZ 

system through periodical fluctuation of their Zr and Ca contents, particular endeavors on XRD 

and dielectric measurements performed on (001)pc BCTZ6 samples are presented in the following. 

 

3.3 Rietveld analysis 

XRD patterns from BCTZ6 batch were recorded on powdered samples made from crushed single 

crystals. Owing to the strong segregation of elements during the growth, samples have been cut 

in as-grown boules in order to reach a relative composition accuracy about ±1.5 mol.% for Zr and 

±0.5 mol.% for Ca with average size of 5x2x0.5mm3. XRD patterns were obtained both on as-

grown and annealed samples of same composition (Figure 9). The annealing process was carried 

out at 1350°C for 500h in air atmosphere.  

As expected, XRD patterns evidences only perovskite phase without detection of any secondary 

phase. For both as-grown and annealed samples, the main peaks are splitted, indicating a non-

cubic symmetry: (00l)pc → (00l)tetra + (h00)tetra and (110)pc → (101)tetra + (110) tetra (see arrows on 

Figure 9b and c). In addition, the intensities and shape of diffraction peaks was changed by 

annealing process. 

This splitting of the main peaks could indicate a tetragonal symmetry, similar to the one of 

BaTiO3. The position of tetragonal peaks obtained by simulation of the diagram (P4mm space 

group) is reported in Figure 9. The refined lattice parameters are a = 3.993(8) Å, c = 4.019(8) Å 
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and c/a = 1.007, thus similar to the one of tetragonal BaTiO3 (a = 3.983 Å, c= 4.018 Å, c/a =1.009). 

However, these results clearly indicate that the splitting of the (111)pc peak is incompatible with 

the tetragonal symmetry (Figure 9c). Neither are the intensity ratio of the (00l) tetra / (h00) tetra / and 

(101) tetra / (110) tetra diffraction peaks. Indeed, this ratio would be around two for the P4mm space 

group because of multiplicity (Figure 9b and c for annealed powder). Taking into account the 

simultaneous splitting of the (100)pc and (111)pc, we also considered the orthorhombic Amm2 

structure of BaTiO3 (apc √2 x apc √2 x apc) alone and R3m structure of BaTiO3. Neither were the 

simulations successful for any single phase. (The results of these Rietveld refinements are 

included in supplementary materials). 

 

Figure 9. Patterns of as-grown and annealed BCTZ6 crushed single crystals. (a) Whole XRD 

pattern. (b) and (c) Details for selected peaks. The Miller indices are for the tetragonal phase. The 

arrows indicate the anomalies compared with the « pure » tetragonal phase. 
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Since the chemical analysis suggested the occurrence of two different compositions, we therefore 

considered the possibility of two simultaneous perovskite structures. Indeed, for the BCTZ 

compounds, Keeble et al.5 evidenced that a change of composition around the phase convergence 

region induces a symmetry change: Tetragonal P4mm → Orthorhombic Amm2 → rhombohedral 

R3m5. Thus, we considered the following possibilities: P4mm + P4mm, P4mm + R3m, P4mm + 

Amm2. The best results were obtained for the last combination. 

Therefore, Rietveld refinement was undertaken using the atomic positions and isotropic 

displacement parameters of the P4mm and Amm2 phases of BaTiO3. Indeed, this combination 

explains well the splitting of the (111)pc peak, the intensity ratio of the (00l)tetra / (h00)tetra peaks 

and the distortion of the (101)tetra / (110)tetra peaks. Unfortunately, attempts to refine 

simultaneously the A-site and B-site contents were unsuccessful. Therefore, last refinements were 

performed using the chemical compositions estimated from the EPMA results: 

(Ba0.884Ca0.116)(Ti0.977Zr0.023)O3 for the tetragonal phase and (Ba0.922Ca0.078)(Ti0.867Zr0.133)O3 for 

the orthorhombic one. The results are represented in Figure 10 and the parameters from the 

