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Abstract. The Rank metric decoding problem is the main problem con-
sidered in cryptography based on codes in the rank metric. Very efficient
schemes based on this problem or quasi-cyclic versions of it have been
proposed recently, such as those in the submissions ROLLO and RQC
currently at the second round of the NIST Post-Quantum Cryptography
Standardization Process. While combinatorial attacks on this problem
have been extensively studied and seem now well understood, the situa-
tion is not as satisfactory for algebraic attacks, for which previous work
essentially suggested that they were ineffective for real parameters. In
this paper, starting from Ourivski and Johansson’s algebraic modelling
of the problem into a system of polynomial equations, we show how to
augment this system with easily computed equations so that the aug-
mented system is solved much faster via Gröbner bases. This happens
because the augmented system has solving degree r or r + 1 depending
on parameters, where r is the rank weight, which we show by extending
results from Verbel et al. (PQCrypto 2019) who lower the solving de-
gree to r + 2 in a similar context. We give complexity bounds for this
approach as well as practical timings of an implementation using magma.
This improves upon the previously known complexity estimates for both
Gröbner basis and (non-quantum) combinatorial approaches, and for ex-
ample leads to an attack in 200 bits on ROLLO-I-256 whose claimed
security was 256 bits.

Keywords: Post-quantum cryptography · NIST-PQC candidates · rank
metric code-based cryptography · Gröbner basis.

1 Introduction

Rank metric code-based cryptography. In the last decade, rank metric
code-based cryptography has proved to be a powerful alternative to more tradi-
tional code-based cryptography based on the Hamming metric. This thread of
research started with the GPT cryptosystem [36] based on Gabidulin codes [35],
which are rank metric analogues of Reed-Solomon codes. However, the strong
algebraic structure of those codes was successfully exploited for attacking the
original GPT cryptosystem and its variants with the Overbeck attack [52] (see



for example [50] for one of the latest related developments). This has to be traced
back to the algebraic structure of Gabidulin codes that makes masking extremely
difficult; one can draw a parallel with the situation in the Hamming metric where
essentially all McEliece cryptosystems based on Reed-Solomon codes or variants
of them have been broken. However, recently a rank metric analogue of the
NTRU cryptosystem from [43] has been designed and studied, starting with the
pioneering paper [37]. Roughly speaking, the NTRU cryptosystem relies on a
lattice that has vectors of rather small Euclidean norm. It is precisely those
vectors that allow an efficient decoding/deciphering process. The decryption of
the cryptosystem proposed in [37] relies on LRPC codes that have rather short
vectors in the dual code, but this time for the rank metric. These vectors are
used for decoding in the rank metric. This cryptosystem can also be viewed as
the rank metric analogue of the MDPC cryptosystem [49] that relies on short
vectors in the dual code for the Hamming metric.

This new way of building rank metric code-based cryptosystems has led to a
sequence of proposals [37,39,5,6], culminating in submissions to the NIST post-
quantum competition [1,2], whose security relies solely on the decoding problem
in rank metric codes with a ring structure similar to the ones encountered right
now in lattice-based cryptography. Interestingly enough, one can also build sig-
nature schemes using the rank metric; even though early attempts which relied
on masking the structure of a code [40,9] have been broken [23], a promising
recent approach [8] only considers random matrices without structural masking.

Decoding in rank metric. In other words, in rank metric code-based cryptog-
raphy we are now only left with assessing the difficulty of the decoding problem
for the rank metric. The rank metric over FNq , where Fq is the finite field of
cardinality q and N = mn is a composite integer, consists in viewing elements
in this ambient space as m × n matrices over Fq and considering the distance
d(X,Y ) between two such matrices X and Y as

d(X,Y ) = Rank (Y −X) .

A (linear matrix) code C in Fm×nq is simply a Fq-linear subspace in Fm×nq , gen-
erated by K matrices M1, . . . ,MK . The decoding problem for the rank metric
at distance r is as follows: given a matrix Y in Fm×nq at distance ≤ r from C, re-
cover an element M in C at distance ≤ r from Y . This is precisely the MinRank
problem given as input Y and M1, . . . ,MK :

Problem 1 (MinRank).
Input : an integer r ∈ N and K + 1 matrices Y ,M1, . . . ,MK ∈ Fm×nq .
Output : field elements x1, x2, . . . , xK ∈ Fq such that

Rank

(
Y −

K∑
i=1

xiM i

)
≤ r.

As observed in [19], the MinRank problem is NP-complete and the best known
algorithms solving it have exponential complexity bounds.
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Matrix codes obtained as Fqm-linear codes. However, the trend in rank
metric code-based cryptography has been to consider a particular form of linear
matrix codes: they are linear codes of length n over an extension Fqm of degree m
of Fq, that is, Fqm-linear subspaces of Fnqm . In the rest of this section, we fix a basis
(β1, . . . , βm) of Fqm as a Fq-vector space. Then such codes can be interpreted as
matrix codes over Fm×nq by viewing a vector x = (x1, . . . , xn) ∈ Fnqm as a matrix
Mat(x) = (Xij)i,j in Fm×nq , where (Xij)1≤i≤m is the column vector formed by
the coordinates of xj in the basis (β1, . . . , βm), that is, xj = X1jβ1+· · ·+Xmjβm.

Then the “rank” metric d on Fnqm is the rank metric on the associated matrix
space, namely

d(x,y) := |y − x| , where we define |x| := Rank (Mat(x)) .

A linear code C of dimension k of such a kind (that is, an Fqm-linear subspace
of Fnqm of dimension k) specifies a matrix code Mat(C) := {Mat(c) : c ∈ C} in
Fm×nq of dimension K := mk over Fq: it is readily verified that a basis of this
Fq-subspace is given by (Mat(βicj))1≤i≤m,1≤j≤k where (c1, . . . , ck) is a basis of
C over Fqm .

