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Abstract
Complexity bounds for many problems about matrices with uni-

variate polynomial entries have been improved in the last few years.

Still, for most recent algorithms, efficient implementations are not

yet available. This leaves open the question of the practical impact

of these algorithms on potential applications, which include decod-

ing some error-correcting codes and solving polynomial systems

or structured linear systems.

In this paper, we describe the implementation of some of themost

fundamental algorithms for polynomial matrices: multiplication,

truncated inversion, approximants, interpolants, kernels, linear

system solving, and determinant. Our work currently focuses on

prime fields with a word-size modulus and is based on Shoup’s C++

library NTL. We combine these new tools to implement variants

of Villard’s recent algorithm for the resultant of generic bivariate

polynomials (ISSAC 2018), and exhibit parameter ranges for which

they outperform previous state of the art.

CCS Concepts
• Mathematics of computing → Computations on matrices;
Computations on polynomials; •Computingmethodologies
→ Algebraic algorithms.

Keywords
Polynomial matrices, algorithms, implementation, resultant.

1 Introduction
Recent years have witnessed a host of activity on fast algorithms for

polynomial matrices and their applications. Consider for example

the following contributions from the last 10 years (hereafter, K is a

field and K[x] is the algebra of univariate polynomials over K):
• Minimal approximant bases [17, 57] were used to compute

kernel bases [58], giving the first efficient deterministic al-

gorithm for linear system solving over K[x].
• Basis reduction [17, 19] played a key role in accelerating the

decoding of one-point Hermitian codes [39] and in designing

deterministic determinant and Hermite form algorithms [33].

• Progress on minimal interpolant bases [26, 27] led to the best

known complexity bound for list-decoding Reed-Solomon

codes and folded Reed-Solomon codes [27, Sec. 2.4 to 2.7].

• Coppersmith’s block Wiedemann algorithm and its exten-

sions [8, 30, 52] were used in a variety of contexts, from inte-

ger factorization [48] to polynomial system solving [25, 53].

At the core of these improvements, in addition to the algorithms

explicitly mentioned, one also finds techniques such as high-order

lifting [45] and partial linearization [46],[19, Sec. 6].

For many of these operations, no implementation of the latest

algorithms is available and no experimental evidence has been given

regarding their practical behavior. Our goal is to partly remedy this

issue, by providing implementations for a core of fundamental

algorithms such as polynomial matrix multiplication, approximant

and interpolant bases, etc., upon which one may implement higher

level algorithms. As an illustration, we describe the performance

of slightly modified versions of Villard’s recent breakthroughs on

bivariate resultant and characteristic polynomial computation [53].

Our implementation is based on Shoup’s Number Theory Li-

brary (NTL) [44], and is dedicated to polynomial matrix arithmetic

over K = Fp for a word-size prime p. Particular attention was

paid to performance issues, so that our library compares favorably

with previous work for those operations where comparisons were

possible. Our code is available at https://github.com/vneiger/pml.

Overview. Basic ingredients for polynomial matrix algorithms

are efficient arithmetic in K[x] and efficient matrix arithmetic over

K; in Section 2, we review some related algorithms and discuss their

NTL implementations. Then, we describe how we implemented a

further key building block, polynomial matrix multiplication.

Section 3 presents the next major part of our work, concerning

algorithms for approximant bases and interpolant bases. Algorithms

for the former are well-known [2, 17, 28, 57], and the latter were

studied in [3, 26, 27, 51]; we focus here on a version of interpolants

which is slightly less general but allows for a simpler and more

efficient algorithm. In particular, we show that with this version,

algorithms for interpolant bases can be as efficient or even faster

than those for approximant bases, and that both can be used inter-

changeably in several contexts. In Section 4, we discuss algorithms

for minimal kernel bases, linear system solving, determinant, and

row reduction. Finally, Section 5 uses several of these tools to study

the practical behavior of Villard’s bivariate resultant algorithm [53].

To describe the cost of these algorithms, we use an algebraic

complexity model, counting all operations in the base field at unit

cost. While standard, this point of view fails to describe some parts

of the implementation (Chinese Remaindering-based algorithms,

such as the so-called 3-primes FFT, cannot be described in such a

manner), but we believe that this is a minor issue.

Implementation choices. NTL is a C++ library for polynomial

and matrix arithmetic over rings such as Z, Z/nZ, etc., and is often

seen as the de facto reference point for fast algorithms in such con-

texts. In our case, other libraries could serve as a starting point, a

natural choice being the combination of FFLAS-FFPACK [12, 49] and

LinBox [50]. While NTL offers an extensive array of algorithms for

polynomials, together with some linear algebra operations (such as

matrix multiplication and Gaussian elimination over prime fields),
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FFLAS-FFPACK implements a large variety of linear algebra algo-

rithms over finite fields and LinBox includes polynomial matrix

multiplication and approximant bases. Deciding factors were the

availability of many polynomial operations in NTL such as fast

extended GCD and fast modular computations when the same mod-

ulus is used multiple times; the fact that NTL offers native support

for FFT primes up to 60 bits; and, above all, our goal to implement

recent resultant algorithms and compare their performance to the

state of the art, which happens to be NTL’s built-in routines.

In our implementation, the base field is a prime finite field Fp ;
we rely on NTL’s lzz_p class. At the time of writing, on standard

x86_64 platforms, NTL v11.3.1 uses unsigned long’s as its primary

data type for lzz_p, supporting moduli up to 60 bits long.

For such fields, one can directly compare performance timings

and cost bounds, since most polynomial matrix algorithms in the

literature are analyzed in the algebraic complexity model. Further-

more, computing modulo primes is at the core of a general approach

consisting in solving problems over Z or Q by means of reduction

modulo sufficiently many primes. In this case, the primes are chosen

so as to satisfy several, partly conflicting, objectives. We may want

them to support Fourier Transforms of high orders. Linear algebra

modulo each prime should be fast, so we may wish these primes

to be small enough to support vectorized matrix arithmetic (for

example with AVX instructions). On the other hand, using larger

primes makes it possible to use fewer of them; also, for randomized

algorithms, this reduces the likelihood of unlucky choices.