Rietveld refinement are reported in Table 2. This two-phase refinement clearly explains: (i) the 

splitting of the (00l)pc peaks and the enlargement of the (00l)tetra peaks, (ii) the enlargement of the 

(101)tetra peak for low angles side and (iii) the observed splitting of the (111)pc peak. We can 

conclude that the Rietveld refinements clearly corroborate the presence of two phases with 

perovskite structures.   
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Quality of fit  

Rp WRp GOF 

7.34 % 9.91 % 1.88 

Relative phase amounts in mass : 62.3 / 37.7 

Tetragonal phase (P4mm) 

a (Å) c (Å) c /a 

3.9921 4.0215 1.007 

 x y z Occupancy (%) Biso 

A-site 

(Ba/Ca) 
0 0 0 88.4 / 11.6 0.10 

B-site (Ti/Zr) 0.5 0.5 0.4876 97.7 / 2.3 0.10 

O 1 0.5 0.5 0.0237 100 0.10 

O 2 0.5 0 0.5163 100 0.10 

Quality of fit 

R(obs) WR(obs) 

4.48 % 5.28 % 

Orthorhombic phase (Amm2) 

a (Å) b (Å) c (Å) 

4.011 5.6850 (= 4.0199 x √2) 5.6744 (= 4.0124 x √2) 

 x y z Occupancy (%) Biso 

A-site 

(Ba/Ca) 
0 0 0 92.2 / 7.8 0.10 

B-site (Ti/Zr) 0.5 0 0.517 86.7 / 13.3 0.10 

O 3 0 0 0.4890 100 0.10 

O 4 0.5 0.256 0.234 100 0.10 

Quality of fit 

R(obs) WR(obs) 

3.80 % 4.82 % 

Table 2.   Results of the Rietveld refinements for BCTZ6. 
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Figure 10. Results of the Rietveld refinement for annealed BCTZ6 crushed single crystal, (a) 20-

90° pattern refinement fit using tetragonal P4mm + orthorhombic Amm2 structures, (b) and (c) 

details for selected peaks (the Miller indices are for tetragonal phase). 

 

3.4  Dielectric and electromechanical characterization 

Selected polycrystals displayed a rough textured structure with random orientation within 5° to 

10° of mismatch in between each grain orientation composing the samples. Single crystals with 

(001)pc and (110)pc direction were oriented and cut within 1° of accuracy.  Dielectric and 

piezoelectric characterization have been performed on samples originated from BCTZ4 to BCTZ6 

polycrystalline boules and from BCTZ6 and BCTZ7 single crystals with various compositions 

(Table 3). 
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Table 3. Dielectric and piezoelectric functional data measured at room temperature (RT) and 

electrical features of lead-based and lead-free reference materials. 

On the one hand, as a global tendency, electrical behaviors of the samples are in good agreement 

with literature about ceramics with close compositions32–37 and are of the same order of magnitude 

than standard PZT ceramics1 (Table 3). Decreasing Curie temperatures are observed with 

increasing Zr content until samples become relaxor because the long range ferroelectric order is 

disrupted at microscopic level with increasing Zr concentration38. All the samples show low 

electrical losses (tan δ). BCTZ4 polycrystal displayed a high d33= 496pC.N-1 similar to that of 

ceramics with close compositions10,32. Although piezoelectric coefficients d33 are higher than those 

previously reported in lead-free BCTZ single crystals13,39,40, they remain below the predicted 

ones10 and those of other lead-free systems9,41–43. This feature is mainly due to the fact that BCTZ 

polycrystals exhibit averaged properties compared to those of single crystals. Besides, owing to 

Attempt Type
Electrical 

behaviour
Chemical formula

Tmax or Tc   

(°C)
ε'

kt or kp 

(%)
d33 (pC.N

-1
) Tan δ (%) Reference

BCTZ 4 mm-sized polycrystal Relaxor (Ba0.874Ca0.126)(Ti0.794Zr0.206)O3 -90 3500 - - <1 This work

