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An Algebraic Attack on Rank Metric
Code-Based Cryptosystems
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Abstract. The Rank metric decoding problem is the main problem con-
sidered in cryptography based on codes in the rank metric. Very efficient
schemes based on this problem or quasi-cyclic versions of it have been
proposed recently, such as those in the submissions ROLLO and RQC
currently at the second round of the NIST Post-Quantum Cryptography
Standardization Process. While combinatorial attacks on this problem
have been extensively studied and seem now well understood, the sit-
uation is not as satisfactory for algebraic attacks, for which previous
work essentially suggested that they were ineffective for cryptographic
parameters. In this paper, starting from Ourivski and Johansson’s alge-
braic modelling of the problem into a system of polynomial equations,
we show how to augment this system with easily computed equations
so that the augmented system is solved much faster via Grébner bases.
This happens because the augmented system has solving degree r, r + 1
or r + 2 depending on the parameters, where r is the rank weight, which
we show by extending results from Verbel et al. (PQCrypto 2019) on
systems arising from the MinRank problem; with target rank r, Verbel
et al. lower the solving degree to r + 2, and even less for some favorable
instances that they call “superdetermined”. We give complexity bounds
for this approach as well as practical timings of an implementation using
magma. This improves upon the previously known complexity estimates
for both Grobner basis and (non-quantum) combinatorial approaches,
and for example leads to an attack in 200 bits on ROLLO-I-256 whose
claimed security was 256 bits.

Keywords: Post-quantum cryptography - NIST-PQC candidates - rank
metric code-based cryptography - Grobner basis.

1 Introduction

Rank metric code-based cryptography. In the last decade, rank metric
code-based cryptography has proved to be a powerful alternative to more tradi-
tional code-based cryptography based on the Hamming metric. This thread of
research started with the GPT cryptosystem [37] based on Gabidulin codes [36],
which are rank metric analogues of Reed-Solomon codes. However, the strong



algebraic structure of those codes was successfully exploited for attacking the
original GPT cryptosystem and its variants with the Overbeck attack [53] (see
for example [51] for one of the latest related developments). This has to be traced
back to the algebraic structure of Gabidulin codes that makes masking extremely
difficult; one can draw a parallel with the situation in the Hamming metric where
essentially all McEliece cryptosystems based on Reed-Solomon codes or variants
of them have been broken. However, recently a rank metric analogue of the
NTRU cryptosystem from [44] has been designed and studied, starting with the
pioneering paper [38]. Roughly speaking, the NTRU cryptosystem relies on a
lattice that has vectors of rather small Euclidean norm. It is precisely those
vectors that allow an efficient decoding/deciphering process. The decryption of
the cryptosystem proposed in [38] relies on LRPC codes that have rather short
vectors in the dual code, but this time for the rank metric. These vectors are
used for decoding in the rank metric. This cryptosystem can also be viewed as
the rank metric analogue of the MDPC cryptosystem [50] that relies on short
vectors in the dual code for the Hamming metric.

This new way of building rank metric code-based cryptosystems has led to a
sequence of proposals [3840/56], culminating in submissions to the NIST post-
quantum competition [IJ2], whose security relies solely on the decoding problem
in rank metric codes with a ring structure similar to the ones encountered right
now in lattice-based cryptography. Interestingly enough, one can also build sig-
nature schemes using the rank metric; even though early attempts which relied
on masking the structure of a code [41l9] have been broken [24], a promising
recent approach [§] only considers random matrices without structural masking.

Decoding in rank metric. In other words, in rank metric code-based cryptog-
raphy we are now only left with assessing the difficulty of the decoding problem
for the rank metric. The rank metric over F(]IV , where F, is the finite field of
cardinality ¢ and N = mn is a composite integer, consists in viewing elements
in this ambient space as m x n matrices over F, and considering the distance
d(X,Y) between two such matrices X and Y as

d(X,Y) = Rank (Y — X).

A (linear matrix) code C in Fy**" is simply a FF,-linear subspace in Fy**", gen-
erated by K matrices M{,..., M g. The decoding problem for the rank metric
at distance r is as follows: given a matrix Y in IE‘;"X” at distance < r from C, re-
cover an element M in C at distance < r from Y. This is precisely the MinRank
problem given as input Y and My,..., M g:

Problem 1 (MinRank).
Input: an integer r € N and K + 1 matrices Y, My,..., Mg € F"*".
Output: field elements x1,z2,...,xx € F4 such that

K
Rank (Y — szMZ) <.

=1



As observed in [20], the MinRank problem is NP-complete and the best known
algorithms solving it have exponential complexity bounds.

Matrix codes specified as Fgym-linear codes. However, the trend in rank
metric code-based cryptography has been to consider a particular form of linear
matrix codes: they are linear codes of length n over an extension Fym of degree m
of Fy, that is, Fym-linear subspaces of Fg.... In the rest of this section, we fix a basis
(B1,...,Pm) of Fgm as a F,-vector space. Then such codes can be interpreted as
matrix codes over Fy**™ by viewing a vector € = (21, ...,%,) € Fym as a matrix
Mat(x) = (X;j)i; in F*", where (Xij)1<i<m is the column vector formed by
the coordinates of x; in the basis (81, ..., Bm), that is, z; = X181+ - -+Xp; Bm-

Then the “rank” metric d on Fy.. is the rank metric on the associated matrix
space, namely

d(x,y) ;== |y — x|, where we define |x|:= Rank (Mat(x)).

An Fgm-linear code C of length n and dimension k over Fy= specifies a matrix
code Mat(C) := {Mat(c) : c € C} in F"*" of dimension K := mk over I : it is
readily verified that a basis of this Fy-subspace is given by (Mat(3;¢;))1<i<m,1<j<k
where (c1,...,¢k) is a basis of C over Fym.

There are several reasons for this trend. On the one hand, the families of
matrix codes for which an efficient decoding algorithm is known are families of
Fym-linear codes. On the other hand, Fym-linear codes have a much shorter de-
scription than general matrix codes. Indeed, a matrix code in Fy**™ of dimension
K = km can be specified by a basis of it, which uses Kmnlog(q) = km?nlog(q)
bits, whereas a matrix code obtained from an Fym-linear code of dimension k
over Fym can be specified by a basis (c1, . .., ¢) of it, which uses kmn log(q) bits
and thus saves a factor m.

Progress in the design of efficient algorithms for decoding Fm-linear codes
suggests that their additional structure may not have a significant impact on
the difficulty of solving the decoding problem. For instance, a generic matrix
code over F**™ of dimension K = mk can be decoded using the information
set decoder of [39] within a complexity of the order of ¢*" when the errors
have rank at most r and m > n, compared to ¢*"~™ for the decoding of a
linear code over Fy... in the same regime, using a similar decoder [I0]. Moreover,
even if the decoding problem is not known to be NP-complete for these Fym-
linear codes, there is a randomised reduction to an NP-complete problem [42]
(namely to decoding in the Hamming metric). Hereafter, we will use the following
terminology.

Problem 2 ((m,n,k,r)-decoding problem,).

Input: an Fgm-basis (cy,...,¢cx) of a subspace C of Fy.., an integer 7 € N, a
vector y € Iy at distance at most r of C (i.e. |y — ¢| < r for some ¢ € C).
Output: ¢ € C and e € Fy,, such that y = c+ e and |e] <.

The region of parameters which is of interest for the NIST submissions corre-
sponds to m = O (n), k =60 (n) and r = O (/n).