There are several reasons for this trend. On the one hand, the matrix codes
for which a decoding algorithm is known are of this kind. On the other hand,
such codes have a much shorter description than general matrix codes. Indeed,
a matrix code in Fm×nq of dimension K = km can be specified by a basis of
it, which uses Kmn log(q) = km2n log(q) bits, whereas a matrix code obtained
from an Fqm-linear code of dimension k over Fnqm can be specified by a basis
(c1, . . . , ck) of it, which uses kmn log(q) bits and thus saves a factor m.

Progress in the design of efficient algorithms for decoding these specific ma-
trix codes suggests that their additional structure due to the Fqm-linearity may
not have a significant impact on the difficulty of solving the decoding problem.
For instance, a generic matrix code over Fm×nq of dimension K = mk can be de-
coded using the information set decoder of [38] within a complexity of the order
of qkr when the errors have rank at most r and m ≥ n, compared to qkr−m for the
decoding of a linear code over Fnqm in the same regime, using a similar decoder
[10]. Moreover, even if the decoding problem is not known to be NP-complete
for these Fqm -linear codes, there is a randomised reduction to an NP-complete
problem [41] (namely to decoding in the Hamming metric). Hereafter, we will
use the following terminology.

Problem 2 ((m,n, k, r)-decoding problem).
Input : an Fqm-basis (c1, . . . , ck) of a subspace C of Fnqm , an integer r ∈ N, a
vector y ∈ Fnqm at distance at most r of C (i.e. |y − c| ≤ r for some c ∈ C).
Output : c ∈ C and e ∈ Fnqm such that y = c + e and |e| ≤ r.
The region of parameters which is of interest for the NIST submissions corre-
sponds to m = Θ (n), k = Θ (n) and r = Θ (

√
n).

Gröbner basis techniques for decoding in the rank metric. The afore-
mentioned algorithm from [10] for solving the decoding problem follows a combi-
natorial approach pioneered in [51], which is related to decoding techniques for
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the Hamming metric. Another approach consists in viewing the decoding prob-
lem as a particular case of MinRank and using the algebraic techniques designed
for this problem; namely these techniques use a suitable algebraic modelling of a
MinRank instance into a system of multivariate polynomial equations, and then
solve this system with Gröbner basis techniques. Several modellings have been
considered, such as the Kipnis-Shamir modelling [44] and the minors modelling
(described for example in [33]); the complexity of solving MinRank using these
modellings has been investigated in [32,33].

The Kipnis-Shamir modelling boils down to a polynomial system which is
affine bilinear. This means that each equation has degree at most 2 and the set
of variables can be partitioned into two sets {x1, . . . , xs}∪{y1, . . . , yt} such that
all monomials of degree 2 involved in the equations are of the form xiyj ; in other
words, the equations are formed by a quadratic part which is bilinear plus an
affine part. Although the complexity of solving this system can be bounded by
that of solving bilinear systems, which is studied in [34], the complexity esti-
mates thus obtained are very pessimistic, as observed experimentally in [20]. A
theoretical explanation of why Gröbner basis techniques perform much better
on the Kipnis-Shamir modelling than on generic bilinear systems was later given
in [55]. It was also demonstrated there that the Kipnis-Shamir approach is more
efficient than the minors approach on several multivariable encryption or signa-
ture schemes relying on the MinRank problem. However, the speed-up obtained
for the Kipnis-Shamir modelling in the latter reference mostly comes from the
“superdetermined” case considered therein. When applied to the (m,n, k, r)-
decoding problem, this corresponds to the case where m = n and km < nr; this
condition is not met in the decoding problem instances we are interested in.

Another algebraic approach to solve the (m,n, k, r)-decoding problem was
suggested in [38, §V.]. It is based on a new modelling specific to Fqm -linear
codes which fundamentally relies on the underlying Fqm -linear structure and
on q-polynomials. Also, it results in a system of polynomial equations that are
sparse and have large degree. This approach seems to be efficient only if rk is
not much larger than n.

Our contribution. If one compares the best known complexity estimates, the
algebraic techniques appear to be less efficient than the combinatorial ones, such
as Ourivski and Johansson’s approach [51], for the parameters of the rank metric
schemes proposed to the NIST [7,3] or of other rank metric code-based cryptosys-
tems [48]. In [54], Levy-dit-Vehel and Perret pioneered the use of Gröbner basis
techniques to solve the polynomial system arising in the Ourivski-Johansson al-
gebraic modelling [51], with promising practical timings. In this paper, we follow
on from this approach and show how this polynomial system can be augmented
with additional equations that are easy to compute and bring on a substantial
speed-up in the Gröbner basis computation for solving the system. This new al-
gebraic algorithm results in the best practical efficiency and complexity bounds
that are currently known for the decoding problem; in particular, it significantly
improves upon the above-mentioned combinatorial approaches.
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There are several reasons why the Ourivski-Johansson algebraic modelling
improves upon the Kipnis-Shamir one. First, it has the same affine bilinear
structure and a similar number of equations, but it involves much fewer vari-
ables. Indeed, for the case of interest to us where m and k are in Θ(n) and r is in
Θ(n1/2), the Kipnis-Shamir modelling involves Θ(n2) equations and variables,
while the Ourivski-Johansson one involves Θ(n2) equations and Θ(n3/2) vari-
ables. Second, this modelling naturally leads to what corresponds to reducing
by one the value of r, as explained in Section 3. Third, and most importantly,
the main properties that ensure that the Kipnis-Shamir modelling behaves much
better with respect to Gröbner basis techniques than generic bilinear systems
also hold for the Ourivski-Johansson modelling. In essence, this is due to a solv-
ing degree which is remarkably low: at most r + 2 for the former modelling and
at most r + 1 for the latter. Recall that the solving degree indicates the max-
imum degree reached during a Gröbner basis computation; it is known to be a
strong predictor of the complexity of the most expensive step in a Gröbner basis
computation and has been widely used for this purpose with confirmations via
numerical experiments, see for instance [42,28,25,26,27,55].