BCTZ 4 mm-sized polycrystal Ferroelectric (Ba0.816Ca0.184)(Ti0.928Zr0,072)O3 55 2444 58 457 <1 This work

BCTZ 4 mm-sized polycrystal Ferroelectric (Ba0.794Ca0.206)(Ti0.911Zr0.089)O3 57 2466 57 496 <1 This work

BCTZ 4 mm-sized polycrystal Ferroelectric (Ba0.823Ca0.177)(Ti0.865Zr0.135)O3 50 5450 X 125 1,52 This work

BCTZ 5 mm-sized polycrystal Ferroelectric (Ba0.784Ca0.216)(Ti0.966Zr0.034)O3 90 1009 44,7 190 <1 This work

BCTZ 6 mm-sized polycrystal Ferroelectric (Ba0.914Ca0.086)(Ti0.901Zr0.099)O3 105 3912 48 368 <1 This work

BCTZ 6 (001)pc single crystal n°1 Ferroelectric (Ba0.905Ca0.095)(Ti0.943Zr0.057)O3 108 1092 37,6 350 1,78 This work

BCTZ 6 (001)pc single crystal n°2 Ferroelectric (Ba0.905Ca0.095)(Ti0.943Zr0.057)O3 106 1541 24,5 345 1,89 This work

BCTZ 6 (001)pc single crystal n°3 Ferroelectric (Ba0.905Ca0.095)(Ti0.943Zr0.057)O3 106 987 45,5 340 1,71 This work

BCTZ 6 (110)pc single crystal n°4 Ferroelectric (Ba0.905Ca0.095)(Ti0.943Zr0.057)O3 106 1828 46,8 234 <1 This work

BCTZ 7 (001)pc single crystal Ferroelectric (Ba0.943Ca0.057)(Ti0.966Zr0.034)O3 111 1383 45,44 206 <1 This work

BCTZ 3 (001)pc single crystal Ferroelectric (Ba0.838Ca0.162)(Ti0.854Zr0.146)O3 64 - 0,18 93 - 12

- Ceramic Ferroelectric (Ba0.92Ca0.08)(Ti0.95Zr0.05)O3 110 - 48,6 360 - 37

- Ceramic Ferroelectric (Ba0.94Ca0.06)(Ti0.895Zr0.105)O3 92.4 - - 430 - 36

- Ceramic Ferroelectric (Ba0.90Ca0.10)(Ti0.90Zr0.10)O3 82.4 - 52,2 429 - 35

- Ceramic Ferroelectric (Ba0.875Ca0.125)(Ti0.90Zr0.10)O3 84.6 - 54,1 459 - 35

- Ceramic Ferroelectric (Ba0.825Ca0.175)(Ti0.90Zr0.10)O3 80.5 - 54,2 511 - 35

- Ceramic Ferroelectric (Ba0.85Ca0.15)(Ti0.88Zr0.12)O3 68.9 - 51,5 506 - 35

- (001)pc single crystal Ferroelectric (Ba0.798Ca0.202)(Ti0.994Zr0.006)O3 125 - - 232 - 40

- (001)pc single crystal Ferroelectric (Ba0.982Ca0.018)(Ti0.999Zr0.001)O3 120 - - 200 - 39

- Ceramic Ferroelectric (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 93 - - 620 - 10

- Ceramic Ferroelectric (Ba0.92Ca0.08)(Ti0.92Sn0.08)O3 RT - 60 550 - 42

- (001)pc single crystal Ferroelectric (K0.45Na0.55)0.96Li0.04NbO3 432 - - 689 - 43

- (001)pc single crystal Ferroelectric (K0.287Na0.691Li0.022)(Nb0.870Ta0.063Sb0.067)O3 279 - - 732 - 9