Grobner basis techniques for decoding in the rank metric. The afore-
mentioned algorithm from [I0] for solving the decoding problem follows a combi-
natorial approach pioneered in [52], which is related to decoding techniques for
the Hamming metric. Another approach consists in viewing the decoding prob-
lem as a particular case of MinRank and using the algebraic techniques designed
for this problem; namely these techniques use a suitable algebraic modelling of a
MinRank instance into a system of multivariate polynomial equations, and then
solve this system with Grobner basis techniques. Several modellings have been
considered, such as the Kipnis-Shamir modelling [45] and the minors modelling
(described for example in [34]); the complexity of solving MinRank using these
modellings has been investigated in [33I34]. The Kipnis-Shamir modelling boils
down to a polynomial system which is affine bilinear. This means that each equa-
tion has degree at most 2 and the set of variables can be partitioned into two
sets {z1,...,2s} U{y1,...,y:} such that all monomials of degree 2 involved in
the equations are of the form z;y;; in other words, the equations are formed by
a quadratic part which is bilinear plus an affine part. Although the complexity
of solving this system can be bounded by that of solving bilinear systems, which
is studied in [35], the complexity estimates thus obtained are very pessimistic,
as observed experimentally in [21I]. A theoretical explanation of why Grébner
basis techniques perform much better on the Kipnis-Shamir modelling than on
generic bilinear systems was later given in [56]. It was also demonstrated there
that the Kipnis-Shamir approach is more efficient than the minors approach on
several multivariable encryption or signature schemes relying on the MinRank
problem. However, the speed-up obtained for the Kipnis-Shamir modelling in
the latter reference mostly comes from the “superdetermined” case considered
therein. When applied to the (m, n, k, r)-decoding problem, this corresponds to
the case where m = n and km < nr; this condition is not met in the decoding
problem instances we are interested in.

Another algebraic approach to solve the (m,n,k,r)-decoding problem was
suggested in [39, §V.]. It is based on a new modelling specific to Fym-linear
codes which fundamentally relies on the underlying Fgm-linear structure and
on g-polynomials. Also, it results in a system of polynomial equations that are
sparse and have large degree. This approach seems to be efficient only if rk is
not much larger than n.

Our contribution. If one compares the best known complexity estimates, the
algebraic techniques appear to be less efficient than the combinatorial ones, such
as [52], [B9], and [1I0] for the parameters of the rank metric schemes proposed
to the NIST [7l3] or of other rank metric code-based cryptosystems [49]. In
[55], Levy-dit-Vehel and Perret pioneered the use of Grobner basis techniques to
solve the polynomial system arising in the Ourivski-Johansson algebraic mod-
elling [52], with promising practical timings. In this paper, we follow on from
this approach and show how this polynomial system can be augmented with ad-
ditional equations that are easy to compute and bring on a substantial speed-up
in the Grobner basis computation for solving the system. This new algebraic



algorithm results in the best practical efficiency and complexity bounds that are
currently known for the decoding problem; in particular, it significantly improves
upon the above-mentioned combinatorial approaches.

There are several reasons why the Ourivski-Johansson algebraic modelling
improves upon the Kipnis-Shamir one. First, it has the same affine bilinear
structure and a similar number of equations, but it involves much fewer vari-
ables. Indeed, for the case of interest to us where m and k are in ©(n) and r is in
©(n'/?), the Kipnis-Shamir modelling involves ©(n?) equations and variables,
while the Ourivski-Johansson one involves ©(n?) equations and ©(n?/?) vari-
ables. Second, this modelling naturally leads to what corresponds to reducing
by one the value of r, as explained in Section [3| Third, and most importantly,
the main properties that ensure that the Kipnis-Shamir modelling behaves much
better with respect to Grobner basis techniques than generic bilinear systems
also hold for the Ourivski-Johansson modelling. In essence, this is due to a solv-
ing degree which is remarkably low: at most r 4+ 2 for the former modelling and
at most r 4+ 1 for the latter. Recall that the solving degree indicates the max-
imum degree reached during a Grobner basis computation; it is known to be a
strong predictor of the complexity of the most expensive step in a Grébner basis
computation and has been widely used for this purpose with confirmations via
numerical experiments, see for instance [43[2912627I28/56].

To prove the third point, we start from the result about degree falls at the
core of [56], which is based on work from [35], and we extend it to a more
general setting which includes the Ourivski-Johansson modelling. In our case,
these degree falls mean that from the initial system of quadratic equations f; =0
of the Ourivski-Johansson modelling, we are able to build many new equations
of degree r that are combinations ), f;g;; = 0 where the g;;’s are polynomials
of degree 7 — 1 involved in the j-th new equation. We also prove that, when the
parameters satisfy the condition

()

by using that these polynomials ) . figi; can be expressed as linear combinations
of only a few other polynomials, we can perform suitable linear combinations of
the equations ), figi; = 0’s giving (::11) — 1 equations of degree r — 1. All
these polynomial combinations are easily computed from the initial quadratic
equations. By adding these equations and then performing Grobner basis com-
putations on the augmented system, we observe that experimentally the Grébner
basis algorithm behaves as expected from the degree fall heuristic:

r\ W

— if holds, this degree is r and the overall complexity is O ((%) )
operations in F,.

— if does not hold, the maximum degree reached in the Grobner basis com-
putation is r + 1 (in some intermediate cases), or r + 2, leading to an overall

complexity of at most O ((%) ) (resp. O ((%) )) op-

erations in F,, where w is the exponent of matrix multiplication;



Note that for a majority of parameters proposed in [7I3], the condition holds.
Taking for w the smallest value currently achievable in practice, which is w ~ 2.8
via Strassen’s algorithm, this leads to an attack on the cryptosystems proposed
in the aforementioned NIST submissions which is in all cases below the claimed
classical security levels.

2 Notation

In the whole paper, we use the following notation and definitions:

— Matrices and vectors are written in boldface font M.

— For a matrix M its entry in row ¢ and column j is denoted by M|z, j].

— The transpose of a matrix M is denoted by M.

— For a given ring R, the space of matrices with m rows and n columns and
coefficients in R is denoted by R™*™.

— For M € R™*" we denote by vec, o (M) the column vector formed by

concatenating the rows of M, i.e. vec,on(M) = (M}, ... M{n}y*)T.

— For M € R™*"™ we denote by veceo (M) the column vector formed by
concatenating the columns of M, i.e. veceo (M) = vec,on (MT)

— {1..n} stands for the set of integers from 1 to n, and for any subset J C
{k+1..n}, we denote by J —k theset J—k={j—k:jeJ} C{l.n—k}.

— For two subsets I C {1..m} and J C {1..n}, we write M ; for the submatrix
of M formed by its rows (resp. columns) with index in I (resp. J).

— We use the shorthand notation M, ; = My ), 7 and M. = My 1 p),
where M has m rows and n columns.

— [, is a finite field of size ¢, and o € Fym is a primitive element, so that
(1,,...,a™71) is a basis of Fym as an F,-vector space. For 8 € Fym, we
denote by [a‘~1]3 its ith coordinate in this basis.

— For v = (v1,...,v,) € Fym. The support of v is the Fy-vector subspace
of Fgm spanned by the vectors vy,...,v,. Thus this support is the column
space of the matrix Mat(v) associated to v (for any choice of basis), and its
dimension is precisely Rank(Mat(v)).

— An [n, k] Fgm-linear code is an Fym-linear subspace of Fy.. of dimension &
endowed with the rank metric.

3 Algebraic modellings of the decoding problem

In what follows, parameters are chosen in the cryptographically relevant region
mentionned in the introduction, say m = @ (n), k = ©(n) and r = O (y/n).
Decoding instances will then have a single solution e. For simplicity, we assume
that the rank of e is exactly r; in general one can run the algorithm for increas-
ing values of the target rank up to r, until a solution is found, and the most
expensive step will correspond to the largest considered rank. We consider here
the (m,n, k,r)-decoding problem for the code C and assume we have received
y € F. at distance r from C and look for ¢ € C and e such that y = ¢ + e and
le] =r.



3.1 Solving the MinRank instance using Kipnis-Shamir’s modelling

As explained in Section[l} a possible approach to perform the decoding is to solve
the underlying MinRank instance with km + 1 matrices in F;**"; this is done by
introducing M := Mat(y) and M, ..., My, which is an F -basis of Mat(C).
Several methods have been developed, and so far the Kipnis-Shamir modelling
[45] seems to be the most efficient to solve this MinRank instance. We want to
find (zo, ..., 2km) in F;"kﬂ such that Rank(zzg 2iM;) =1. (20,215 - - Zkem) 1S
a solution to the MinRank problem if and only if the right kernel of ZZB ziM;
contains a subspace of dimension n — r of Fy. With high probability, a basis
of such a space can be written in systematic form, that is, in the form (I’}E” )
Thus we have to solve the system

(kzné zM> (I;{) =0, (2)

over Fy, where K is an 7 x (n —r) matrix of indeterminates. This system is affine
bilinear and has m(n — r) equations and km + 1 + r(n — r) variables, which are
20521, - - - 2Zkm and the r(n — r) entries of K; each equation has a bilinear part
as well as a linear part which only involves the variables z;.