As a result, while all NTL lzz_p moduli are supported, our im-

plementation puts an emphasis on three families: small FFT primes

that support AVX-based matrix multiplication (such primes have at

most 23 bits); arbitrary size FFT primes (at most 60 bits); arbitrary

moduli (at most 60 bits). Very small fields such as F2 or F3 are

supported, but no particular effort was made to optimize the imple-

mentation for such cases (for instance, NTL provides a dedicated

class for arithmetic over F2, but we currently do not exploit it).

Experiments. All runtimes below are in seconds and were mea-

sured on an Intel Core i7-4790 CPU with 32GB RAM, using the ver-

sion 11.3.1 of NTL. Unless specified otherwise, timings are obtained

modulo a random 60 bit prime. Runtimes were measured on a single

thread; currently, most parts of our code do not explicitly exploit

multi-threading. Since most algorithms have two or more input

parameters, we do not give plots but tables showing a few selected

timings, with the best time(s) in bold; for more timings we refer the

reader to https://github.com/vneiger/pml/tree/master/benchmarks.

2 Basic polynomial and matrix arithmetic
We review basic algorithms for polynomials and matrices, and

related complexity results that hold over an abstract field K, and
we describe how we implemented these operations. Hereafter, for

d ≥ 0, K[x]d is the set of elements of K[x] of degree less than d .

2.1. Polynomial multiplication. Multiplication in K[x] and
Fast Fourier Transform (FFT) are cornerstones of most algorithms

in this paper. LetM : N→ N be a function such that polynomials of

degree at most d in K[x] can be multiplied inM(d) operations in K.
If K supports FFT, we can takeM(d) ∈ O(d log(d)), and otherwise,

M(d) ∈ O(d log(d) log log(d)) [13, Chapter 8]; as in this reference,

we assume that d 7→ M(d)/d is increasing.

A useful variant of multiplication in K[x] is the middle product
[5, 20]: for integers c and d , and F in K[x]c and G in K[x]c+d ,
MiddleProduct(F ,G, c,d) returns the slice with coefficients of

degrees c, . . . , c + d − 1 of the product FG; a common case is with

c = d . The direct approach computes the whole product and extracts

the slice. Yet, the transposition principle [31] shows that the middle

product can be computed in timeM(c,d)+O(c+d), saving a constant
factor (roughly a factor 2 when c = d , if FFT multiplication is used).

Polynomial matrix algorithms frequently use fast evaluation and

interpolation at multiple points. In general, subproduct tree tech-

niques [13, Chapter 10] allow one to do evaluation and interpolation

of polynomials in K[x]d at d points in O(M(d) log(d)) operations.
For special sets of points, one can do better: if we know α in K of

order at least d , then evaluation and interpolation at the geometric

progression (1,α , . . . ,αd−1) can both be done in time O(M(d)) [6].
In NTL, multiplication in Fp [x] uses either naive, Karatsuba, or

FFT techniques, depending on p and on the degree (NTL provides

FFT primes with roots of unity of order 2
25
, and supports arbitrary

user-chosen FFT primes). FFT multiplication uses the TFT algo-

rithm of [21] and Harvey’s improvements on arithmetic mod p [22].

For primes p that do not support Fourier transforms, multiplication

is done by means of either 3-primes FFT techniques [13, Chapter 8]

or Schönhage and Strassen’s algorithm. We implemented middle

products for naive, Karatsuba and FFT multiplication, closely fol-

lowing [5, 20], as well as evaluation/interpolation algorithms for

general sets of points and for geometric progressions.

2.2. Matrix multiplication. For cost analyses, let ω be such

that n × n matrices over any ring can be multiplied by a bilinear

algorithm doing O(nω ) ring operations. The naive algorithm does

exactlyn3
multiplications. First improvements due toWinograd and

Waksman [54, 55] reduced the number of operations ton3/2+O(n2)

if 2 is a unit. Strassen’s andWinograd’s recursive algorithms [47, 56]

have ω = log
2
(7); the best known bound is ω ≤ 2.373 [9, 34]. Note

that, using blocking, rectangular matrices of sizes (m×n) and (n×p)
can be multiplied in O(mnp min(m,n,p)ω−3) ring operations.

Unlike libraries such as FFLAS-FFPACK whose matrix multipli-

cation relies on an external BLAS library, NTL implements its own

arithmetic for matrices over Fp . It chooses one of several imple-

mentations depending on the bitsize of p, the matrix dimensions,

the available processor instructions, etc. On our platforms, for di-

mensions up to a few thousands, timings for matrix multiplication

are very close between NTL and FFLAS for primes of bitsize about

20, while NTL is slightly faster for primes of bitsize closer to 60.

2.3. Polynomial matrixmultiplication. In what follows, we

writeMM(n,d) for a function such that two n×nmatrices of degree

at most d can be multiplied in MM(n,d) operations in K; we make

the assumption that d 7→ MM(n,d)/d is increasing for all n.
It follows from the definitions above thatMM(n,d) ∈ O(nωM(d)),

which is in O˜(nωd). Yet, better bounds onMM(n,d) are known:
• O(nωd log(d) + n2d log(d) log(log(d))) for any field K [7];

• O(nωd4
log
∗(d ) + n2d log(d)8log

∗(d )) if K is finite [23, Sec. 8];

• O(nωd + n2M(d)) if an element α in K of order more than

2d is known [6, Thm. 2.4].

• O(nωd + n2d log(d)) if K supports FFT in degree 2d .
The last two bounds are obtained by evaluation/interpolation, either

at the geometric progression 1,α , . . . ,α2d
or at roots of unity.
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Finally, we mention a polynomial analogue of an integer matrix

multiplication algorithm due to Doliskani et al. [11]. It is also based
on evaluation/interpolation, but these are done by plain multiplica-

tion by Vandermonde and inverse Vandermonde matrices. Then,

the corresponding part of the cost (e.g. O(n2M(d)) for geometric

progressions) is replaced by the cost of multiplying matrices over

K in sizes roughly (d ×d) by (d ×n2); this is inO(n2dω−1) if d ≤ n2
.

For moderate values of d , where M(d) is not in the FFT regime yet,

this allows us to leverage fast matrix multiplication over K.
We implemented and compared various algorithms for matrix

multiplication over Fp [x]. For matrices of degree less than 5, we

use dedicated routines based on Karatsuba’s and Montgomery’s

formulas [36]; for matrices of small size (up to 10, depending on p),
we use Waksman’s algorithm. For other inputs, most of our efforts

were spent on variants of the evaluation/interpolation scheme.

For FFT primes, we use evaluation/interpolation at roots of unity.