To prove the third point, we start from the result about degree falls at the
core of [55], which is based on work from [34], and we extend it to a more
general setting which includes the Ourivski-Johansson modelling. In our case,
these degree falls mean that from the initial system of quadratic equations fi = 0
of the Ourivski-Johansson modelling, we are able to build many new equations
of degree r that are combinations

∑
i figij = 0 where the gij ’s are polynomials

of degree r− 1 involved in the j-th new equation. We also prove that, when the
parameters satisfy the condition

m

(
n− k − 1

r

)
≥
(
n

r

)
, (1)

by using that these polynomials
∑
i figij can be expressed as linear combinations

of only a few other polynomials, we can perform suitable linear combinations of
the equations

∑
i figij = 0’s giving

(
n−1
r−1

)
− 1 equations of degree r − 1. All

these polynomial combinations are easily computed from the initial quadratic
equations. By adding these equations and then performing Gröbner basis com-
putations on the augmented system, we observe that experimentally the Gröbner
basis algorithm behaves as expected from the degree fall heuristic:

– if (1) does not hold, the maximum degree reached in the Gröbner basis

computation is r+1, leading to an overall complexity of O
((

((m+n)r)r+1

(r+1)!

)ω)
operations in Fq, where ω is the exponent of matrix multiplication;

– if (1) holds, this degree is r and the overall complexity is O
((

((m+n)r)r

r!

)ω)
operations in Fq.

Note that for a majority of parameters proposed in [7,3], the condition (1) holds.
Taking for ω the smallest value currently achievable in practice, which is ω ≈ 2.8
via Strassen’s algorithm, this leads to an attack on the schemes proposed in these
NIST submissions which is in all cases below the claimed classical security level.

5



2 Notation

In the whole paper, we will focus on the case which is relevant for cryptographic
applications, namely when the field size q is a power of 2. The results given here
also apply to other field characteristics but involve putting the relevant signs
wherever this is needed. We also use the following notation and definitions:

– Matrices and vectors are written in boldface font M .
– For a matrix M its entry in row i and column j is denoted by M [i, j].
– The transpose of a matrix M is denoted by MT.
– For a given ring R, the ring of matrices with n rows and m columns and

coefficients in R is denoted by Rn×m.
– {1..n} stands for the set of integers from 1 to n.
– For two subsets I ⊂ {1..n} and J ⊂ {1..m}, we write M I,J for the submatrix

of M formed by its rows (resp. columns) with index in I (resp. J).
– We use the shorthand notation M∗,J = M{1..m},J and M I,∗ = M I,{1..n},

where M has m rows and n columns.
– α ∈ Fqm is a primitive element, so that (1, α, . . . , αm−1) is a basis of Fqm as

an Fq-vector space.
– For v = (v1, . . . , vn) ∈ Fnqm . The support of v is the Fq-vector subspace

of Fqm spanned by the vectors v1, . . . , vn. Thus this support is the column
space of the matrix Mat(v) associated to v (for any choice of basis), and its
dimension is precisely Rank(Mat(v)).

– An [n, k] Fqm-linear code is an Fqm-linear subspace of Fnqm of dimension k
endowed with the rank metric.

3 Algebraic modellings of the decoding problem

In what follows, we always consider parameters for which decoding instances
have a single solution e. For simplicity, we assume that the rank of e is exactly
r; in general one can run the algorithm for increasing values of the target rank
up to r, until a solution is found, and the most expensive step will correspond to
the largest considered rank. We consider here the (m,n, k, r)-decoding problem
for the code C and assume we have received y ∈ Fnqm at distance r from C and
look for c ∈ C and e such that y = c + e and |e| = r.

3.1 Solving the MinRank instance using Kipnis-Shamir’s modelling

As explained in Section 1, a possible approach to perform the decoding is to solve
the underlying MinRank instance with km matrices in Fm×nq . Several methods
have been developed, and so far the Kipnis-Shamir modelling [44] seems to be
the most efficient. By introducing M0 := Mat(y), M1, . . . ,Mkm an Fq-basis of
Mat(C) and homogenising the corresponding MinRank problem, we want to find

(z0, . . . , zkm) in Fmk+1
q such that

∑km
i=0 ziM i = 0. (z0, z1, . . . , zkm) is a solution

to the MinRank problem if and only if the right kernel of
∑km
i=0 ziM i contains a
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subspace of dimension n−r of Fnq . With high probability, a basis of such a space

can be written in systematic form, that is, in the form [ In−r

K
]. Thus we have to

solve the system (
km∑
i=0

ziM i

)[
In−r
K

]
= 0, (2)

over Fq, where K is an r×(n−r) matrix of indeterminates. This system is affine
bilinear and has m(n− r) equations and km+ 1 + r(n− r) variables, which are
z0, z1, . . . , zkm and the r(n − r) entries of K; each equation has a bilinear part
as well as a linear part which only involves the variables yi.

3.2 Syndrome modelling

We recall here the modelling considered in [7,2]. Let H be the parity-check
matrix of C, i.e.

C = {c ∈ Fnqm : cHT = 0}.