3.2 Syndrome modelling

We recall here the modelling considered in [7)2]. Let H be a parity-check matrix
of C, i.e.
C={ceF,.:cH =0}

The (m, n, k,r)-decoding problem can be algebraically described by the system

eH" = s where e € Fym has rank r and s € Fg’;—k) is given by s := yH". Let

(S1,...,5;) € Fym be a basis of the support of e; then, e = (S; - S,)C,
where C' € F;*" is the matrix of the coordinates of e in the basis (S1,...,S5;).
Then expressing the elements S; in the basis (1,a,...,a™™ 1) of Fym over F,

yields (S; -+ Sp)=(1 a --- a™ !)8§ for some matrix S € F7"*". Thus, the
system is rewritten as

(1 o amfl) SCH" = s, over Fgm with solutions in F,. (3)

This polynomial system, that we refer to as the syndrome modelling, has m(n—k)
equations and mr + nr variables when it is written over F,. It is affine bilinear
(without terms of degree 1) with respect to the two sets of variables coming
from the support and from the coordinates of the error. Besides, this system
admits (¢" —1)(¢" — q) - - (¢" — ¢" 1) solutions since this is the number of bases
of the support. These solutions to the system all correspond to the same unique
solution e of the initial decoding problem. We can easily impose a unique solution
by fixing some of the unknowns as in the Kipnis-Shamir modelling, or as has
been done in the Ourivski-Johansson modelling that we will present next. It



is worthwhile to note that this kind of modelling has, as the Kipnis-Shamir
modelling, © (n2) equations for our choice of parameters but significantly fewer
variables since we now have only @ (n3/ 2) unknowns. The Ourivski-Johansson’s
modelling will be a related modelling that gives a further improvement.

3.3 OQurivski-Johansson’s modelling

We now describe the algebraic modelling considered in the rest of this paper,
which is basically Ourivski and Johansson’s one [52]. It can be viewed as an
homogenising trick. Instead of looking for ¢ € C and e of rank r that satisfy
Yy = ¢+ e, or what is the same for ¢ € C such that |c+ y| = r, we look for ¢ € C
and A € Fym such that

e+ Ay| =r. (4)

It is precisely here that the F,m-linearity of C is used in a crucial way. Once we
have found such a ¢ and A, we have found a ¢ + Ay such that ¢ + Ay = pe for
some non-zero p € Fgm from which we deduce easily e. The point of proceeding
this way is that there are ¢™ — 1 solutions to and that this allows us to fix
more unknowns in the algebraic system. Another point of view [52] Sec. 2] is to
say that we introduce the code C := C + (y) and that we look for a rank r word
in C, since all such words are precisely the multiples Ae for nonzero A € Fym of
the error e we are looking for. Let G = (Ik+1 R) (resp. H= (fRT In—k—l))
be the generator matrix in systematic form (resp. a parity-check matrix) of
the extended code C; note that for a vector v, we have v € C if and only if

vH' = 0. Using the notation e = (1 a --- o™ 1)SC as above, and writing
C = (C, Cy) with C; € F**™) and €5 € Fy*" 7Y the fact that e € C
yields the system

(la---a™1)§(Cy— C1R) =0, over Fgm with solutions in Fy.  (5)

Since all multiples \e are solutions of this system, we can specify the first column
of C'to (10 --- 0)T. In this way, there is a single \e satisfying these constraints:
the one where A is the inverse of the first coordinate of e (assuming it is nonzero,
see below). The system still admits several solutions which correspond to dif-
ferent bases of the support of Ae. To fix one basis of this support, similarly to
what is done in [52] Sec. 3], we can specify S; = 1, or equivalently, set the first
column of S to be (10 --- 0)T, and take an 7 x r invertible submatrix of S and
specify it to be the identity matrix; thus the system has a single solution.

Doing so, the resulting system is affine bilinear (without constant term), with
(n — k — 1)m equations and (m — 1)r + nr variables, and has a unique solution.

For the sake of presentation, in Section 5] we present our results assuming that
the first coordinate of e is nonzero and that the top r x r block of S is invertible;
these results are easily extended to the general case. Under these assumptions,
our system can be rewritten as follows:

f:{(la...aml)(ﬁ) (02—<(1)c’1>R>}, (6)



where 8’ is the (m — ) x (r — 1) submatrix S{r41.m},{2.r} and C' isther xk
submatrix C (2 x4+1)- We call the entries of S’ the support variables whereas
the entries of C| and C; are called the coefficient variables. In Section we
give a procedure to handle the general case, by making several attempts to find
the invertible block of S and a nonzero component of e.

4 Grobner bases and degree falls

We refer to [23] for basic definitions and properties of monomial orderings and
Grobner bases.

Field equations and monomial ordering Since we are looking for solutions
in IF;, we augment the polynomial system we want to solve with the field equa-
tions, that is, the equation 2! — x; = 0 for each variable z; arising in the system.
In our case, as the system we consider in practice has mainly only one solution in
F, (see Section@, the ideal of the system with the field equations is radical, and
for any monomial ordering the reduced Grobner basis is the set of linear polyno-
mials {x; —a;};, where {z;}; are the variables and a; € F, is the i-th coordinate
of the solution. The classical approach consists in computing the Grobner ba-
sis with respect to a degree-reverse lexicographic order (grevlex), that will keep
the degree of the polynomials as small as possible during the computation, and
behaves usually better than other monomial orderings in terms of complexity.

Generic Grobner bases algorithms and their link with linear algebra
Since the first descriptions of algorithms to compute Grébner bases [18], far more
efficient algorithms have been developed. On the one hand, substantial practical
speed-ups were achieved by incorporating and accelerating fast linear algebra
operations such as Gaussian elimination on the Macaulay matrices, which are
sparse and structured (see Faugere’s F4 algorithm [3T], variants of the XL algo-
rithm [22], and for instance GBLA [I7]). We recall that the Macaulay matrix in
degree d of a homogeneous system (f;); is the matrix whose columns correspond
to the monomials of degree d sorted in descending order w.r.t. a chosen mono-
mial ordering, whose rows correspond to the polynomials tf; for all ¢ where ¢
is a monomial of degree d — deg(f;), and whose entry in row ¢f; and column u
is the coefficient of the monomial v in the polynomial ¢f;. In the case of a sys-
tem containing field equations, we consider compact Macaulay matrices, where
all monomials are reduced w.r.t. the field equations. For an affine system, the
Macaulay matrix in degree d contains all polynomials {¢f;} for deg(tf;) < d and
the columns are the monomials of degree less than or equal to d.

The approaches from F4 or XL are similar in that they both compute row
echelon forms of some submatrices of Macaulay matrices for some given degree;
in fact, it was proven in [II] that the XL algorithm computes a so-called d-
Grobner basis, which is a basis of the initial system where all computations in
degree larger than d are ignored, and that one can rephrase the original XL
algorithm in terms of the original F4 algorithm.



Now, many variants of these algorithms have been designed to tackle specific
families of polynomial systems, and it seems that none of them performs always
better than the others. In our experimental considerations, we rely on the im-
plementation of the F4 algorithm which is available in magma V2.22-2 and is
recognised for its efficiency.

On the other hand, improvements have been obtained by refining criteria
which allow one to avoid useless computations (avoiding to consider monomi-
als that cannot appear, a priori detection of reductions to zero as in the F5
algorithm [32] and other signature-based algorithms that followed, see [30] for a
survey).

Complexity analysis for homogeneous systems For homogeneous systems,
and for a graded monomial ordering, the complexity of these algorithms in terms
of arithmetic operations is dominated by the cost of the row echelon forms on all
Macaulay matrices up to degree d, where d is the largest degree of a polynomial
in the reduced Grobner basisﬂ This degree d is called the index of regularity, or
degree of regularity, and it only depends on the ideal generated by the system,
not on the specific generators forming the system. Some algorithms may need
to go beyond degree d to check that no new polynomials will be produced,
like the XL Algorithm or the F4 Algorithm without the F5 criteria, but those
computations may be avoided if one knows in advance the degree of regularity
of the system. This parameter can be precisely estimated for different families
of generic systems, using the notions of regularity, of semi-regularity in the over-
determined case, and of bi-regularity in the bilinear case [T2JT5T4/35]. However,
those bounds may be very pessimistic for other specific (sub-)families of systems,
and deriving estimations in this situation is difficult a priori, in particular for
affine systems.