- Ceramic Ferroelectric PZT-5H 190 3400 75 590 2 1

- Ceramic Ferroelectric PZT-5A (soft) 365 1700 71 375 2 1

- Ceramic Ferroelectric PZT-8 (hard) 300 1000 64 225 0,4 1
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the difficulty to compare lead-free piezoelectric systems with each other, because different 

polarization mechanisms occur5,10,44,45, we assume that the domain configuration and size play an 

important role on the piezoelectric response as previously reported40,46. In addition, as suggested 

by Imura et al. 47 for BCT system, CaTiO3-like octahedral rotation may be constructed in the BCZT 

cell around the Ca atoms and may be the origin of the weak spontaneous polarization in BCTZ 

crystals and thus, of a weaker piezoelectric response than expected. Finally, minute composition 

changes4 as well as chemical fluctuations may induce a sharp decreasing of the piezoelectric 

performance. BCTZ crystals of the present work, in particular for BCTZ4 mm-sized polycrystals 

(see Table 3) that shows the best d33 and the closest composition to that of Liu et al.10 exhibit 

sufficient contents differences for lowering substantially the piezoelectric response that lie thus 

below the predicted value of 1500 pC.N-1. 

On the other hand, several BCTZ6 (001)pc oriented crystals with same average composition and 

one (110)pc oriented crystal display Tc near 106°C-108°C with d33 up to 350 pC.N-1 and a thickness 

coupling constant around kt=45%. Discrepancy of measured k33 is assumed to be induced by small 

dimension of the plate and chemical contents variation in the whole sample volume due to the 

effective segregation of elements as well as to the spinodal decomposition. 

Whether the samples were poled up to 1kV.mm-1 or not (Figure 11a and b), dielectric 

measurements performed on as-grown and annealed BCTZ6 single crystals show the same 

behaviour with a broadening of the low temperature Orthorhombic-Tetragonal (O-T) dielectric 

anomaly in the range [-40°C; 20°C] without change of the Tetragonal-Cubic (T-C) temperature. 

This latter anomaly exhibits symmetric transition whose the full width at half maximum tends to 

slightly diminish after annealing. As previously referenced, Ca cations in BCTZ system may 

behave as in (Ba1-xCax)TiO3 (BCT) system because of the same investigated Ca content range. Ca 
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content up to 20% in BCT solid solution keeps the Curie temperature unaffected48 compared to 

that of pure BaTiO3 whereas the other phase transition temperatures are substantially lowered with 

Ca content 49–51. Spinodal phase separation induced the broadening of the O-T anomaly which is 

actually composed of the two transition anomalies close to each other corresponding to the 

signature of each phase with different Ca content. Curie temperature at T-C phase transition is not 

impacted because of the same average Zr composition in the crystal sample. As suggested by 

previous works on relaxor-ferroelectric transition in lead-based materials52,53, the sharpening of 

the T-C anomaly after annealing is assumed to be caused by the lowering of the spatial disorder of 

cations within the BCTZ perovskite matrix. 

 

Figure 11. Relative permittivity as a function of temperature and frequencies for as-grown and 

annealed (001)pc (a) BCTZ6 unpoled sample and (b) poled sample (f= 1 kHz). Measurement has 

been performed during cooling down. Arrows in (a) indicate O-T anomalies. Insert: top: as-grown 

BCTZ6 single crystal; bottom: annealed BCTZ6 single crystal. 

 

Conclusion 

Crystal growth attempts in the BaTiO3-CaTiO3-BaZrO3 pseudo-ternary system by Top Seeded 

Solution Growth are reported. Centimeter sized single crystals were obtained. Numerous samples 
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with various compositions have been extracted and shaped in order to perform suitable chemical 

and physical analysis. EPMA analysis of BCTZ crystals revealed that the as-grown crystals are 

enriched with zirconium and barium compared to the initial content because of the difference of 

elemental effective partition coefficients in the crystal. 

Close to the composition range of interest for piezoelectric applications, we observed that a 

spinodal decomposition occurred during the growth leading thus to the emergence of two solid 

solutions of close compositions with tetragonal P4mm and orthorhombic Amm2 space groups. 