For general primes, we use either evaluation/interpolation at geo-

metric progressions (if such points exist in Fp ), or our adaptation
of the algorithm of [11], or 3-primes multiplication (as for poly-

nomials, we lift the product from Fp [x] to Z[x], where it is done
modulo up to 3 FFT primes). No single variant outperformed or un-

derperformed all others for all sizes and degrees, so thresholds were

experimentally determined to switch between these options, with

different values for small (less than 23 bits) and for large primes.

Middle product versions of these algorithms were implemented,

and are used in approximant basis algorithms (Section 3.1) and

Newton iteration (Section 4.3). Multiplier classes are available, that

store values of a matrix A for cases where repeated multiplications

by A are needed; they are used in Dixon’s algorithm for linear

system solving (Section 4.3).

Finally, in Table 1, we show timings for our polynomial matrix

multiplication and LinBox’ one. We used randomm ×m matrices

of degree d , with p either a 20 bit FFT prime or a 60 bit prime. For

the 20 bit FFT prime, LinBox’ implementation slightly outperforms

ours for matrices of dimension about 20 and more; in all other cases,

the timings are either similar or in favor of our implementation.

Table 1: Polynomial matrix multiplication
20 bit FFT prime 60 bit prime

m d ours Linbox ratio ours Linbox ratio

8 131072 1.098 1.510 0.73 3.577 13.59 0.26

32 4096 0.604 0.492 1.22 2.000 5.330 0.38

128 1024 2.69 1.973 1.36 15.73 23.13 0.68

512 128 6.085 4.006 1.52 41.57 50.62 0.82

3 Approximant bases and interpolant bases
These bases are matrix generalizations of Padé approximation and

play an important role in many higher-level algorithms. For F in

K[x]m×n andM non-constant in K[x], they are bases of the K[x]-
moduleAM (F) of allp inK[x]1×m such thatpF = 0 mod M . Specif-

ically, approximant bases are forM = xd and interpolant bases for
M =

∏
i (x − αi ) for d distinct points α1, . . . ,αd in K. (Here, we do

not consider more general cases from the literature, for example

with several moduliM1, . . . ,Mn , one for each column of pF.)
Since AM (F) is free of rankm, such a basis is represented row-

wise by a nonsingular P in K[x]m×m . The algorithms below return

P in s-ordered weak Popov form (also known as s-quasi Popov form

[4]), for a given shift s = (s1, . . . , sm ) in Z
m
. Shifts allow us to

set degree constraints on the sought basis P, and they inherently

occur in a general approach for computing bases of solutions to

equations (approximants, interpolants, kernels, etc.). Approximant

basis algorithms often require P to be in s-reduced form [51]; al-

though the s-ordered weak Popov form is stronger, obtaining it

involves minor changes in these algorithms, without impact on

performance according to our experiments. Besides, recent litera-

ture shows that having P in this stronger form yields information

(via the pivots) which is valuable for further computations with P
[26, 28], in particular for finding bases in s-Popov form [4].

From the shift s , the s-degree of p = [pi ]i ∈ K[x]1×m is defined

as rdegs (p) = max1≤i≤m (deg(pi ) + si ), which extends to matrices:

rdegs (P) is the list of s-degrees of the rows of P. Then, the s-pivot
of p is its rightmost entry pi such that rdegs (p) = deg(pi ) + si ,
and a nonsingular matrix P is in s-ordered weak Popov form if the

s-pivots of its rows are located on the diagonal.

To simplify cost bounds below, we make use of the function

MM′(m,d) =
∑

log
2
(d )

i=0

2
iMM(m,d/2i ),

which is in O(MM(m,d) log(d)), and thus in O˜(mωd).

3.1. Approximant bases. As written above, for F in K[x]m×n

and d in Z>0, an approximant basis for (F,d) is a nonsingularm×m
matrix whose rows form a basis of Axd (F).

We implemented minor variants of the algorithmsM-Basis (iter-

ative, via matrix multiplication) and PM-Basis (divide and conquer,

via polynomial matrix multiplication) from [17]. The lowest-level

function,M-Basis-1, handles order d = 1 in timeO(rank(F)ω−2mn);
here, since we work modulo x , the matrix F is over K. Our imple-

mentation follows [28, Algo. 1], which has the following signature.

Algorithm 1: M-Basis-1(F, s)
Input: matrix F in Km×n , shift s in Zm

Output: the s-Popov approximant basis for (F, 1)

We chose this version rather than those in [17, 18] because its

output is in s-ordered weak Popov form, only at the price of an

additional row permutation. This property suffices to ensure that

M-Basis and PM-Basis return bases in this form as well.

In our implementation, the matrix L in [28, Algo. 1] is directly

obtained from NTL’s Gaussian elimination. In most cases we call it

once (via the kernel function), yet for some rare “bad” inputs we

use a second call (via the image function) to ensure that L has the

required echelon form. This minor issue is because NTL does not

provide matrix decompositions such as LSP or PLUQ; here, relying

on FFPACK may prove valuable, at least for small primes p.
Our implementation of M-Basis follows the original design [17]

(see also [18, Sec. 3.2]), with d iterations, each computing the so-

called residual R and updating P via multiplication by a basis Q
obtained by M-Basis-1 on R. We also follow [17] for PM-Basis,

using a threshold T such that M-Basis is called for orders d ≤ T .
Building PM-Basis directly upon M-Basis-1, i.e. choosing T = 1,

achieves the same asymptotic cost bound but is slower in practice.

The cost of M-Basis isO((mω +mω−1n)d2) operations in K and

that of PM-Basis isO((1+n/m)MM′(m,d)) [17]. These algorithms
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Input: matrix F in K[x]m×n , order d in Z>0, shift s in Zm

Output: an s-ordered weak Popov approximant basis for (F,d)

Algorithm 2: M-Basis(F,d, s)
1. P← identity matrix in K[x]m×m , and t ← copy of s
2. For k = 0, . . . ,d − 1:

a. R ∈ Km×n ← coefficient of PF of degree k
b. Q ∈ K[x]m×m ← M-Basis-1(R, t)
c. P← QP, and then t ← rdegs (P)

Algorithm 3: PM-Basis(F,d, s)
1. if d ≤ T returnM-Basis(F,d, s)
2. P1 ← PM-Basis(F mod x ⌈d/2⌉ , ⌈d/2⌉, s)
3. R← MiddleProduct(P1, F, ⌈d/2⌉, ⌊d/2⌋)
4. t ← rdegs (P1)

5. P2 ← PM-Basis(R, ⌊d/2⌋, t)
6. return P2P1

form the bulk of the approximant bases algorithmswe implemented;

some implementation details and timings are given in Section 3.2.