The (m,n, k, r)-decoding problem can be algebraically described by the system

eHT = s where e ∈ F1×n
qm has rank r and s ∈ F1×(n−k)

qm is given by s := yHT.
Let (S1, . . . , Sr) ∈ Frqm be a basis of the support of e; then, e = [S1 · · · Sr]C,
where C ∈ Fr×nq is the matrix of the coordinates of e in the basis (S1, . . . , Sr).
Then expressing the elements Si in the basis (1, α, . . . , αm−1) of Fqm over Fq
yields [S1 · · · Sr] = [1 α · · · αm−1]S for some matrix S ∈ Fm×rq . Thus, the
system is rewritten as[

1 α · · · αm−1
]
SCHT = s, over Fqm with solutions in Fq. (3)

This polynomial system, that we refer to as the syndrome modelling, has m(n−k)
equations and mr+nr variables. It is affine bilinear (without terms of degree 1)
with respect to the two sets of variables coming from the support and from the
coordinates of the error. Besides, this system admits (qr−1)(qr−q) · · · (qr−qr−1)
solutions since this is the number of bases of the support. These solutions of the
system all correspond to the same unique solution e of the initial decoding prob-
lem. We can easily impose a unique solution by fixing some of the unknowns as
in the Kipnis-Shamir modelling, or as has been done in the Ourivski-Johansson
modelling that we will present next. It is worthwhile to note that this kind of
modelling has as the Kipnis-Shamir modelling Θ

(
n2
)

equations for the parame-
ter range of interest to us that is given in the introduction but significantly fewer
variables, since we now have only Θ

(
n3/2

)
unknowns. The Ourivski-Johansson

will be a related modelling that gives a further improvement.

3.3 Ourivski-Johansson’s modelling

We now describe the algebraic modelling considered in the rest of this paper,
which is basically Ourivski and Johansson’s one [51]. It can be viewed as an
homogenising trick. Instead of looking for c ∈ C and e of rank r that satisfy
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y = c + e, or what is the same for a c ∈ C which is such that |c + y| = r, we
look for c ∈ C and λ ∈ Fqm such that

|c + λy| = r. (4)

It is precisely here that the Fqm -linearity of C is used in a crucial way. Once we
have found such a c and λ, we have found a c + λy such that c + λy = µe for
some µ ∈ Fqm from which we deduce easily e. The point of proceeding this way
is that there are qm solutions to (4) and that this allows to fix more unknowns
in the algebraic system. Another point of view [51, Sec. 2] is to say that we
introduce the code C̃ := C + 〈y〉 and that we look for a rank r word in C̃, since
all such words are precisely the multiples λe for nonzero λ ∈ Fqm of the error
e we are looking for. Let [Ik+1 R] be a generator matrix in systematic form
of the extended code C̃; note that for a vector v, we have v ∈ C̃ if and only if
v[−RT In−k−1]T = 0. Using the notation e = [1 α · · · αm−1]SC as above,

and writing C = [C1 C2] with C1 ∈ Fr×(k+1)
q and C2 ∈ Fr×(n−k−1)

q , the fact
that e ∈ C̃ yields the system[

1 α · · · αm−1
]
S (C2 −C1R) = 0, over Fqm with solutions in Fq. (5)

Since all multiples λe are solutions of this system, we can specify S1 = 1, or
equivalently, set the first column of S to be [1 0 · · · 0]T. Doing so, the resulting
system is affine bilinear (without constant term), with (n − k − 1)m equations
and (m − 1)r + nr variables. Similarly to what is done in [51, Sec. 3], we also
specialise some other variables as follows; this allows us to reduce further the
number of variables and to ensure that the system has a unique solution.

Starting from the system above (with S1 = 1), we also specify the first column
C to [1 0 · · · 0]T. In this way, there is a single λe satisfying these constraints: the
one where λ is the inverse of the first coordinate of e (assuming it is nonzero, see
below). The system still admits several solutions which correspond to different
bases of the support of λe. To fix one basis of this support, we take an r × r
invertible submatrix of S and specify it to be the identity matrix; thus the system
has a single solution.

For the sake of presentation, in Section 5 we present our results assuming that
the first coordinate of e is nonzero and that the top r×r block of S is invertible;
these results are easily extended to the general case. Under these assumptions,
our system can be rewritten as follows:

F =

{[
1 α · · · αm−1

] [ Ir
0 S′

](
C2 −

[
1
0

C ′1

]
R

)}
, (6)

where S′ is the (m− r)× (r− 1) submatrix S{r+1..m},{2..r} and C ′1 is the r× k
submatrix C∗,{2..k+1}. We call the entries of S′ the support variables whereas
the entries of C ′1 and C2 are called the coefficient variables. In Section 6.2 we
give a procedure to handle the general case, by making several attempts to find
the invertible block of S and a nonzero component of e.
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4 Gröbner bases and degree falls

We refer to [22] for basic definitions and properties of monomial ordering and
Gröbner bases.

Since we are looking for solutions in Fq, we augment the polynomial system
we want to solve with the field equations, that is, the equation xqi − xi = 0 for
each variable xi arising in the system. In our case, as the system we consider
in practice has mainly only one solution in Fq (see Section 6), the ideal of the
system with the field equations is radical, and for any monomial ordering the
reduced Gröbner basis is the set of linear polynomials {xi − ai}i, where {xi}i
are the variables and ai ∈ Fq is the i-th coordinate of the solution. The classical
approach consists in computing the Gröbner basis with respect to a degree-
reverse lexicographic order (grevlex), that will keep the degree of the polynomials
as small as possible during the computation, and behaves usually better than
other monomial orderings in terms of complexity.