Although variations and periodical fluctuations of Ca and Zr induce lower piezoelectric values 

than those expected, this result could be considered as a first step toward further optimization of 

the piezoelectric properties of BCTZ single crystals. Fluctuating concentrations could induce a 

higher polarization flexibility and thus a better piezoelectric response. For instance, an excellent 

piezoelectric constants d33 up to 496 pC.N-1 with kt= 58% by the Berlincourt method was obtained 

in (Ba0.794Ca0.206)(Ti0.911Zr0.089)O3 polycrystalline BCTZ with mm-sized grains.  

Since dielectric losses are low, further attempts at growing BCTZ by decreasing the Zr and Ca 

contents which are likely to be detrimental to the Curie temperature will enable to reach efficient 

piezoelectric constant with a high Curie temperature making BCTZ a promising competitor to 

lead-based materials.  

 

Acknowledgement 

The authors acknowledge ANR program through HECATE project (n°14-CE07-0028) and the 

Innovative Training Networks (ITN) - Marie Skłodowska-Curie Actions - European Joint 

Doctorate in Functionnal Materials Research (EJDFunMat) project (n°641640) for financial and 

technical supports. 



 27

References 

(1)  Shrout, T. R.; Zhang, S. J. Lead-Free Piezoelectric Ceramics: Alternatives for PZT? J. 

Electroceramics 2007, 19, 111–124. 

(2)  Zhang, S.; Xia, R.; Shrout, T. R. Lead-Free Piezoelectric Ceramics vs. PZT? J. 

Electroceramics 2007, 19, 251–257. 

(3)  Rödel, J.; Jo, W.; Seifert, K. T. P.; Anton, E. M.; Granzow, T.; Damjanovic, D. Perspective 

on the Development of Lead-Free Piezoceramics. J. Am. Ceram. Soc. 2009, 92, 1153–1177. 

(4)  Prakasam, M.; Veber, P.; Viraphong, O.; Etienne, L.; Lahaye, M.; Pechev, S.; Lebraud, E.; 

Shimamura, K.; Maglione, M. Growth and Characterizations of Lead-Free Ferroelectric 

KNN-Based Crystals. Comptes Rendus Phys. 2013, 14, 133–140. 

(5)  Keeble, D. S.; Benabdallah, F.; Thomas, P. A.; Maglione, M.; Kreisel, J. Revised Structural 

Phase Diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3). Appl. Phys. Lett. 2013, 102, 092903. 

(6)  Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G. A.; Rödel, J. 

BaTiO3-Based Piezoelectrics: Fundamentals, Current Status, and Perspectives. Appl. Phys. 

Rev. 2017, 4, 041305. 

(7)  Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; 

Nakamura, M. Lead-Free Piezoceramics. Nature 2004, 432, 84–87. 

(8)  Liu, H.; Koruza, J.; Veber, P.; Rytz, D.; Maglione, M.; Rödel, J. Orientation-Dependent 

Electromechanical Properties of Mn-Doped (Li,Na,K)(Nb,Ta)O3 Single Crystals. Appl. 

Phys. Lett. 2016, 109, 152902. 

(9)  Liu, H.; Veber, P.; Rödel, J.; Rytz, D.; Fabritchnyi, P. B.; Afanasov, M. I.; Patterson, E. A.; 

Frömling, T.; Maglione, M.; Koruza, J. High-Performance Piezoelectric 



 28

(K,Na,Li)(Nb,Ta,Sb)O3 Single Crystals by Oxygen Annealing. Acta Mater. 2018, 148, 499–

507. 

(10)  Liu, W.; Ren, X. Large Piezoelectric Effect in Pb-Free Ceramics. Phys. Rev. Lett. 2009, 

103, 257602. 

(11)  Nahas, Y.; Akbarzadeh, A.; Prokhorenko, S.; Prosandeev, S.; Walter, R.; Kornev, I.; 

Íñiguez, J.; Bellaiche, L. Microscopic Origins of the Large Piezoelectricity of Lead-free 

(Ba,Ca)(Zr,Ti)O3. Nat. Commun. 2017, 8, 1. 