Definition 1. Let (f;); be (non necessarily homogeneous) polynomials in a poly-
nomial ring R. A syzygy is a vector (s;);, s; € R such that ), s;f; = 0. The
degree of the syzygy is defined as max;(deg(f;) +deg(s;)). The set of all syzygies
of (fi)i is an R-module called the syzygy module of (fi):-

For a given family of systems, there are syzygies that occur for any system
in the family. For instance, for any system (f;);, the syzygy module contains the
R-module spanned by the so-called trivial syzygies (e;fi — e;f;)i;, where e; is
the coordinate vector with 1 at index i. A system is called regular if its syzygy
module is generated by these trivial syzygies.

Let us consider the particular case of a zero-dimensional system (f;); of
homogeneous polynomials, generating an ideal I. As the system is homogenous
and has a finite number of solution, then it must have only 0 as a solution
(with maybe some multiplicities). In this case, the degree of regularity of the
system is the lowest integer d..e such that all monomials of degree d,o; are in

4 If the system contains redundant polynomials of degree larger than d, additional
operations are needed to check that those polynomials reduce to zero w.r.t. the
Grobner basis, but this has usually a negligible cost.
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the ideal of leading terms of I (see [I2I15]). Such a system is called semi-regular
if the set of its syzygies of degree less than d,eq(I) is exactly the set of trivial
syzygies of degree less than d,eg(I). Note that there may be non-trivial syzygies
in degree dyeq (1), which may be different for each system. As a consequence, all
polynomials occurring in the computation of a Grobner basis have degree < dyeq
and the arithmetic complexity is bounded by the cost of the row echelon form
on the Macaulay matrices in degree < dyeg.

Complexity analysis for affine systems For affine systems, things are differ-
ent. The degree of regularity can be defined in the same way w.r.t. the Grobner
basis for a grevlex ordering. But is not any more related to the complexity of the
computation: for instance, a system with only one solution will have a degree of
regularity equal to 1. We need another parameter to control the complexity of
the computation.

Let (fi); be a system of affine polynomials, and f!* the homogeneous part of
highest degree of f;. Let I = ({f;};) and I" = ({f}};), and let d", be the degree

reg
of regularity of I". What may happen is that, during the computation of the
basis in some degree d, some polynomials of degree less than d may be added to
the basis. This will happen any time a syzygy (s); for (f'); of degree d is such
that there exists no syzygy (si); for (fi); where s” is the homogeneous part of
highest degree of s;. In that case, ), sP f; is a polynomial of degree less than d
(the homogeneous part of highest degree cancels), that will not be reduced to
zero during the Grobner basis computation since this would give a syzygy (s;);
for (fi); with homogeneous part (s?);. This phenomenon is called a degree fall
in degree d, and we will call such syzygies (sf) that cannot be extended to syzy-
gies for (f;); in the same degree partial syzygies; the corresponding polynomial
>, sl fi is called the residue.

In cryptographic applications, the first degree fall dg has been widely used as
a parameter controlling the complexity in algebraic cryptanalysis, for instance
in the study of some HFE-type systems [29/4325] and Kipnis-Shamir systems
[56]. This first degree fall is simply the smallest d such that there exists a degree
fall in degree d on (f;);, and this quantity does depend on (f;);: it might be
different for another set of generators of the same ideal. Still, this notion takes
on its full meaning while computing a Grobner basis for a graded ordering, if we
admit that the algorithm terminates shortly after reaching the first degree fall
and without considering polynomials of higher degree. This can happen for some
families of systems, as explained in the next paragraph, but there are examples
of systems where the first degree fall dg is not the maximal degree reached
during the computation, in which case it is not related to the complexity of the
computation.

If the system ( flh)l is semi-regular, then the computation in degree less than
dﬁeg will act as if the polynomials where homogeneous: there cannot be degree
falls, as they would correspond to syzygies for the system (f/'); that is assumed
to be semi-regular. In degree dﬁeg, degree falls will occur for the first time, but at
this point the remainder of the computation is negligible compared to the previ-

ous ones: by definition of dfeg, all monomials of degree dfeg are leading terms of
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polynomials in the basis, and the remaining steps in the computation will nec-
essarily deal with polynomials of degree at most dﬁeg. Hence, the computations
are almost the same as the ones for (f*);, and the complexity is controlled by
dfeg, which is here the first degree fall for the system (f;);.

The behavior of the computation may be very different if degree falls occur in
a much smaller degree. A good example of what may happen for particular fami-
lies of systems is the affine bilinear case. It is proven in [35, Prop. 5] that a generic
affine bilinear system of m equations (f1,..., fm) € K[z1,..., 20, Y1, Yn,]
in n, + n, > m variables is regular. In particular, the Macaulay bound d;ez <
ng + ny, + 1 applies [46]. However, it was also proven in [35, Thm. 6] that for
a zero-dimensional affine bilinear system (m = ng + ny), dieg satisfies a much
sharper inequality dreg < min(n, +1,n,+1). The reason is that (homogeneous)
bilinear systems are not regular, but the syzygy module of those systems is well
understood [35]. In particular, there are syzygies for (f!*); coming from Jacobian
matrices, that are partial syzygies for (f;); and produce degree falls.

For affine systems, that are mainly encountered in cryptographic applica-
tions, and in particular for systems coming from a product of matrices whose
coefficients are the variables of the system, the Jacobian matrices have a very
particular shape that is easily described, and leads to a series of degree falls that
reduces the degree of regularity of those systems. This is explained in detail in
Section [l

5 Degree falls and low degree equations

5.1 Degree falls from the kernel of the Jacobian

Fundamental results from [35/56]. It has been realized in [56] that the first
degree fall in the Kipnis and Shamir modelling can be traced back to partial
syzygies obtained from low degree vectors in the kernel of the Jacobian of the
bilinear part of a system either with respect to the kernel variables or the linear
variables. This argument can also be adapted to our case and Jacobians with
respect to the support variables are relevant here. To understand the relevance
of the Jacobians for bilinear affine systems over some field K in general, con-
sider a bilinear affine system F = {f1,..., far} C K[s1,...,8¢.,¢1,...,¢,] of M

equations in t4 variables s and ¢, variables c. We denote by F" := {ff, ... fi1
the bilinear part of these equations. In other words each f; can be written as

fi = fzh + T,
where each r; is affine and f;" is bilinear with respect to {s1, ..., s, }JU{e1, ..., ¢}

We define the Jacobian matrices associated to F" as

ofy off off off
Os1 " Osyy dci1 "7 Ocy,
Jacg(Fh) = Do and Jaco(F") = oL
afky of of ofy
Os1 " Osyy dc1 T Ocy,

12



Note that Jacg(F") is a matrix with linear entries in K[cy, ..., ¢, ] whereas
Jaco(F™) is a matrix with linear entries in K[sy, ..., s;,]. As shown in [56][Prop.
1 & 2] vectors in the left kernel of these Jacobians yield partial syzygies. This is
essentially a consequence of the following identities that are easily verified:

S1 ff €1 f{L
Jacg(FM) [ : | =] and Jacc(F") | @ | =] :
St. M Ct. fi
For instance, a vector (gi, ..., ga) in the left kernel of Jace(F") is a syzygy for
F". as it satisfies
M flh C1
i=1 h
I Ct.

This gives typically a degree fall for F at degree 2 + max(degg;), with the
corresponding residue given by

M M M M
gt =Y _gifl+) giri=Y g
i=1 i=1 i=1 i=1

These Jacobians are matrices with entries that are linear forms. The kernel of
such matrices is well understood as shown by the next result.

Theorem 1 ([35]). Let M be an M xt matriz of linear forms in K[sq, ..., s¢_].
If t < M, then generically the left kernel of M is generated by vectors whose
coefficients are mazximal minors of M, specifically vectors of the form

V= ( ., 0 (—1)l+1 det(MJ\{j})*), - )1§j§M
i¢J J€Ti=ji

where J = {j1 <jo <--- <Jep1} C{Ll,...,. M}, #J =t + 1.