We also implemented [28, Algo. 3] which returns s-Popov bases

at the price of a factor about 2 in performance. Future work includes

making this overhead negligible for cases that arise in applications.

For completeness, we handle general approximants with several

moduli (one per column of F) by an iterative algorithm from [2, 51];

faster algorithms are more complex [26–28] and involve partial

linearization techniques.

These techniques were introduced in [46, 57] to obtain faster

algorithms when n ≪m, with costO˜(mω−1nd) instead ofO˜(mωd)
achieved by PM-Basis. Implementing these techniques is work in

progress and can bring substantial improvements. Experimental

code, which focuses for simplicity on “generic” inputs for which the

degrees in P can be predicted, led to significant speedups (Table 2).

Table 2: Accelerating n = 1 using partial linearization
m d PM-Basis PM-Basis with linearization

4 65536 1.6693 1.26891
16 16384 1.8535 0.89652
64 2048 2.2865 0.14362
256 1024 36.620 0.20660

In Table 3, we compare timings for LinBox’ and our implementa-

tions of PM-Basis, for a 20 bit FFT prime. In this case ours has a

moderate advantage; for large primes and general primes LinBox

was at a significant disadvantage, for reasons that are unclear to us.

Table 3: Approximant basis with PM-Basis (20 bit FFT prime)
m n d ours Linbox ratio

8 4 128 0.0024 0.0050 0.48

8 4 131072 7.9307 15.2605 0.52

32 16 128 0.0226 0.0436 0.52

32 16 8192 5.3096 6.9188 0.77

128 64 32 0.0780 0.1274 0.61

128 64 2048 19.6627 27.5212 0.71

512 256 256 37.2000 41.1077 0.90

Approximant bases are often applied to solve block-Hankel sys-

tems [32]. Now, we compare this approach to the one which uses

structured matrix algorithms; below, we use the solver from [24],

which is based on NTL as well. We are not aware of previous com-

parisons of this kind. Precisely, we study two situations.

First, we call PM-Basis on [FT − Im ]T at order 2d with shift

(0, . . . , 0), where F is anm×m matrix of degree 2d −1, and we solve

a system withm ×m Hankel blocks of size d × d (the structured

solver returns a random solution to the system). Our experiments

show a clear advantage for approximant algorithms (see Table 4).

The asymptotic costs being similar, the effects at play here are con-

stant factor differences: approximant basis algorithms seem to be

somewhat simpler and to better leverage the main building blocks

(matrix arithmetic over K and univariate polynomial arithmetic).

Second, we consider a vector rational reconstruction setting:

we call PM-Basis on [FT − Im ]T at order (m + 1)d with shift

(0, . . . , 0), where F is a row vector of degree (m + 1)d − 1, and we

solve a block system with 1 ×m Hankel blocks of sizemd × d . The
former uses O˜(mω+1d) operations while the latter costs O˜(mωd).
Approximants are still faster up to dimension about 15, which is

explained by the same arguments as in the previous paragraph. On

the other hand, as predicted by the cost estimates, the block-Hankel

solver is more efficient for larger dimensions.

Table 4: PM-Basis vs. structured system solver
m ×m 1 ×m

m d PM-Basis solver PM-Basis solver

5 8000 0.996 8.23 2.19 3.820

12 1000 0.687 6.18 2.33 2.28

30 500 2.84 42.5 19.5 11.5

3.2. Interpolant bases. FormatricesE = (E1, . . . ,Ed ) inKm×n

and pairwise distinct points α = (α1, . . . ,αd ) in K, consider

Iα (E) = {p ∈ K[x]1×m | p(αi )Ei = 0 for 1 ≤ i ≤ d}.

An interpolant basis for (E,α ) is a matrix whose rows form a basis of

the K[x]-module Iα (E). Note that Iα (F(α1), . . . , F(αd )) coincides
with AM (F), for F in K[x]m×n andM = Πd

i=1
(x − αi ).

This definition is a specialization of those in [3, 27], which con-

sider n sets of points, one for each of the n columns of E1, . . . ,Ed :
here, these sets are all equal. This more restrictive problem allows

us to give faster algorithms than those in these references, by direct

adaptations of the approximant basis algorithms presented above.

Besides, Sections 4.1 and 4.2 will show that interpolant bases can

often play the same role as approximant bases in applications.

In Algorithms 4 and 5, we describe the modified M-Basis and

PM-Basis; we write α i ...j for the sublist (αi ,αi+1, . . . ,α j ).

In the next proposition, we assume thatMM(n,d) is inΩ(n2M(d))
(instead, one may add an extra term O(n2M(d) log(d)) in the cost).

Proposition 3.1. Algorithm 5 is correct. For points in geometric
progression, it costs O(MM′(m,d)) if n ≤ m and O(MM′(m,d) +
mω−1nd log(d)) otherwise. For general evaluation points, an extra
cost O(m2M(d) log

2(d)) is incurred.

Proof. Correctness, including the specific form of the output,

follows directly from the first and third items of [28, Lem. 2.4].

Step 1 costs O((mω +mω−1n)T 2) and we enter it O(d/T ) times,

for a total ofO((mω +mω−1n)d) sinceT is a constant. If the pointsα
are in geometric progression, evaluating the P1(αi )’s in Step 3 costs
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Input: matrices E = (E1, . . . ,Ed ) in Km×n , evaluation points

α = (α1, . . . ,αd ) in K, shift s in Z
m

Output: an s-ordered weak Popov interpolant basis for (E,α )

Algorithm 4: M-IntBasis(E,α , s)
1. P← identity matrix in K[x]m×m , and t ← copy of s
2. For k = 0, . . . ,d − 1:

a. R ∈ Km×n ← P(αi )Ei
b. Q ∈ K[x]m×m ← M-Basis-1(R, t)
c. P← QP, and then t ← rdegs (P)

Algorithm 5: PM-IntBasis(E,α , s)
1. if d ≤ T return M-IntBasis(E,α , s)
2. P1 ← PM-IntBasis(E

1... ⌈d/2⌉ ,α 1... ⌈d/2⌉ , s)
3. R← (P1(α ⌈d/2⌉+1

)E ⌈d/2⌉+1
, . . . , P1(αd )Ed )

4. t ← rdegs (P1)

5. P2 ← PM-IntBasis(R,α ⌈d/2⌉+1...d , t)
6. return P2P1

O(m2M(d)); for general points, the cost is O(m2M(d) log(d)). Then,
the residual R is deduced in timeO(mωd) if n ≤ m andO(mω−1nd)
otherwise. Finally, P2P1 can be computed in time O(MM(m,d)).
Summing up all costs gives the proposition. □

We now compare the performance of these algorithms against

their approximant versions. All computations are done modulo a

60 bit (non-FFT) prime. Our current code uses the thresholdT = 32

in the divide and conquer PM-Basis and PM-IntBasis: beyond this

point, they are faster than the iterativeM-Basis andM-IntBasis.