(12)  Benabdallah, F.; Veber, P.; Prakasam, M.; Viraphong, O.; Shimamura, K.; Maglione, M. 

Continuous Cross-over from Ferroelectric to Relaxor State and Piezoelectric Properties of 

BaTiO3-BaZrO3-CaTiO3 Single Crystals. J. Appl. Phys. 2014, 115, 144102. 

(13)  Veber, P.; Benabdallah, F.; Liu, H.; Buse, G.; Josse, M.; Maglione, M. Growth and 

Characterization of Lead-Free Piezoelectric Single Crystals. Materials (Basel). 2015, 8, 

7962–7978. 

(14)  ANSI/IEEE Std 176-1987. An American National Standard IEEE-Standard on 

Piezoelectricity. The Institute of Electrical and Electronics Engineers 1988. 

(15)  Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic Computing System JANA2006: 

General Features. Zeitschrift für Krist. 2014, 229, 345–352. 

(16)  BaTiO3 Crystal Structure, Lattice Parameters. In Ternary Compounds, Organic 

Semiconductors; Madelung, O., Rössler, U., Schulz, M., Eds.; Springer Berlin Heidelberg: 

Berlin, Heidelberg, 2000; pp 1–6. 

(17)  Glaister, R. M.; Kay, H. F. An Investigation of the Cubic-Hexagonal Transition in Barium 

Titanate. Proc. Phys. Soc. 1960, 76, 763–771. 



 29

(18)  Basmajian, J. A.; Devries, R. C. Phase Equilibria in the System BaTiO3-SrTiO3. J. Am. 

Ceram. Soc. 1957, 40, 373–376. 

(19)  Ceh, M.; Kolar, D.; Golic, L. The Phase Diagram of CaTiO3-SrTiO3. J. Solid State Chem. 

1987, 68, 68–72. 

(20)  Redfern, S. A. T. High-Temperature Structural Phase Transitions in Perovskite (CaTiO3). 

J. Phys. Condens. Matter 1996, 8, 8267–8275. 

(21)  Guennou, M.; Bouvier, P.; Krikler, B.; Kreisel, J.; Haumont, R.; Garbarino, G. High-

Pressure Investigation of CaTiO3 up to 60 GPa Using x-Ray Diffraction and Raman 

Spectroscopy. Phys. Rev. B - Condens. Matter Mater. Phys. 2010, 82, 1–10. 

(22)  Jiang, Y. J.; Guo, R. Y.; Bhalla,  a S. Growth and Properties of CaTiO3 Single Crystal 

Fibers. J. Electroceramics 1998, 2, 199–203. 

(23)  Yamashita, Y.; Ichinose, N. Can Relaxor Piezoelectric Materials Outperform 

PZT?(Review). In Applications of Ferroelectrics, 1996. ISAF ’96., Proceedings of the Tenth 

IEEE International Symposium on; 1996; pp 71–78. 

(24)  Devries, R. C.; Roy, R. Phase Equilibria in the System BaTiO3-CaTiO3. J. Am. Soc. 1955, 

38, 158–171. 

(25)  Halvorson, J. J.; Wimber, R. T. Thermal Expansion of Iridium at High Temperatures. J. 

Appl. Crystallogr. 1972, 43, 2519. 

(26)  He, Y. Heat Capacity , Thermal Conductivity , and Thermal Expansion of Barium Titanate-

Based Ceramics. Thermochim. Acta 2004, 419, 135–141. 

(27)  Schwabe, D.; Uecker, R.; Bernhagen, M.; Galazka, Z. An Analysis of and a Model for Spiral 

Growth of Czochralski-Grown Oxide Crystals with High Melting Point. J. Cryst. Growth 



 30

2011, 335, 138–147. 