A direct use of this result however yields degree falls that occur for very
large degrees, namely at degrees ts+ 2 or t.+2. In the case of the Kipnis-Shamir
modelling, the syndrome modelling or the Ourivski-Johansson modelling, due to
the particular form of the systems, degree falls occur at much smaller degrees
than for generic bilinear affine systems. Roughly speaking, the reason is that the
Jacobian of a system coming from a matrix product splits as a tensor product, as
we now explain. This has been realized in [56] for the Kipnis-Shamir modelling,
and here we slightly generalize this result in order to use it for more general
modellings, and in particular for the Ourivski-Johansson modelling.

13



Jacobian matrices of systems coming from matrix products. Consider
a systern AXY = 0 where A = (ai,s)lgigm,lgsgpy X = (xs,t)lgsﬁp,lgtﬁr and

Il e

the x5 ;. The matrices A and Y may have polynomial coefficients, but they
do not involve the z,, variables. Below, we use the Kronecker product of two

matrices, for example A®@ YT = (ai7SYT)1<¢<m L<s<p’ We use the notations

VeCrow(A) = (A{l},* A{n},*)T and vece (A) = vecmw(AT).

Lemma 1. The Jacobian matriz of the system AXY = 0,,xn with respect to
the variables X can be written, depending on the order of the equations and
variables:

Jacyee,,,(x)(Vecco(AXY)) =Y ® A € K[A, Y]"™*"P
JaCyee, . (x) (VeCrow(AXY)) = AR YT € K[A, Y|P,

Proof. For 1 <i<m, 1 < j <mn, the equation in row i and column j of AXY

18
P r
fi,j = E g Aj,sTs,tYt,j-

s=1t=1

We then have, for 1 < s<pand 1<t <r, Sii = a;,5Yt,; S0 that in row order,

o,
Jace, o ze, ({fits-- s fim}) = ( - )KK" =ais Wrj)1<jon = a; Y.

8xs,t 1<t<r
1<t<r -

The result follows from the definition of the Kronecker product of matrices. The
proof when the equations and variables are in column order is similar. a

Application to the Kipnis-Shamir modelling. Recall the system:

where M; € F**" and K is an 7 x (n —r) matrix of indeterminates. If we write
each M; = (M, M) with M, € FI"*"™) and M" € F7*%", then we have

km
> a2 (M) + M/K) =0y, (KS)
i=1

The bilinear and linear parts of the system are respectively Zf:l ;M7 K and

Zf:l x; M. Using Lemma (with equations in column order), when we compute
the Jacobian with respect to the entries of K (the so-called kernel variables in
[56]), we obtain

km km km
Jacyec,., (K) (veccol(z ;M!K)) = Z zi(In—py @M)=1I,_,® (Z le;/> .
i=1 i=1 i=1
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The kernel of Jacye,, (k) is generated by the vectors (vi,...,v,—,) with v; in

the left kernel of M = Y°" 2; M, that should be generated by (")) vectors
of minors, according to Theoremm Hence the kernel of Jac,...,, (k) is generated
by (,/}'1)(n — r) vectors. It is here that we see the point of having this tensor
product form. These kernel vectors have entries that are polynomials of degree
r by using Theorem [I] This gives degree falls at degree r + 2 and yields partial
syzygies that have degree r 4+ 1. These considerations are a slightly different way
of understanding the results given in [56, §3]. The syndrome modelling displays
a similar behavior, i.e. a degree fall at r» + 2 for the very same reason as can be
readily verified. Let us apply now Lemmal[l]to the Ourivski-Johansson modelling.

Application to the Ourivski-Johansson modelling. The system here is

f:{(la...am1)<a%> <02—<(1)C’1>R>}, (8)

where S’ is the (m — ) x (r — 1) matrix S{rt1..m},{2.r} and C' is the r x k
matrix C, (2. p41}- We add to F the field equations F; = {sfyj —5;5,r+1<
i<m,2<j<rcl;—e 1 <i<nr2<j<n}

With high probability, this system has a unique solution. As we used the
field equations, the ideal (F, F,) is radical. The system has ng = (m —17)(r — 1)
variables S, nc = (n— 1)r variables C, and n — k — 1 equations over F,m, hence
Neq = (n — k — 1)m equations over Fy, plus the field equations.

Consider the system F” formed by the bilinear parts of the equations in F.
A simple computation shows that

Fr={a" (La- a™"1) §(CY - C{R)},

where Cy = Cya 1y k+2.m)> C1 = Ciary (26413 and R = Ryo ji1y .-
If we take the equations and variables in row order, and use Lemma |1} then

Jacyec, . (S) (vecmw(fh)) =a" (1 o am_r_l) ® (C’g — C'{R/)T (9)

The elements in the left kernel of Jacyec,, ., (s)(VeCrow (FM)) are those in the right
kernel of C; — C/ R, and applying Theorem [} they belong to the vector space
generated by the vectors V j forany J = {ji < jo <--- <jr.} C{1,...,n—k—1}
of size r defined by

VJ:(..., 0 7...,(—1)l+1det(c/2/—CYRI*’J\{j}),...)1§jgn,k,1.
1% j=irel

BEach V; gives a syzygy for F" and when applying it to F it yields a degree
fall in degree r + 1 because the entries of V' ; are homogeneous polynomials of
degree r — 1. The inner product of V' ; with the vector of the equations gives an
equation of degree < r since the homogeneous part of highest degree cancels, as
has been observed at the beginning of this section. Now the affine part of the
equations F is (1 o ar’l) (Cy — C1R).
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Writting H = (—RT In,k,l), then

~ T
det(C’Q’ - C/IIRI*,J\{j}) = det((C’H ){2”7-}’.]\{]'}).

Using the reverse of Laplace’s formula expressing a determinant in terms of
minors, we can compute the inner product of the vector V' ; with the ith row of
- T - T
Cy,—CiR=CH ,thatis 0 for 2 <iand det((CH ), ;) fori=1.
The product gives

Vi((la-- o) (Cy—CiR)) =V, (Co—CiR)" (1a--- am1)"
= det(Cy — C1R)..;. (10)

This yields a corresponding equation that will be reduced to zero by a degree-
(r + 1) Grobner basis of F. Hence the partial syzygies of degree r coming from
the degree fall in the (r + 1)-Macaulay matrix are exactly the maximal minors
of C5 — C1R. We have thus proven that

Theorem 2. The equations MaxMinors(C2 — C1 R) = 0, that are the mazimal
minors of the matriz Co — C1 R, belong to the ideal (F, Fq). Moreover, they are
reduced to zero by a degree (r + 1)-Grobner basis of {F,F,}.

Remark 1. If we are only interested in the first part of the theorem about the
maximal minors, then there is a simple and direct proof which is another illus-
tration of the role of the matrix form of the system. Indeed, let (S*,C”*) be a
solution of {F, F,}, then the nonzero vector (1S3 ---S5) = (la--- o™ 1) S*
belongs to the left kernel of the matrix C5 — C7R. Hence this matrix has rank
less than r, and the equations MaxMinors(Cy — C1 R) = 0 are satisfied for any
solution of the system {F,F,}, which means that the equations belong to the
ideal (F, F,) as this ideal is radical.

5.2 Analysis of the ideal MaxMinors(C2 — C1 R)

The previous theorem allows us to obtain directly degree r equations without
having to compute first the Macaulay matrix of degree r + 1. This is a signifi-
cant saving when performing the Grobner basis computation. A nice feature of
these equations is that they only involve one part of the unknowns, namely the
coefficient variables.

Moreover all these equations can be expressed by using a limited number of
polynomials as we now show. Some of them will be of degree r, some of them
will be of degree r — 1. If we perform Gaussian elimination on these equations by
treating these polynomials as variables and trying to eliminate the ones corre-
sponding to the polynomials of degree r first, then if the number of equations we
had was greater than the number of polynomials of degree r, we expect to find
equations of degree r — 1. Roughly speaking, when this phenomenon happens
we just have to add all the equations of degree » — 1 we obtain in this way to
the Ourivski-Johansson modelling and the Grébner basis calculation will not go
beyond degree r.
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Let us analyse precisely the behavior we just sketched. The shape of the
equations MaxMinors(Cy — C1R) = 0 is given by the following proposition,
where by convention det(Mg ) = 1 and the columns of R are indexed by {k +
2.n}:

Proposition 1. MaxMinors(Cy — C1R) is a set of ("_f_l) polynomials Py,
indezed by J C {k+ 2..n} of size r:

PJ = Z (—1)0‘](T2) det(RThJ\TQ) det(C*;r).