Unlike in most other functions, where elements of K[x]m×n are

represented as matrices of polynomials (Mat<Vec<zz_p>> in NTL),

in M-Basis and M-IntBasis we see them as polynomials with ma-

trix coefficients (Vec<Mat<zz_p>>). Indeed, since these algorithms

involve only matrix arithmetic over K (recall that deg(Q) ≤ 1), this

turns out to be more cache-friendly and faster.

Besides, we implemented two variants for approximant bases:

either the residual R is computed from P and F at each iteration, or

we initialize a list of residuals with a copy of F and we update the

whole list at each iteration using Q. The second variant improves

over the first when n > m/2, with significant savings when n is

close tom. For interpolant bases, this did not lead to any gain.

Timings are showed in Table 5. For approximants, we use as

input a random matrix in K[x]m×n of degree d − 1; for interpolants,

we use d random matrices in Km×n . We focus on the common case

m ≃ 2n, which arises for example in kernel algorithms (Section 4.2)

and in fraction reconstruction, itself used in the block Wiedemann

algorithm, in basis reduction, and in the resultant algorithm of [53].

Concerning iterative algorithms, we observe that interpolants

are slightly faster than approximants, which is explained by the

cost of computing the residual R: it uses one Horner evaluation of P
and one matrix product for interpolants, whereas for approximants

it uses about min(k, deg(P)) matrix products at iteration k .
As for the divide and conquer algorithms, interpolant bases with

general points are slower, in some cases significantly, than the

other two algorithms: although the complexity analysis predicted

a disadvantage, we believe that our implementation of multipoint

Table 5: Approximant basis and interpolant basis. Timings for M-

Basis (M), M-IntBasis (M-I), PM-Basis (PM), PM-IntBasis for
general points (PM-I) and PM-IntBasis for geometric points (PM-Ig).
m n d M M-I d PM PM-I PM-Ig

4 2 32 1.60e-4 1.42e-4 32768 1.06 6.81 1.47

16 8 32 1.98e-3 1.55e-3 4096 1.82 5.51 1.92
32 16 32 0.0104 7.59e-3 2048 3.90 8.18 3.56
64 32 32 0.0502 0.0354 1024 8.1 12.2 6.38
128 64 32 0.374 0.253 1024 45 56.7 33.3
256 128 32 2.92 1.83 1024 288 292 198

evaluation at general points could be improved to reduce this gap.

For the other two algorithms, the comparison is less clear. There

could be many factors at play here, but the main differences lie in

the base case (Step 1) which calls the iterative algorithm, and in the

computation of residuals (Step 3) which uses either middle prod-

ucts or geometric evaluation. It seems that FFT-based polynomial

multiplication performs slightly better than geometric evaluation

for small matrices and slightly worse for large matrices.

4 Higher-level algorithms
In this section we consider kernel computation, system solving,

determinant computation, and basis reduction. For each of these

problems, we discuss algorithms which rely on polynomial matrix

multiplication, through either approximant/interpolant basis com-

putation, or lifting techniques, or a combination of both for basis

reduction. For many of these algorithms, this is the first implemen-

tation and experimental comparison we are aware of.

4.1. A note on matrix fraction reconstruction Given H in

K(x)n×n , a left fraction description of H is a pair of polynomial

matrices (Q,R) in K[x]n×n such that H = Q−1R. It is minimal if
Q and R have unimodular left matrix GCD and Q is in reduced

form (right fraction descriptions are defined similarly). Besides, H is

said to be strictly proper if the numerator of each of its entries has

degree less than the corresponding denominator.

Such a description of H is often computed from the power series

expansion of H at sufficient precision, using an approximant basis.

Yet, for resultant computations in Section 5.2, we would like to

use an interpolant basis to obtain this description from sufficiently

many values ofH. We now state the validity of this approach; this is

a matrix version of rational function reconstruction [13, Chap. 5.7].

Proposition 4.1. Let H be in K(x)n×n be strictly proper and
suppose H admits left and right fraction descriptions of degrees at
most D, for some D ∈ Z>0. ForM in K[x] of degree at least 2D and
such that all denominators in H are invertible moduloM , define

F =
[
H mod M
−In

]
∈ K[x]2n×n .

Then, if P ∈ K[x]2n×2n is a 0-ordered weak Popov basis ofAM (F), the
first n rows of P form a matrix [Q R] such that (Q,R) is a minimal
left fraction description of H, with Q in 0-ordered weak Popov form.

The proof given in [17, Lem 3.7] for the specific M = x2D+1

extends to any modulus M ; using an ordered weak Popov form

(rather than a reduced form) allows us both to know a priori that
5



the first n rows are those of degree at most D, and to use degree 2D
instead of 2D + 1 (since deg(R) < deg(Q) is ensured by this form).

In particular, if M =
∏

2D
i=1
(x − αi ) for pairwise distinct points

(α1, . . . ,α2D ), the interpolant basis algorithms in Section 3.2 com-

pute a minimal left fraction description ofH fromH(α1), . . . ,H(αd ).

4.2. Kernel basis We implemented two kernel basis algorithms:

first, one which uses a single approximant basis computation at

an order sufficiently large so that the basis contains a kernel basis

(based on Lemma 4.2); second, the divide and conquer algorithm of

[58], which computes several approximant bases at smaller order

and combines the recursively obtained kernel bases via multiplica-

tion. We ensured that our algorithms return a kernel basis in shifted

ordered weak Popov form, again without impact on performance.