(28)  Guguschev, C.; Kok, D. J.; Galazka, Z.; Klimm, D.; Uecker, R.; Bertram, R.; Naumann, M.; 

Juda, U.; Kwasniewski, A.; Bickermann, M. Influence of Oxygen Partial Pressure on 

SrTiO3 Bulk Crystal Growth from Non-Stoichiometric Melts. CrystEngComm 2015, 17, 

3224–3234. 

(29)  Jackson, K. A. Kinetics Processes: Crystal Growth, Diffusion, and Phase Transitions in 

Materials; WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004. 

(30)  Levin, I.; Amos, T. G.; Bell, S. M.; Farber, L.; Vanderah, T. A.; Roth, R. S.; Toby, B. H. 

Phase Equilibria, Crystal Structures, and Dielectric Anomaly in the BaZrO3-CaZrO3 

System. J. Solid State Chem. 2003, 175, 170–181. 

(31)  Benabdallah, F.; Simon, A.; Khemakhem, H.; Elissalde, C.; Maglione, M. Linking Large 

Piezoelectric Coefficients to Highly Flexible Polarization of Lead Free BaTiO3-CaTiO3-

BaZrO3 Ceramics. J. Appl. Phys. 2011, 109, 124116. 

(32)  Ravez, J.; Broustera, C.; Simon, A. Lead-Free Ferroelectric Relaxor Ceramics in the 

BaTiO3-BaZrO3-CaTiO3 System. J. Mater. Chem. 1999, 9, 1609–1613. 

(33)  Simon, A.; Ravez, J.; Maglione, M. Relaxor Properties of Ba0.9Bi0.067(Ti1−xZrx)O3 Ceramics. 

Solid State Sci. 2005, 7, 925–930. 

(34)  Zeng, Y.; Zheng, Y.; Tu, X.; Lu, Z.; Shi, E. Growth and Characterization of Lead-Free 

Ba(1−x)CaxTi(1−y)ZryO3 Single Crystal. J. Cryst. Growth 2012, 343, 17–20. 

(35)  Tian, Y.; Wei, L.; Chao, X.; Liu, Z.; Yang, Z. Phase Transition Behavior and Large 

Piezoelectricity Near the Morphotropic Phase Boundary of Lead-Free 

(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Ceramics. J. Am. Ceram. Soc. 2013, 96, 496–502. 



 31

(36)  Bao, H.; Zhou, C.; Xue, D.; Gao, J.; Ren, X. A Modified Lead-Free Piezoelectric BZT– x 

BCT System with Higher T C. J. Phys. D. Appl. Phys. 2010, 43, 465401. 

(37)  Li, W.; Xu, Z.; Chu, R.; Fu, P.; Zang, G. Piezoelectric and Dielectric Properties of (Ba1-

xCax)(Ti0.95Zr0.05)O3 Lead-Free Ceramics. J. Am. Ceram. Soc. 2010, 93, 2942–2944. 

(38)  Buscaglia, V.; Tripathi, S.; Petkov, V.; Dapiaggi, M.; Deluca, M.; Gajović, A.; Ren, Y. 

Average and Local Atomic-Scale Structure in BaZrxTi1-xO3 (x = 0.10, 0.20, 0.40) Ceramics 

by High-Energy x-Ray Diffraction and Raman Spectroscopy. J. Phys. Condens. Matter 

2014, 26, 065901. 

(39)  Sun, Y.; Liu, D.; Li, Q.; Shim, J.; He, W.; Fang, H.; Yan, Q. Piezoelectric Property of a 

Tetragonal (Ba,Ca)(Zr,Ti)O3 Single Crystal and Its Fine-Domain Structure. ACS Appl. 

Mater. Interfaces 2018, 10, 12847−12853. 

(40)  Liu, D.; Shim, J.; Sun, Y.; Li, Q.; Yan, Q. Growth of Ca, Zr Co-Doped BaTiO3 Lead-Free 

Ferroelectric Single Crystal and Its Room-Temperature Piezoelectricity. AIP Adv. 2017, 7, 

095311. 