T1C{1..k+1},T2CJ
such that T=T1UTs has size #T=r

where o;(Ty) is an integer depending on Ty and J.

If1 ¢ T, the polynomial det(C . ) is homogeneous of degree r and contains
r! monomials; if 1 € T, det(C 1) is homogeneous of degree r — 1 and contains
(r — 1)! monomials.

Proof. The matrix Co — C1 R has size r x (n — k — 1), hence there are ("_f_l)

different minors Py = det(C( IﬂifA )«..7)- To compute them, we use the Cauchy-

Binet formula for the determinant of a product of non-square matrices:

det(AB) = > det(A, 1) det(Br.,)
TC{l.p},#T=r

where A € K™*P, B € KP*" and p > r. We apply this formula to Py, and use
the fact that, for T=T, UTy with 77 C {1..k+ 1} and T3 C {k + 2..n},

det (I_R > =0if Ty, ¢ J
n=k=1/ 1 u1,,J

= (=1)7" ") det(Ry, 1) if To C J,

using the Laplace expansion of this determinant along the last rows, with o ;(T2) =
d(k+7r)+(d—1)d/2+ ) ,cq, Pos(t,J) where Pos(t,J) is the position of ¢ in
J,and d = #J — #T5. ]

Each polynomial P; can be expanded into m equations over F,, the polynomial
Pjli] being the coefficient of P; in a’~!. When computing a grevlex Grébner
basis of the system of the P;[i]’s over F,, with an algorithm like F4 using linear
algebra, the first step consists in computing a basis of the Pjy[i]’s over F,.

It appears that there may be a fall of degree in this first step, in degree r,
that produces equations of degree r — 1. The following heuristic explains when
this fall of degree occurs.

Heuristic 1 — Overdetermined case: when m(”_f_l) > (") — 1, generically,

a degree-r Grébner basis of the projected system MaxMinors(Cy—C1R) =0

ofm("fffl) equations over F, contains (:f:ll) — 1 equations of degree r — 1,

that are obtained by linear combinations of the initial equations.
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— Intermediate case: when () —1 > m(”fffl) > (";1), generically a degree-r
Grébner basis of the projected system MaxMinors(Co—C1R) = 0 contains
m("_f_l) — (”;1) equations of degree v — 1, that are obtained by linear

combinations of the initial equations.
— Underdetermined case: When m (" #~!

r Grébner basis of the system contains m("fffl) polynomials that are all of
degree .

Remark 2. Here overdetermined /underdetermined refers to the system of max-
imal minors given by the set of equations MaxMinors(Cs — C1R) =0

Remark 3. The degree-r Grobner bases also contain polynomials of degree r in
the overdetermined and intermediate cases, but we will not compute them, as
experimentally they bring no speed-up to the computation, see Section [6.1

Proposition 2. Computing the polynomials in a degree-r Grébner basis of the
projected equations MaxMinors amounts to solving a linear system with v =
m("_f_l) equations in p = () variables, which costs O(min(p,v)*~2uv) op-
erations in the base field, where w is the exponent of matriz multiplication (see

Section .

Proof. It is possible to view the system MaxMinors(C'y—C'1 R) projected over F,
as a linear system of u = m("_k_l) equations, whose variables are the v = (:,L)
unknowns zr = det(C ) for all T C {1..n} of size r. The matrix associated to
this linear system is a matrix M of size u X v whose coefficient in row (i, J) :

ie{l.m},J C {k+2..n},#J =r, and column xr is, with 7o = TN{k+2..n}:

[ (=1)77 ") det(Ryngr. jt1y,0m)  if T2 C J,

(1)
0 otherwise.

M, J),z7]) = {
where [a’~']3 is the ist component of 3 € Fgm viewed in the vector space Fy*
with generator basis (1 a ... a™™1).

A basis of the vector space generated by the equations MaxMinors(Cs —
C.R) =0 is given by M - T where M is the row echelon form of M and T is
the column vector formed by the polynomials det(C. r) : #1T = r. As we are
searching for equations of degree r — 1, we order the variables zr such that the
ones with 1 € T that correspond to polynomials det(C ) of degree r — 1 are
the rightmost entries of the matrix. a

Heuristic [[l can be stated in terms of the matrix M. In the overdetermined
case, that is when m("_f_l) > (") —1, we expect matrix M to have rank () —1
with high probability. This rank can not be larger, as the (left) kernel space of
the matrix has dimension 1 (this comes from the fact that the equations are
homogeneous). Hence, M -T produces (") equations of degree r, and ("~]) —1
equations of degree r — 1, that have all the shape det(C. r) or det(C. ) —
det(C 1,) where Ty corresponds to the free variable zp, of the linear system,
1 € Ty. In the intermediate and underdetermined cases, we also expect matrix M
to be full rank in general, and to be also full rank on the columns corresponding

to the ep’s of degree r.
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6 Experimental results, complexity bounds, and security

6.1 Experimental results

We did various computations for different values of the parameters (m,n,k,r).
We got our best complexity results by doing the following steps:

1. compute the set of equations F which comes from (1 Q- am_l) S(Cy—Ci1R)

specialised as in @,

2. compute the system MaxMinors(Cy — C1 R),

3. compute the matrix M from and its echelon form M, let J be the set
of the resulting equations of degree  — 1 in the C' variables,

4. if J is empty, then let J be the set of equations coming from M of degree
r in the C variables,

5. compute G' a reduced degree-d Grobner basis of the system {F,J,F, },

where
r in the overdetermined case,
d=<rorr+1 in the intermediate case,
r+2 in the underdetermined case.

The computations are done using magma v2.22-2 on a machine with an Intel®
Xeon® 2.00GHz processor. Here are the notation used in all tables:

ng = (r — 1)(m — r): the number of variables in .S

nc = r(n — 1): the number of variables in C

Neg = m(n — k — 1): the number of equations in F

d : ngy.: the number of equations in J, where d denotes the degree of the
equations and n,, the number of them:

e r—1: (:‘:i) — 1 in the overdetermined case
n—k—1

T

e r—1: m( ) — (";1) in the intermediate case
o r: m("fffl) in the underdetermined case

Tsy..: time of computing the ny,. equations of degree r — 1 or r in J

TGpsy-: time of the Grobner basis computation of {7, F4}

Tey: time of the Grobner basis computation of {F, J, F4}

dys¢: the degree where we observe the first fall of degree

dmaz: the maximal degree where some new polynomial is produced by the

F4 algorithm

e “Max Matrix size”: the size of the largest matrix reduced during the F4
computation, given by magma. We did not take into account the useless steps
(the matrices giving no new polynomials)

Table [1] page [20] gives our timings on the parameters proposed in [55]. For
each set of parameters, the first row of the table gives the timing for the direct
computation of a Grobner basis of {F, F,} whereas the second row gives the
timings for the Grébner basis of {F, 7, F,}. We can see that, apart from very
small parameters, the computation of the equations MaxMinors(Cs — C1R) is
negligible compared to the time of the Grébner basis computation.
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Among the proposed parameters, only the (15,15, 8, 3) was in the case where
the system MaxMinors is underdetermined. In that case, the most consuming
part of the computation is the Grobner basis of the system MaxMinors, that
depends only on the C variables. Once this computation is done, the remaining
Grébner basis of {F,J,F,} has a negligible cost.

Table [2 page 1] gives timing for different values of k and r, with m =
14 and n = 18 fixed. For r = 2, the values k € {1..11} correspond to the
overdetermined case, the value k£ = 12 to the intermediate one, and k = 13 to
the underdetermined case. The values k € {1..11} behave all like k¥ = 11. As
for the parameters from [55], the hardest cases are the ones when the system
MaxMinors is underdetermined, where the maximal degree reached during the
computation is r+ 2. For the overdetermined cases, the maximal degree is r, and
for the intermediate cases, it may be r or r + 1.