Furthermore, in both cases, we designed and implemented variants

which rely on interpolant bases instead of approximant bases.

Lemma 4.2. Let F be in K[x]m×n of degree d ≥ 0, let s be in Nm ,
and let δ in Z>0 be an upper bound on the s-degree of any s-reduced
left kernel basis of F; for example, δ = nd + max(s) − min(s) + 1.
Let M be in K[x] of degree at least δ + d , and P in K[x]m×m be an
s-reduced basis of AM (F). Then, the submatrix of P formed by its
rows of s-degree less than δ is an s-reduced left kernel basis for F.

Proof. Let K ∈ K[x]k×m be this submatrix, which is s-reduced
since P is. Since min(s) ≥ 0, we have deg(K) ≤ max(rdegs (K)) < δ ,
hence deg(KF) < δ + d ≤ deg(M). From KF = 0 mod M , we obtain

that KF is zero. It remains to observe that K generates the kernel

of F: since this set is included in AM (F), any basis of it is a left

multiple of P, and in particular a basis of s-degree less than δ is a

left multiple of the submatrix K, according to the predictable degree
property [29, Thm. 6.3-13]. The validity of the suggested bound

δ follows from [58, Thm. 3.4] for (d, . . . ,d)-reduced kernel bases;

then, compared to these, for an arbitrary s the degree of s-reduced
bases cannot increase by more than max(s) −min(s). □

In particular, one may find P via PM-IntBasis at d + δ points or

via PM-Basis at order d +δ ; for n ≤ m, this costsO(MM′(m,d +δ )).
The approximant-based direct approach is folklore [58, Sec. 2.3],

yet explicit statements in the literature focus on shifts linked to the

degrees in F, with better bounds δ [58, Lem. 3.3], [37, Lem. 4.3].

The algorithm of [58] ismore efficient, at least when the entries of

s are close to the corresponding row degrees of F; for a uniform shift,

it costsO˜(mω ⌈nd/m⌉) operations.We obtained significant practical

improvements over the plain implementation of [58, Algo. 1] thanks

to the following observation: ifn ≤ m/2, for a vast majority of input

F, the approximant basis at Step 2 of [58, Algo. 1], computed at order

more than 2s , contains the sought kernel basis. Furthermore, this

can be easily tested by checking well-chosen degrees, and then

the algorithm can exit early, avoiding the further recursive calls.

We took advantage of this via the following modifications: we use

order 2s + 1 rather than 3s (see [58, Rmk. 3.5] for a discussion on

this point), and when n > m/2 we directly reduce the number of

columns via the divide and conquer scheme in [58, Thm. 3.15].

The use of approximants here follows the idea in Lemma 4.2:

row vectors of small degree which are in AM (F) for a large degree
M must be in the kernel of F. Thus, one can directly replace approx-

imant bases with interpolant bases in [58, Algo. 1], up to modifying

Step 8 accordingly (dividing by the appropriate polynomialM).

Timings for the two approaches are showed in Table 6. The input

matrix F is chosen at random of degreed over a 60 bit prime, and the

shift is uniform. As expected, [58, Algo. 1] is faster than the direct

approach when n > 1, and the differences between interpolant and

approximant variants follow those observed in Section 3.

Table 6: Minimal kernel basis
direct divide and conquer

m n d approx. int. approx. int.

8 1 8192 1.36 2.00 1.35 2.00

8 4 8192 7.22 6.60 2.16 2.49
8 7 8192 14.1 14.4 4.64 5.63

32 16 1024 86.3 63.1 3.75 3.51
32 31 1024 142 118 8.27 8.09
128 1 256 14.0 14.6 14.0 14.6
128 64 256 2720 1827 16.8 11.8
128 127 256 >1h >1h 43.8 35.6

4.3. Linear system solving. For systems Aυ = b, with A in

K[x]m×n , b in K[x]m×1
and υ in K(x)n×1

, we implemented two

families of algorithms. The first one uses lifting techniques, assum-

ing A is square, nonsingular, with A(0) invertible; in this case, the

algorithm returns a pair (u, f ) inK[x]n×1×K[x] such thatAu = f b
and f has minimal degree. The second approach is based on kernel

computation and works for any matrix A; under the assumptions

above it has a similar output.

Lifting techniques. Under the above assumptions, our lifting al-

gorithm is standard: if A and b have degree at most d , we first

compute the truncated inverse S = A−1
mod xd+1

by matrix New-

ton iteration [42]. Then, we use Dixon’s algorithm [10] to compute

υ mod x2nd = A−1b mod x2nd
; it consists of roughly 2n steps, each

involving a matrix-vector product using either A or S. Then, vector
rational reconstruction is applied to recover (u, f ) from υ . The cost
of this algorithm isO(MM(n,d)) for the truncated inverse of A and

O(n3M(d)) for Dixon’s algorithm; overall this is in O˜(n3d).
To reduce the exponent in n, Storjohann introduced the high-

order lifting algorithm [45]. The core of this algorithm is the compu-

tation of Θ(log(n)) slices S0, S1, . . . of the power series expansion

of A−1
, where the coefficients of Si are the coefficients of degree

(2i−1)d−2
i+1, . . . , (2i+1)d−2

i−1 inA−1
. These matrices are com-

puted recursively, each step involving 4 matrix products; the other

steps of the algorithm, that use these Si to compute υ mod x2nd
,

are cheaper, so the runtime is O(MM(n,d) log(n)) ⊂ O˜(nωd).

Using kernel bases. For this second approach, let A be any matrix

in K[x]m×n and b be in K[x]m×1
. The algorithm simply computes

K ∈ K[x](n+1)×k
, a right kernel basis of the augmented matrix

[A | b] ∈ K[x]m×(n+1)
. The matrix K generates, via K(x)-linear

combinations of its columns, all solutions υ ∈ K(x)n×1
to Aυ = b.

In particular, if K is empty (i.e. k = 0, which requiresm ≥ n),
or if the last row of K is zero, then the system has no solution.

Furthermore, if A is square and nonsingular, K has a single column

[uT | f ]T, where u ∈ K[x]n×1
and f ∈ K[x], with f of minimal

degree (otherwise, K would not be a basis).

Our implementation uses the kernel algorithm of [58]; to exploit

it best, we choose the input shift s = (d,d), where d = deg(b) and
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d ∈ Nn is the tuple of column degrees of A (zero columns of A are

discarded while computing d).