Since the first descriptions of algorithms to compute Gröbner bases [17], far
more efficient algorithms have been developed. On the one hand, substantial
practical speed-ups were achieved by incorporating and accelerating fast linear
algebra operations such as Gaussian elimination of the Macaulay matrices, which
are sparse and structured (see Faugère’s F4 algorithm [30], variants of the XL
algorithm [21], and for instance GBLA [16]). We recall that the Macaulay matrix
in degree d of a homogeneous system F = {fi}i is the matrix whose columns
correspond to the monomials of degree d sorted in descending order w.r.t. a
chosen monomial ordering, whose rows correspond to the polynomials tfi for
all i where t is a monomial of degree d − deg(fi), and whose entry in row tfi
and column u is the coefficient of the monomial u in the polynomial tfi. In
the case of a system containing field equations, we consider compact Macaulay
matrices, where all monomials are reduced w.r.t. the field equations. For an
affine system, the Macaulay matrix in degree d contains all polynomials {tfi}
for deg(tfi) ≤ d and the columns are the monomials of degree less than or equal
to d. The approaches from F4 or XL are similar in that they both compute
row echelon forms of some submatrices of Macaulay matrices for some given
degree; in fact, it was proven in [11] that the XL algorithm computes a so-called
d-Gröbner basis, which is a basis of the initial system where all computations
in degree larger than d are ignored, and that one can rephrase the original XL
algorithm in terms of the original F4 algorithm. Now, many variants of these
algorithms have been designed to tackle specific families of polynomial systems,
and it seems that none of them performs always better than the others. In our
experimental considerations, we rely on the implementation of the F4 algorithm
which is available in magma V2.22-2 and is recognised for its efficiency.

On the other hand, improvements have been obtained by refining criteria
which allow one to avoid useless computations (avoiding to consider monomials
that cannot appear, a priori detection of reductions to zero as in the F5 algo-
rithm [31] and the consecutive signature-based algorithms, see [29] for a survey).

For homogeneous systems, the complexity of these algorithms in terms of
arithmetic operations is dominated by the cost of the row echelon forms on all
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Macaulay matrices up to degree d, where d is the largest integer such that some
new non-zero polynomial is produced in the reduced row echelon form. This
degree d is called the index of regularity, or degree of regularity, and it only
depends on the ideal generated by the system, not on the specific generators
forming the system. Some algorithms may need to go beyond degree d to check
that no new polynomials will be produced, like the XL Algorithm or the F4
Algorithm without the F5 criteria, but those computations may be avoided if
one knows in advance the degree of regularity of the system. This parameter can
be precisely estimated for different families of generic systems, using the notions
of regularity, of semi-regularity in the over-determined case, and of bi-regularity
in the bilinear case [12,14,13,34]. However, those bounds may be way too pes-
simistic for other specific (sub-)families of systems, and deriving estimations in
this situation is difficult a priori, in particular for affine systems.

Definition 1. Let (fi)i be polynomials in a polynomial ring R. A syzygy is a
vector (si)i, si ∈ R such that

∑
i sifi = 0. The degree of the syzygy is defined by

maxi(deg(fi) + deg(si)). The set of all syzygies of (fi)i is an R-module called
the syzygy module of (fi)i.

For a given family of systems, there are syzygies that occur for any system in
the family. For instance, for any system {fi}i, the syzygy module contains the
R-module spanned by the so-called trivial syzygies (ejfi − eifj)i,j , where ei is
the coordinate vector with 1 at index i. A system is called regular if its syzygy
module is generated by these trivial syzygies.

The degree of regularity of a zero-dimensional system (fi)i of homogeneous
polynomials generating an ideal I (having thus more equations than unknowns)
is the lowest integer dreg such that all monomials of degree dreg are in the ideal
of leading terms of I (see [12,14]). It is also 1 + deg(HI(z)), where HI(z) is the
Hilbert series of I, which is a polynomial for zero-dimensional systems. Such a
system is called semi-regular if the set of its syzygies of degree less than dreg(I)
is exactly the set of trivial syzygies of degree less than dreg(I). Note that there
may be non-trivial syzygies in degree dreg(I), which may be different for each
system. As a consequence, all polynomials occurring in the computation of a
Gröbner basis have degree ≤ dreg and the arithmetic complexity is bounded by
the cost of the row echelon form on the Macaulay matrices in degree ≤ dreg,
whose dimensions can be bounded by its number of columns.

For affine systems, things are different. The degree of regularity can be defined
in the same way w.r.t. the ideal and the Hilbert series, but is not any more
related to the complexity of the computation: for instance, a system with only
one solution will have the Hilbert series HI(z) = 1, and this degree is 1. We need
another parameter to control the complexity of the computation.

Let {fi} be a system of affine polynomials, and f̃i the homogeneous part
of highest degree of fi. Let I = 〈{fi}i〉 and Ĩ = 〈{f̃i}i〉, and let d̃reg be the

degree of regularity of Ĩ. What may happen is that, during the computation of
the basis in degree d, some polynomials of degree less than d may be added to
the basis. This will happen any time a syzygy (s̃i)i for (f̃i)i of degree d is such
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that there exists no syzygy (si)i for (fi)i where s̃i is the homogeneous part of
highest degree of si. In that case,

∑
i s̃ifi is a polynomial of degree less than d

(the homogeneous part of highest degree cancels), that will not be reduced to
zero during the Gröbner basis computation since this would give a syzygy (si)i
for (fi)i with homogeneous part (s̃i)i. This phenomenon is called a degree fall in
degree d, and we will call such syzygies (s̃i) that cannot be extended to syzygies
for (fi)i in the same degree partial syzygies.

∑
i s̃ifi is called the corresponding

residue.

In cryptographic applications, the first degree fall dff has been widely used as
a parameter controlling the complexity in algebraic cryptanalysis, for instance in
the study of some HFE-type systems [28,42,24] and Kipnis-Shamir systems [55].
This first degree fall is simply the smallest d such that there exists a degree fall
in degree d on (fi)i, and this quantity does depend on F : it might be different
from another set of generators of the same ideal. Still, this notion takes on its
full meaning while computing a Gröbner basis for a graded ordering, if we admit
that the algorithm terminates shortly after reaching the first degree fall and
without considering polynomials of higher degree. This can happen for some
families of systems, as explained in the next paragraph, but there are examples
of systems where the first degree fall dff is not the maximal degree reached
during the computation, in which case it cannot be related to the complexity of
the computation.