For r = 3, the overdetermined cases are k € {1..8}, k = 9 is intermediate
and k € {10..11} are underdetermined. Values of k£ > 12 do not allow a unique
decoding for r = 3, the Gilbert-Varshamov bound being 2 for those values.

For r = 4 the tradeoffs are 1 < k < 6, k = 7 and 8 < k < 9 for the three
cases, and for r =5, 1 < k<5, k=6and 7 < k < 8 We could not perform
the computations for the intermediate and underdetermined cases, due to a lack
of memory. We also observe that the first fall of degree (dss) does not always
predict the complexity of the computation.

Table [3] page [2] gives the timings for a fixed r = 3, a ratio n = 2k and
various values of k. Again, we can observe that for defavorable cases (k = 6,7)
the maximal degree is r + 2 or r + 1 rather than r, making the computation
harder for small values of k than for larger.

Table 1. We compare the behavior of the Grobner basis computation for the param-
eters considered in [48], with and without adding to the system the equations 7.

m|n|k|rinsinc Neq | Nsyz Tsyz TGbsyz Taw dff dmaz|| Max Mat Size
25[30[15]2]23]58] 350 04s| 3] 3[ 18550 x19338
1:28]0.4 s 0.02s| 2| 2| 1075 x 749
30[30]16[2[28]58] 390 0.5s] 3] 3] 22620 x 25288
1:28)0.4 s 0.02s| 2 2| 1260 x 899
30[50]20]2[28]98] 870 2.2s] 3] 3] 67860 x 57898
1:48)3.8 s 0.07s| 2| 2| 2324 x 1499
50[50[26]2[48] 981150 74s| 3] 3[[112700 x 120148
1:48[3.5 s 02s| 2| 2 3589x2499
15[15] 7 [3[24]42] 105 60.1s| 4| 4| 77439 x 153532
2:90[0.2 s 0.06s| 3| 3| 8860 x 13658
15[15] 8 [3[24[42] 90 - 4 >5 -
3:300/0.3 s| 162s| 0.2s| 4]  5||191515 x 457141
20[20]10[3[34]57] 180 450 s| 4] 4[[233672 x 543755
2:170[1.0 s 0.2s| 3] 3| 22124 x 35087
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Table 2. m = 14 and n = 18.

[ k[r[ nsyz[ns[nc[neq[ Tsy-. [TGbSyz[ TGb[dff[dmaI[ Max Matrix size [ Mem.]
112 1:16]12| 34| 84| < 0.1s <0.1s] 2 2 322 x 251 34 Mo
12|12 1:4| 12| 34| 70| < 0.1s <0.1s] 3 3 1820 x 2496 34 Mo
13|2] 2:84|12| 34| 56| < 0.1s| 32s 0s| 3 4| 231187 x 141064 621 Mo
8(3| 2:135(22| 51{126| 0.6 s 0.1s] 3 3| 13179 x 18604 34 Mo
9(3| 2:104|22| 51{112| 0.5s 0.7s] 3 3| 10907 x 18743 67 Mo
44| 3:679| 30| 68182 12.1 s 53.7s| 2 4| 314350 x 650610 1.3 Go
5(4| 3:679| 30| 68{168| 9.4 s 59.3s| 4 4| 314350 x 650610 2.0 Go
6(4| 3:679| 30| 68({154| 7.1s 69.4s| 4 4| 281911 x 679173 3.6 Go
215(4:2379| 36| 85(210(138.8 s 2758 2 4| 416433 x 669713 1.1 Go
5(5(4:2379| 36| 85{196| 44.8 s 5h08| 2 5(7642564 x 30467163(253.6 Go

Table 3. The parameters are r = 3, m =n, k = 3.

k| msyz| ns|nc| MNeq Tsy-|TGosy= Teb|dmaz | Memory
6| 3:120| 18| 33| 60 0.2s| 117 s 0.02s 5 4.9 Go
7| 3:280| 22| 39| &4 0.1s| 9.7s 0.1s 4/ 0.3 Go
8| 2:104| 26| 45| 112 0.2s 0.1s 3| .04 Go
17 2:527| 62| 99| 544 34.3s 4.7s 3| 0.3 Go
27(2:1377(102|159|1404| 650.2s 161.3s 3| 2.7 Go
3712:2627(142(219|2664| 5603.6s 3709.4s 3| 15.0 Go
4712:4277|182(279|4324|26503.9s 26022.6s 3| 83.0 Go

6.2 Complexity analysis and security over F,

Now, we give an upper bound on the complexity of our algebraic approach to
solve the (m,n, k,r)-decoding problem using the modelling of Section The
complexity is estimated in terms of the number of operations in Fy that the
algorithm uses. This allows us to update the number of bits of security for
several cryptosystems, as showed in Table {4t Loidreau’s one [49], ROLLO [7],
and RQC [3]. Note that the restriction to Fy is only there because we want to
derive security values. If one works over a larger field F,, a similar analysis can
be derived. The only change in this case is to consider the relevant number of
monomials. Note also that even if Algorithm [1| works over any field, its success
probability given in Proposition [3| depends on gq.

Remark that, in Table [4 for the sets of parameters which do not satisfy
Eq. , which correspond to underdetermined instances, we assume that the
system can be solved at d = r+ 1. It is a conservative choice: in the experiments
of Section the maximal degree is often r for the underdetermined cases.

The complexity bound follows from the fact that the Grébner basis algorithm
works with Macaulay matrices of degree § for increasing values of § up to d, the
degree for which the Grobner basis is found (see Section 4] for a more detailed
description). At each of these steps, the algorithm performs a Gaussian elimi-
nation algorithm on a Macaulay matrix which has at most ((mfr)(rfél)ﬂ"*l)r)
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Cryptosystem|Parameters (m,n,k,r)| d=r |d=r+ 1|Previous
Loidreau (128,120,80,4) 96.3 117.1 256
ROLLO-I-128 (79,94,47,5) 114.9 134.5 128
ROLLO-I-192 (89,106,53,6) 142.2 162.5 192
ROLLO-I-256 (113,134,67,7) 174.0 195.3 256
ROLLO-II-128 (83,298,149, 5) 132.3 155.4 128
ROLLO-II-192 (107,302,151, 6) 161.5 185.0 192
ROLLO-II-256 (127,314,157,7) 191.6 215.4 256
ROLLO-III-128 (101,94,47,5) 117.1 137.2 128
ROLLO-III-192 (107,118, 59, 6) 145.7 166.6 192
ROLLO-ITI-256 (131,134,67,7) 175.9 197.5 256
RQC-I (97,134,67,5) 121.1 142.0 128
RQC-II (107,202,101, 6) 154.2 176.5 192
RQC-IIT (137,262,131, 7) 188.4 211.9 256

Table 4. Security in bits for several cryptosystems with respect to our attack, com-

puted using Eq. with w = 2.807, d = r or d = r+ 1. The values in bold correspond
the most likely maximal degree, i.e. r if Eq. holds and r 4+ 1 otherwise. The last
column gives the previous best known security values, based on the attack in [10].

columns and fewer rows than columns. The number of columns is the number of
squarefree monomials of degree ¢ in (m — r)(r — 1) 4+ (n — 1)r variables.

In general, Gaussian elimination of a 1 X v matrix of rank p over a field has
a complexity of O(p*~?uv) C O(max(u,r)“) operations in that field [19/54].
Here, w is the exponent of matrix multiplication, with naive bounds 2 < w < 3.
The best currently known value for w is w ~ 2.37 [47], by an improvement of
Coppersmith-Winograd’s algorithm. In terms of practical performances, the best
known method is based on Strassen’s algorithm, which allows one to take w ~
2.807, and when the base field is a finite field, this exponent is indeed observed
in practice for matrices with more than a few hundreds rows and columns.

The Macaulay matrices encountered in the Grobner basis computations we
consider are usually very sparse and exhibit some structure. Some Gaussian
elimination algorithms have been designed specifically for matrices over Fy [4],
also for sparse matrices [16], and even to take advantage of the specific structure
of Macaulay matrices (see [17]; we expect Magma’s closed-source implementation
of Fy to use similar techniques). However, none of these optimized algorithms
has been proven to reach a complexity which is asymptotically better than the
one mentioned above, apart from speed-ups by constant factors.