Implementation. We implemented the approaches described above:

lifting with Dixon’s algorithm, high-order lifting, and via kernel.

Table 7 shows timings for randomly chosenm ×m matrix A and

m × 1 vector b, both of degree d , over a 60 bit prime field. In this

case the lifting algorithms apply (with high probability). On such

inputs, Dixon’s algorithm usually does best. High-order lifting,

although theoretically faster, is outperformed, mainly because it

performs Θ(log(n)) matrix products (we will however see that this

algorithm plays an important role for basis reduction). The kernel

based approach is moderately slower than Dixon’s algorithm, but

has the advantage of working without any assumption on A.

Table 7: Linear system solving
m d Dixon high-order lifting kernel

16 1024 1.53 2.39 2.07

32 1024 4.94 13.8 9.45

64 1024 19.5 94.7 46.5

128 512 55.2 266 108

4.4. Determinant. We implemented four algorithms, taking as

input a squarem ×m matrix A. For timings showed in Table 8, we

used a random such matrix of degree d over a 60 bit prime.

The most basic one uses expansion by minors, which turns out

to be the fastest option up to dimension about 6.

The second one assumes that we have an element α inK of order

at leastmd + 1, and uses evaluation/interpolation at the geometric

progression 1,α , . . . ,αmd
; this costs O(m3M(d) +mω+1d) opera-

tions in K. For dimensions between 7 and about 20, it is often the

fastest variant, sometimes competing with the third.

The third one consists in solving a linear system with random

right-hand side of degree d ; this yields a solution (u, f ) with f
sought determinant up to a constant [40]. For dimensions exceeding

20, this is the fastest method (assuming that A(0) is invertible).
The last one is an experimental implementation of the algorithm

of [33] based on triangularization, which runs in O˜(mωd). For the
moment, it only supports the generic case where the Hermite form

of A has diagonal (1, . . . , 1, det(A)), or in other words, all so-called

“row bases” computed in that algorithm are identity. This allows us

to temporarily circumvent the lack of a row basis implementation,

while still being able to observe meaningful timings. Indeed, we

believe that timings for a complete implementation called on such

“generic” input will be similar to the timings presented here in many

cases of interest, where one can easily detect whether the algorithm

has made a wrong prediction about the row basis being identity

(for example if the input matrix is reduced, which is the case if it is

the denominator of a minimal fraction description). This recursive

determinant algorithm calls expansion by minors as a base case

for small dimensions; for larger dimensions, it is generally slightly

slower than the third method.

4.5. Basis reduction. Our implementation of the algorithm of

[17] takes as input a nonsingular matrix A ∈ K[x]m×m of degree d
such that A(0) is invertible, and returns a reduced form of A. The
algorithm first computes a slice S of 2d consecutive coefficients of

degree aboutmd in the power series expansion of A−1
, then uses

Table 8: Determinant
m d minors evaluation linsolve triangular

4 65536 0.7751 2.014 8.460 0.7826
16 4096 ∞ 4.14 5.023 7.38

32 4096 ∞ 34.5 25.4 41.6

64 2048 ∞ 127 68.6 100

128 512 ∞ 244 96.6 99.0

PM-Basis to reconstruct a fraction description S−1 = R−1Q, and
then returns R. A Las Vegas randomized version is mentioned in

[17], to remove the assumption on A(0): we will implement it for

large enough K, but for smaller fields this requires to work in an

extension of K, which is currently beyond the scope of our work.

In our experiments, to create the input A, we started from a

randomm ×m matrix of degree d/3 (which is reduced with high

probability), and we left-multiplied it by a lower unit triangular

matrix and then by an upper one, both chosen at random of degree

d/3. Table 9 shows timings for both steps, with the first step either

based on Newton iteration or on high-order lifting; the displayed

total time is when using the faster of the two. We conclude that for

reduction, as opposed to the above observations for system solving,

it is crucial to rely on high-order lifting. Indeed, it improves over

Newton iteration already for dimension 8, and the gap becomes

quite significant when the dimension grows.

Table 9: Basis reduction
m d Newton high-order reconstruct total

4 24574 1.251 1.688 8.772 10.02

8 6142 2.617 2.244 8.851 11.09

16 1534 4.457 3.044 8.506 11.55

32 382 11.147 4.858 7.977 12.83

64 94 30.62 5.509 5.833 11.34

128 22 84.47 3.973 5.357 9.22

128 94 371.1 29.17 37.23 66.41

5 Applications to bivariate resultants
We conclude this paper with algorithms originating from Villard’s

recent breakthrough on computing the determinant of structured

polynomial matrices [53]. Fix a field K and consider the two follow-

ing questions: computing the resultant of two polynomials F ,G in

K[x , z] with respect to z, and computing the characteristic polyno-

mial of an element A in K[z]/(P), for some P in K[z].
The second problem is a particular case of the former, since the

characteristic polynomial of Amodulo P is the resultant of x −A(z)
and P(z) with respect to z, up to a nonzero constant. Let n be an

upper bound on the degree in z of the polynomials we consider,

and d be a bound on their degree in x (so in the second problem,

d = 1). Villard proved that for generic inputs, both problems can be

solved in O˜(n2−1/ωd) ⊂ O˜(n1.58d) operations in K. For the first
problem, the best previous bound is O˜(n2d), obtained either by

evaluation/interpolation techniques or Reischert’s algorithm [41].

For the second problem, the previous record was O˜(nω2/2), where

ω2 is the exponent of matrix multiplication in size (s, s) × (s, s2),

with ω2/2 ≤ 1.63 [35]. Note that these bounds apply to all inputs.

We show how the work we presented above allows us to put

Villard’s ideas to practice, and outperform the previous state of the
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art for large input sizes. This is however not straightforward: in

both cases, this required modifications of Villard’s original designs

(for the second case, using an algorithm from [38]).

5.1. Overview of the approach. In [53], Villard designed the

following algorithm to find the determinant of a matrix P overK[x].

Algorithm 6: Determinant(P,m)
Input: nonsingular P in K[x]ν×ν ; parameterm ∈ {1, . . . ,ν }
Output: det(P)
1. compute H̄ = H mod x2 ⌈ν/m ⌉d+1

, where d is the degree of

P and H is them ×m top-right quadrant of P−1 ∈ K(x)ν×ν

2. compute a minimal left fraction description (Q,R) of H,
using H̄

3. return det(Q)

The parameterm is chosen so as to minimize the theoretical cost.