If the system {f̃i} is semi-regular, then the computation in degree less than
d̃reg will act as if the polynomials where homogeneous: there cannot be degree

falls, as they would correspond to syzygies for the system f̃i that is assumed to
be semi-regular. In degree d̃reg, degree falls will occur for the first time, but at
this point the remainder of the computation is negligible compared to the previ-
ous ones: by definition of d̃reg, all monomials of degree d̃reg are leading terms of
polynomials in the basis, and the remaining steps in the computation will nec-
essarily deal with polynomials of degree at most d̃reg. Hence, the computations

are almost the same as the ones for {f̃i}, and the complexity is controlled by
d̃reg, which is here the first degree fall for the system {fi}i.

The behavior of the computation may be very different if degree falls occur in
a much smaller degree. A good example of what may happen for particular fami-
lies of systems is the affine bilinear case. It is proven in [34, Prop. 5] that a generic
affine bilinear system of m equations {f1, . . . , fm} ∈ K[x1, . . . , xnx , y1, . . . , yny ]
in nx + ny ≥ m variables is regular. In particular, the Macaulay bound dreg ≤
nx + ny + 1 applies [45]. However, it is also proven in [34, Thm. 6] that for
a zero-dimensional affine bilinear system (m = nx + ny), dreg satisfy a much
sharper inequality dreg ≤ min(nx+ 1, ny + 1). The reason is that (homogeneous)
bilinear systems are not regular, but the syzygy module of those systems is well
understood [34]. In particular, there are syzygies for (f̃i)i coming from Jacobian
matrices, that are partial syzygies for (fi)i and produce degree falls.

For affine systems, that are mainly encountered in cryptographic applica-
tions, and in particular for systems coming from a product of matrices whose
coefficients are the variables of the system, the Jacobian matrices have a very
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particular shape that can be described, and leads to a series of degree falls that
reduces the degree of regularity of those systems. This is explained in detail in
Section 5.

5 Degree falls and low degree equations

5.1 Degree falls from the kernel of the Jacobian

Fundamental results from [34,55]. It has been realized in [55] that the first
degree fall in the Kipnis and Shamir modelling can be traced back to partial
syzygies obtained from low degree vectors in the kernel of the Jacobian of the
bilinear part of system either with respect to the kernel variables or the linear
variables. This argument can also be adapted to our case and Jacobians with
respect to the support variables are relevant here. To understand the relevance
of the Jacobians for bilinear affine systems over some field K in general, con-
sider a bilinear affine system F = {f1, . . . , fM} ⊂ K[s1, . . . , sts , c1, . . . , ctc ] of M
equations in ts variables s and tc variables c. We denote by Fh := {fh1 , . . . , fhM}
the bilinear part of these equations. In other words each fi can be written as

fi = fhi + ri,

where each ri is affine and f̃i is bilinear with respect to {s1, . . . , sts}∪{c1, . . . , ctc}.
We define the Jacobian matrices associated to Fh as

JacS(Fh) =


∂fh

1

∂s1
. . .

∂fh
1

∂sts
...

...
...

∂fh
M

∂s1
. . .

∂fh
M

∂sts

 JacC(Fh) =


∂fh

1

∂c1
. . .

∂fh
1

∂ctc
...

...
...

∂fh
M

∂c1
. . .

∂fh
M

∂ctc

 .

Note that JacS(Fh) is a matrix with linear entries in K[c1, . . . , ctc ] whereas
JacC(Fh) is a matrix with linear entries in K[s1, . . . , sts ]. As shown in [55][Prop.
1& 2] vectors in the left kernel of these Jacobians yield partial syzygies. This is
essentially a consequence of the following relations that are easily verified

JacC(Fh) ·
(
c1 . . . ctc

)T
=
(
fh1 , . . . , f

h
M

)T
,

JacS(Fh) ·
(
s1 . . . sts

)T
=
(
fh1 , . . . , f

h
M

)T
and one of its consequences which is that an element (g1, . . . , gM ) in the left
kernel of JacS(Fh) or JacS(Fh) is a syzygy for Fh, i.e. it satisfies

M∑
i=1

fhi gi = 0.

12



For instance an element (g1, . . . , gM ) in the left kernel of JacS(Fh) satisfies

M∑
i=1

fhi gi = (g1, . . . , gM )
(
fh1 , . . . , f

h
M

)T
= (g1, . . . , gM ) JacC(Fh) ·

(
c1 . . . ctc

)T
= 0.

This gives typically a degree fall for F at degree 2 + max(deg gi), with the
corresponding residue given by

M∑
i=1

gifi =

M∑
i=1

gif
h
i +

M∑
i=1

giri

=

M∑
i=1

giri.

These Jacobians are matrices with entries that are linear forms. The kernel of
such matrices is well understood as shown by

Theorem 1 ([34]). Let M be an M×t matrix of linear forms in K[s1, . . . , sts ].
If t < M , then generically the left kernel of M is generated by vectors whose
coefficients are maximal minors of M , namely the

V J = (. . . , 0︸︷︷︸
j /∈J

, . . . ,det(MJ\{j},∗)︸ ︷︷ ︸
j∈J

, . . . )1≤j≤M

where J ⊂ {1, . . . ,M},#J = t+ 1.