As a result, we bound the complexity of the step of degree § in the Grébner
basis computation by that of performing Gaussian elimination on a u x v matrix
over Fo, with p <v = ((mf’“)(rfél)ﬂnfl)’”); the overall computation then costs

d m—r)(r—1 n—1)r N
O((; (( )( 5>+< >>>> 12
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operations in Fs. Let us now focus on the case m = n = 2k and r ~ /n. Then
the complexity of our approach is as in Eq. with d = r. Using a similar
analysis, the approach based on Kipnis-Shamir’s modelling has a complexity of

o <<§ (km—i—r(n—r)))w )
5=0 0
operations. Asymptotically, the dominant term in the former bound is of the
order of 2347 log2(1)  to be compared to 22¢71°82(") in the Kipnis-Shamir bound.
Also, the aforementioned combinatorial attacks ([I0]) would have a complexity
of the order of 22" when m = n = 2k.

Finally, note that the complexity bound stated above was derived under
assumptions: in Section [3.3] we presented the modelling along with some as-
sumptions which allowed us to specialize variables a priori and still ensure that
the algorithm of Section [5] yields the solution Ae. In general, the assumption
might not hold, that is, the specific specialization made in Section could be
wrong. We use Algorithm [I] in order to specialize more variables: it first uses
the specialization detailed in Section [3.3] and if that one fails, follows on with
other similar specializations. This algorithm uses the subroutine Solve(S,C, R),
which augments the system as explained in Section [5| and returns a solution to
Eq. if one is found and ) otherwise.

Input: Matrix R

Output: A solution to the system in Eq. or ()
S = m X r matrix of variables

C = r X n matrix of variables

Set the first column and the first row of S to [1 0 --- 0]

Set a randomly selected column of C' to [1 0 --- 0]7

Choose at random T__llj disjoint subsets T; C {2,...,m} of cardinality r — 1
for i< 1to |[2='] do

Set the (r — 1) x (r — 1) submatrix St, (2,...r} to In_1
sol = Solve(S,C, R)
if sol # ) then return sol

return ()

Algorithm 1: (m,n, k,r)-Decoding

For positive integers a and b with a < b, we denote by pg 4,5 := Hf;ol (1 — qi*b)

the probability that a uniformly random matrix in ]FZXZ’ has full rank.

Proposition 3. Fiz integers m,n,k,r, andletc € {1,..., LT:%J }+. Suppose that
a (m,n, k,r)-rank decoding instance is chosen uniformly at random, and that the
input matriz R is built from this instance. Then, the probability that Algorithm/[]]

makes at most ¢ calls to Solve(S, C, R) before finding a solution is greater than

1- q—r (1 _ (1 - pq,rl,rl)c)

1- q—n Pgr—1,m—1

23



The proof is differed to
If one applies this proposition to the cryptosystems mentioned in Table [4]

with at most 5 calls to Solve(S,C, R), Algorithm will return a solution with
a probability always greater than 0.8; note that for these instances the quantity
LT:H is greater than 15, and around 20 for most of them.

In the event where Algorithm|l|returns § after [ Z2=L | calls to Solve(S,C, R),
one can run it again until a solution is found. The probabilities mentioned in
the previous paragraph show that for parameters of interest a second run of the
algorithm is very rarely needed.

7 Conclusion

In this paper we introduce a new approach for solving the Rank Metric Decoding
problem with Grobner basis techniques. Our approach is based on adding partial
syzygies to a newer version of a modelling due to Ourivski and Johansson.

Overall our analysis shows that our attack, for which we give a general es-
timation, clearly outperforms all previous attacks in rank metric for a classical
(non quantum) attacker. In particular we obtain an attack below the claimed
security level for all rank-based schemes proposed to the NIST Post-Quantum
Cryptography Standardization Process. Note that there has been some very re-
cent progress [13] on the modelling and the attack proposed here. This results in
even less complex attacks and in the removal of the Grobner basis computation
step: it is replaced by solving a linear system. Although our attack and its recent
improvement really improve on previous attacks for rank metric, they meanwhile
suffer from two limitations.

First these attacks do not benefit from a direct Grover quantum speed-up,
unlike combinatorial attacks. For the NIST parameters (with the exception of
Rollo-1-192 for the latest attack [13]) the best quantum attacks still remain quan-
tum attacks based on combinatorial attacks, because of the Grover speed-up.
Second, these attacks need an important amount of memory for large parame-
ters.
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Appendix: Proof of Proposition

Let n,m, k,r be positive integers such that n and m are both greater than r.
Let E be a F,-vector space of Fym of dimension r spanned by {E1, Es, ..., E,}
and let e € Fj,» whose components generate E. By definition, there exists a
non-zero coordinate e; of e, and hereafter one focuses on the vector space A\E =
(AE1,AE3, ..., AE,) where A = e; .

Given a basis (1, a,...,a™™!) of Fym over F,, one can write a basis of A\E as
a matrix § € Fy**". By construction, 1 € AE, so that we can set the first column

and the first row of S to the vectors [1 0 --- 0]Tand [1 0 --- 0]. We write S
for the remaining (m — 1) x (r — 1) block of S. One can also express the coordi-
nates of the components of Ae (with respect to the basis {AE1, AEa,...,\E,})
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as a matrix C € F;*". By construction, the j-th column of C' is the vector
1o - 0.

Lemma estimates the probability to come across an index j such that e; is
non-zero. Once such an index is found, Lemma [3] computes the probability that
Algorithm |1| succeeds in finding a non-singular block in S.

Lemma 2. With the same notation and hypotheses as above, if an index j is
chosen uniformly at random in {1,...,n}, then e; will be non-zero with proba-

bility (1 —q7")/(1 —q™").

Proof. A component e; of e will be non-zero if and only if its corresponding
column of coordinates in the matrix C' is non-zero. If the components of e were
chosen uniformly at random in the vector space E of dimension r, the probability
for a random component to be equal to zero would be exactly ¢—". This is not
the case since there is a constraint on C, more precisely it has to be of rank r.

Taking this into account, we can count the number of full rank matrices in
;™ that have a zero column. The ratio between those matrices and all the full
rank matrices in Fy*™ is exactly the probability for a column chosen at random
in C to be zero:

ﬁ qn—l _ qz qn—r -1
=0

qn _ qi qn -1 :
One concludes the proof by taking the complementary event. a
Lemma 3. Let c € {1,..., \_T:llj}; with the same notation and hypotheses as

above, if E and e are chosen uniformly at random, and if the inverse of a non-
zero coordinate of e, A, is given, then at least one of the ¢ disjoint blocks B; in
S is not singular with probability greater than

(1 = pgr—1,-1)°
pq,r—l,m—l

1—

Proof. Since A is a fixed nonzero element in Fgm and since E is uniformly random,
the vector space AF is also uniformly random. Therefore S is a matrix chosen
uniformly at random among all the full rank matrices in Fgmfl)x(r*l). The
probability that all the ¢ blocks B; in S are singular is then bounded from

above by
T 2 T— 2 ¢ T— m—1l—c(r—
(q(f D* _ g(r=1) pwimil) g(r=D(m=1=c(r-1))

q(mil)(ril)pq,r—l,m—l

; (13)

(m= X1 ith ¢ singular

Fym >0 1 s

which is the ratio between the number of matrices in F

disjoint blocks and the total amount of full rank matrices in
an upper bound since the number of matrices with ¢ singular blocks includes
matrices that are not of full rank.

The reader can check that the term is equal to

(1 B pq,rfl,rfl)c
Pq,r—1,m—1
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The probability that at least one of the B;’s is non-singular is obtained using
the complementary probability. a

In Algorithm [I] the first requirement not to return fail is to find an index j such
that e; is non-zero; Lemma |§| gives the probability of this event, that is to say
(1—¢7")/(1—¢~™). Once this index is found, the associated vector space AE is
distributed uniformly among all the vector spaces of Fym of dimension r since £
is chosen at random. Using Lemma |2} one has a lower bound on the probability
that at least one of the ¢ block B;’s is non singular. Thus the probability of

Proposition [3] is
1- qir (1 o (1 - pq,rl,rl)c)
1- q—n Pgr—1,m—1
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