The correctness of the algorithm follows from the next properties,

which do not hold for an arbitrary nonsingular P: the matrix H is

strictly proper and admits a left fraction descriptionH = Q−1R such

that det(P) = det(Q), for Q and R in K[x]m×m of degree at most

⌈ν/m⌉d (see Section 4.1 for definitions). In [53], they are proved to

hold for generic instances of the problems discussed here.

Once sufficiently many terms of the expansion of H have been

obtained in Step 1, the denominator Q is recovered by an approxi-

mant basis algorithm and its determinant is computed by a general

algorithm in Steps 2 and 3, which cost O˜(mω (νd/m)).
While the algorithm applies to any nonsingular matrix P sat-

isfying the properties above, in general it does not improve over

previously known methods (see Section 4.4). Indeed, the fastest

known algorithm for obtaining H̄ costs O˜(νωd) operations via
high-order lifting (see for example [19, Thm. 1]).

However, sometimes P has some structure which helps to speed

up the first step. Villard pointed out that when P is the Sylvester

matrix of two bivariate polynomials, then P−1
is a Toeplitz-like

matrix which can be described succinctly as P−1 = L1U1 + L2U2;

here, L1, L2 (resp.U1,U2) are lower (resp. upper) triangular Toeplitz

matrices with entries in K(x). Hence, we start by computing the

first columns c1 of L1 and c2 of L2 as well as the first rows r1 of U1

and r2 of U2, all of them modulo x2 ⌈ν/m ⌉d+1
; then, H̄ is directly

obtained via the above formula for P−1
, using O˜(mνd) operations.

Computing these rows and columns is done by solving systems with

matrices P and PT and very simple right-hand sides [53, Prop. 5.1],

with power series coefficients, in time O˜(ν2d/m).

Altogether, takingm = ν1/ω
minimizes the cost, yielding the

runtime O˜(ν2−1/ωd). In the case of bivariate resultants described

above, the Sylvester matrix of F and G has size ν = 2n, hence the

cost bound O˜(n2−1/ωd).

5.2. Resultant of generic bivariate polynomials. We imple-

mented the algorithm described in the previous section to compute

the resultant of generic F ,G in K[x , z]; first experiments showed

that obtaining c1, c2, r1, r2 was a bottleneck. These vectors have

power series entries and are solutions of linear systems whose ma-

trix is the Sylvester matrix of F and G or its transpose: they were

obtained via Hensel lifting techniques, following [13, Ch. 15.4].

To get better performance, we designed a minor variant of Vil-

lard’s algorithm: instead of computing the power series expansion

of H modulo xδ , where δ = 2⌈ν/m⌉d + 1, we compute values of H
at δ points. We choose these points in geometric progression and

use the interpolant basis algorithm of Section 3.2 to recover Q and

N, as detailed in Section 4.1. The value of H at x = α is computed

following the same approach as above, but over K instead of K[[x]].
In particular, our implementation directly relies on NTL’s extended

GCD algorithm over K = Fp to compute the vectors c1, c2, r1, r2.

Table 10: Resultant of generic bivariate polynomials
n = d Direct Algo. 6

100 1.75 3.48

200 17.4 29.3

300 72.3 106

400 182 182

n = d Direct Algo. 6

600 797 653
700 1343 1081
800 2121 1388
900 3203 1760

Table 10 compares our implementation to a direct approach:

computing the resultant by evaluation/interpolation. Note that the

latter approach, while straightforward conceptually, is the state of

the art. In a close match with the analysis above, the parameter

m was set to ⌈n0.4⌉, since this gave us the best runtimes. As an

example, for d = 300, the cost of each individual steps were 65s for

computing structured inversions, and 40s for obtaining Q and its

determinant, which is a good balance. The base field was a prime

field with a 60 bit general prime.

Input polynomials are chosen at random with partial degree n
both in x and in z; such polynomials have total degree 2n, and their
resultant has degree 2n2

. The largest examples have quite significant

sizes, but such degrees are not unheard-of in applications, as for

instance in the genus-2 point counting algorithms of [1, 14–16].

Overall, with n = d , we observe a crossover point around n = 400.

5.3. Characteristic polynomial. We consider the computa-

tion of the characteristic polynomial of an element A in K[z]/(P),
for some monic P in K[z] of degree n. The algorithm we imple-

mented, and which we sketch below, is from [38] and assumes that

A and P are generic.

As explained previously, this problem is a particular case of a

bivariate resultant, but we rely on another point of view that allows

for a better asymptotic cost. Indeed, the characteristic polynomial

of A modulo P is by definition the characteristic polynomial of the

matrix M of multiplication by A modulo P . In other words, it is the

determinant of the degree-1 matrix P = xI −M ∈ K[x]n×n .
The genericity assumption ensures that M is invertible, hence

the power series expansion of P−1
is

∑
k≥0
−M−k−1xk . Here, we

use the top-leftm×m quadrantH of P−1
; it has entrieshi, j ∈ K[[x]],

where

hi, j,k := coeff(hi, j ,x
k ) = coeff(−z jA−k−1

mod P , zi ).

for 0 ≤ i, j < m and for all k ≥ 0.

A direct implementation of this idea does not improve on the

runtime given in Section 5.1, since it computes A−k−1
mod P for

all 0 ≤ k < δ = 2⌈n/m⌉ and therefore costs Ω(n2/m). It turns out
that baby-steps giant-steps techniques allow one to compute hi, j,k
for 0 ≤ i, j < m and 0 ≤ k < δ in O˜(δ (ω−1)/2n +mn) operations in

K. Takingm = ⌈n1/3⌉ minimizes the overall cost, resulting in the

runtime O˜(n(ω+2)/3) ⊂ O(n1.46).

Table 11 compares our implementation to NTL’s built-in char-

acteristic polynomial algorithm, with random inputs A and P . For
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Table 11: Characteristic polynomial modulo P
n m NTL new algorithm

5000 5 0.143 0.225

20000 8 1.43 1.62

40000 8 4.69 4.42
60000 10 8.45 8.34
80000 10 16.6 12.1
100000 10 23.1 17.4

such inputs, NTL uses Shoup’s algorithm for power projection [43],

which runs in time O˜(n(ω+1)/2).
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