A direct use of this result yields however degree falls that occur for very
large degrees, namely at degrees ts+2 or tc+2. In the case of the Kipnis-Shamir
modelling, the syndrome modelling or the Ourivski-Johansson modelling degree
falls occur for much smaller degrees than generic bilinear affine systems. This
is due to the particular form of the modelling. Roughly speaking, the reason is
that the Jacobian of systems coming from matrix products splits as a tensor
product as we now explain. This has been realized in [55] for the Kipnis-Shamir
modelling and we generalize now slightly their result so that we can use it for
more general modellings such as for instance the Ourivski-Johansson modelling.

General form for Jacobian matrices of systems coming from matrix
products. Consider a system AXY = 0 where A = (ai,s)1≤i≤m,1≤s≤p, X =
(xs,t)1≤s≤p,1≤t≤r and Y = (yt,j)1≤t≤r,1≤j≤n. The variables are the xi,j and do
not appear in A or Y .

Lemma 1. The Jacobian matrix of the system AXY = 0 with respect to the
variables X is

JacX(AXY ) = Y T ⊗A ∈ K[A,Y ]nm×rp.
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provided the equations and the variables X are in column order, and

JacX(AXY ) = A⊗ Y T ∈ K[A,Y ]nm×rp.

provided the equations and the variables X are in row order. We use the Kro-
necker product of two matrices A⊗ Y T =

(
ai,sY

T
)

1≤i≤m,1≤s≤p.

Proof. For 1 ≤ i ≤ m, 1 ≤ j ≤ n, the equation in row i and column j of AXY
is

fi,j =

p∑
s=1

r∑
t=1

ai,sxs,tyt,j .

We then have, for 1 ≤ s ≤ p and 1 ≤ t ≤ r, ∂fi,j
∂xs,t

= ai,syt,j so that in row order,

Jacxs,1,...,xs,r
({fi,1, . . . , fi,n}) =

(
∂fi,j
∂xs,t

)
1≤j≤n
1≤t≤r

= ai,s (yt,j)1≤j≤n
1≤t≤r

= ai,sY
T.

The result follows from the definition of the Kronecker product of matrices. The
proof when the equations and variables are in column order is similar. ut

Application to the Kipnis-Shamir modelling. Recall the system at hand(
km∑
i=1

xiM i

)[
In−r
K

]
= 0m,n−r, (7)

where M i ∈ Fm×nq and K is an r × (n − r) matrix of indeterminates. Then, if

we write each M i =
(
M
′

i M
′′

i

)
with M

′

i ∈ Fm×(n−r)
q and M

′′

i ∈ Fm×rq , then

we have
km∑
i=1

xi

(
M
′

i + M
′′

i K
)

= 0m,n−r (KS)

The bilinear and linear parts of the system are respectively
∑km
i=1 xiM

′

i and∑km
i=1 xiM

′

i. By using Lemma 1 we obtain when we compute the Jacobian with
respect to the entries of K (the so-called kernel variables in [55])

JacK =

km∑
i=1

xi(In−r ⊗M
′′

i ) = In−r ⊗

(
km∑
i=1

xiM
′′

i

)
(equations in column order).

The kernel of JacK is generated by the vectors (v1, . . . ,vn−r) with vi in the

left kernel of M =
∑m
i=1 xiM

′′

i , that should have dimension
(
m
r+1

)
. Hence the

kernel of JacK has dimension
(
m
r+1

)
(n − r). It is here that we see the point

of having this tensor product form. These kernel vectors have entries that are
polynomials of degree r by using Theorem 1. This gives degree falls at degree
r + 2 and yields partial syzygies that have degree r + 1. These considerations
are a slightly different way of understanding the results given in [55, §3]. The
syndrome modelling displays a similar behavior, i.e. a degree fall at r+ 2 for the
very same reason as can be readily verified. Let us apply now Lemma 1 to the
Ourivski-Johansson modelling.
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Application to the Ourivski-Johansson modelling. Recall the Ourivski-
Johansson modelling first.

F =

{[
1 α · · · αm−1

]( Ir
0m−r,1 S′

)(
C2 −

(
1

0r−1,1
C ′1

)
R

)}
,

where S′ is the (m − r) × (r − 1) matrix S{r+1..m},{2..r} and C ′1 is the r × k
matrix C∗,{2..k+1}. We add to F the field equations Fq = {sqi,j − si,j , r + 1 ≤
i ≤ m, 1 ≤ j ≤ r, cqi,j − ci,j , 1 ≤ i ≤ r, 2 ≤ j ≤ n}.

With high probability, this system has a unique solution. As we used the
field equations, the ideal 〈F ,Fq〉 is radical. The system has nS = (m− r)(r− 1)
variables S, nC = (n− 1)r variables C, and n−k− 1 equations over Fqm , hence
neq = (n− k − 1)m equations over Fq, plus the field equations.

Consider the system Fh formed by the bilinear parts of the equations in F .
A simple computation shows that

Fh =
{
αr
[
1 α · · · αm−r−1

]
S′(C ′′2 −C ′′1R

′)
}
,

where C ′′2 = C{2..r},{k+2..n}, C
′′
1 = C{2..r},{2..k+1} and R′ = R{2..r+1},∗.

If we take the equations and variables in row order, and use Lemma 1, then

JacS(Fh) = αr
[
1 α · · · αm−r−1

]
⊗
(
C ′′2 −C ′′1R

′)T (8)

Clearly the elements in the left kernel of JacS(Fh) are those in the right kernel of
C ′′2 −C ′′1R

′, and applying Theorem 1, they belong to the vector space generated
by the vectors V J for any J ⊂ {1, . . . , n− k − 1} of size r defined by

V J = (. . . , 0︸︷︷︸
j /∈J

, . . . ,det(C ′′2 −C ′′1R
′
∗,J\{j})︸ ︷︷ ︸

j∈J

, . . . )1≤j≤n−k−1.