(41)  Zhu, L.-F.; Zhang, B.-P.; Zhao, L.; Li, S.; Zhou, Y.; Shi, X.-C.; Wang, N. Large 

Piezoelectric Effect of (Ba,Ca)TiO3–xBa(Sn,Ti)O3 Lead-Free Ceramics. J. Eur. Ceram. 

Soc. 2016, 36, 1017–1024. 

(42)  Yang, Y.; Zhou, Y.; Ren, J.; Zheng, Q.; Lam, K. H.; Lin, D. Phase Coexistence and Large 

Piezoelectricity in BaTiO3-CaSnO3 Lead-Free Ceramics. J. Am. Ceram. Soc. 2018, 101, 

2594–2605. 

(43)  Yang, J.; Zhang, F.; Yang, Q.; Liu, Z.; Li, Y.; Liu, Y.; Zhang, Q. Large Piezoelectric 

Properties in KNN-Based Lead-Free Single Crystals Grown by a Seed-Free Solid-State 



 32

Crystal Growth Method. Appl. Phys. Lett. 2016, 108, 182904. 

(44)  Damjanovic, D. A Morphotropic Phase Boundary System Based on Polarization Rotation 

and Polarization Extension. Appl. Phys. Lett. 2010, 97, 062906. 

(45)  Tian, H.; Meng, X.; Hu, C.; Tan, P.; Cao, X.; Shi, G.; Zhou, Z.; Zhang, R. Origin of Giant 

Piezoelectric Effect in Lead-Free K1−xNaxTa1−yNbyO3 Single Crystals. Sci. Rep. 2016, 6, 

25637. 

(46)  Liu, H.; Veber, P.; Zintler, A.; Molina-Luna, L.; Rytz, D.; Maglione, M.; Koruza, J. 

Temperature-Dependent Evolution of Crystallographic and Domain Structures in 

(K,Na,Li)(Ta,Nb)O3 Piezoelectric Single Crystals. IEEE Trans. Ultrason. Ferroelectr. 

Freq. Control, 2018, 65, 1508-1516. 

(47)  Imura, R.; Kitanaka, Y.; Oguchi, T.; Noguchi, Y.; Miyayama, M. Polarization Properties 

and Crystal Structures of Ferroelectric (Ba,Ca)TiO3 Single Crystals. J. Adv. Dielectr. 2014, 

4, 1450003. 

(48)  Levin, I.; Krayzman, V.; Woicik, J. C. Local-Structure Origins of the Sustained Curie 

Temperature in (Ba,Ca)TiO3 Ferroelectrics. Appl. Phys. Lett. 2013, 102, 1–6. 

(49)  Fu, D.; Itoh, M.; Koshihara, S. Crystal Growth and Piezoelectricity of BaTiO3-CaTiO3 Solid 

Solution. Appl. Phys. Lett. 2008, 93, 012904. 

(50)  Fu, D.; Itoh, M.; Koshihara, S.; Kosugi, T.; Tsuneyuki, S. Anomalous Phase Diagram of 

Ferroelectric (Ba,Ca)TiO3 Single Crystals with Giant Electromechanical Response. Phys. 

Rev. Lett. 2008, 100, 227601. 

(51)  Mitsui, T.; Westphal, W. B. Dielectric and X-Rays Studies of CaxBa1-xTiO3 and CaxSr1-

xTiO3. Phys. Rev. 1961, 124, 1354–1359. 



 33

(52)  Bidault, O.; Perrin, C.; Caranoni, C.; Menguy, N. Chemical Order Influence on the Phase 

Transition in the Relaxor Pb(Sc1/2Nb1/2)O3. J. Appl. Phys. 2001, 90, 4115–4121. 

(53)  Chu, F.; Setter, N.; Tagantsev, A. K. The Spontaneous Relaxor-Ferroelectric Transition of 

Pb(Sc0.5Ta0.5)O3. J. Appl. Phys. 1993, 74, 5129–5134. 

 