This gives a syzygy for Fh and when applying it to F it yields a degree fall in
degree r + 1 because the entries of V J are homogeneous polynomials of degree
r−1. The inner product of V J with the vector of the equations gives an equation
of degree ≤ r since the homogeneous part of highest degree cancels as has been
observed at the beginning of this section. Now the affine part of the equations
F is

[
1 α · · · αr−1

]
(C2 −C1R). The inner product gives

V J ·
([

1 α · · · αr−1
]

(C2 −C1R)
)T

= V J · (C2 −C1R)
T ·
[
1 α · · · αr−1

]T
= det(C2 −C1R)∗,J (9)

using the Laplace’s formula expressing a determinant in terms of its minors.
This yields a corresponding equation that will be reduced to zero by a degree-
(r + 1) Gröbner basis of F . Hence the partial syzygies of degree r coming from
the degree fall in the (r + 1)-Macaulay matrix are exactly the maximal minors
of C2 −C1R. We have thus proven that

Theorem 2. The equations MaxMinors(C2 −C1R) = 0, that are the maximal
minors of the matrix C2 − C1R, belong the the ideal 〈F ,Fq〉. Moreover, they
are reduced to zero by a degree (r + 1)-Gröbner basis of {F ,Fq}.
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Remark 1. If we are only interested in the first part of the theorem about the
maximal minors, then there is a simple and direct proof which is another illus-
tration of the role of the matrix form of the system. Indeed, let (S∗,C∗) be a
solution of {F ,Fq}, then the non-zero vector

(
1 S∗2 . . . S

∗
m

)
=
[
1 α · · · αm−1

]
S∗

belongs to the left kernel of the matrix C∗2 −C∗1R. Hence this matrix has rank
less than r, and the equations MaxMinors(C2 −C1R) = 0 are satisfied for any
solution of the system {F ,Fq}, which means that the equations belong to the
ideal generated by 〈F ,Fq〉 as this ideal is radical.

5.2 Analysis of the ideal MaxMinors(C2 − C1R)

The previous theorem allows to obtain directly degree r equations without hav-
ing to compute first the Macaulay matrix of degree r + 1. This is a significant
saving when performing the Gröbner basis computation. A nice feature of these
equations is that they only involve one part of the unknowns, namely the coeffi-
cient variables. Moreover all these equations can be expressed by using a limited
number of polynomials as we now show. Some of them will be of degree r, some
of them will be of degree r − 1. If we perform Gaussian elimination on these
equations by treating these polynomials as variables and trying to eliminate the
ones corresponding to the polynomials of degree r first, then if the number of
equations we had was greater than the number of polynomials of degree r, we ex-
pect to find equations of degree r−1. Roughly speaking, when this phenomenon
happens we just have to add all the equations of degree r − 1 we obtain in this
way to the Ourivski-Johansson modelling and the Gröbner basis calculation will
not go beyond degree r.

Let us analyse precisely the behavior we just sketched. The shape of the
equations MaxMinors(C2 −C1R) = 0 is given by

Proposition 1. MaxMinors(C2 − C1R) is a set of
(
n−k−1

r

)
polynomials PJ ,

indexed by J ⊂ {k + 2..n} of size r:

PJ =
∑

T ⊂ {1..n},#T = r,
α = T ∩ {1..k + 1}

β = T ∩ {k + 2..n} ⊂ J

det(Rα,J\β) det(C∗,T )

If 1 /∈ T , the polynomial det(C∗,T ) is homogeneous of degree r and contains r!
monomials, and if 1 ∈ T it is homogeneous of degree r− 1 and contains (r− 1)!
monomials.

Proof. Write J = {j1 < · · · < jr}, and (remember that Fq has characteristic 2)
PJ = det((C2 −C1R)∗,J) =

∑
σ∈Sr

∏r
i=1(C2 −C1R)[i, σ(ji)]. Expanding the

product and putting together the identical monomials give the result.

Each polynomial PJ can be expanded in m equations over Fq, the polynomial
PJ [i] being the coefficient of PJ in αi−1. It appears that, when computing a
grevlex Gröbner basis of the system of the PJ [i]’s over Fq, there may be a fall
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of degree in the first step, in degree r, that produces equations of degree r − 1.
The following heuristic explains when this fall of degree occurs.

Heuristic 1 – Overdetermined case: when m
(
n−k−1

r

)
≥
(
n
r

)
, generically, a

degree-r Gröbner basis of the projected system MaxMinors(C2 −C1R) = 0
of m

(
n−k−1

r

)
equations over Fq contains

(
n−1
r−1

)
− 1 equations of degree r− 1,

that are obtained by linear combinations of the initial equations.

– Intermediate case: when
(
n
r

)
> m

(
n−k−1

r

)
>
(
n−1
r

)
, generically a degree-r

Gröbner basis of the projected system MaxMinors(C2−C1R) = 0 contains
m
(
n−k−1

r

)
−
(
n−1
r

)
equations of degree r − 1, that are obtained by linear

combinations of the initial equations.

– Underdetermined case: When m
(
n−k−1

r

)
≤
(
n−1
r

)
, then generically a degree-

r Gröbner basis of the system contains m
(
n−k−1

r

)
polynomials that are all of

degree r.

Remark 2. Here overdetermined/underdetermined refers to the system of max-
imal minors given by the set of equations MaxMinors(C2 −C1R) = 0

Remark 3. The degree-r Gröbner bases also contain polynomials of degree r in
the overdetermined and intermediate cases, but we will not compute them as
experimentally, they bring no speed-up to the computation, see Section 6.1.

Proposition 2. Computing those equations amounts to solving a linear system
of m

(
n−k−1

r

)
equations in

(
n
r

)
variables, which costs

CostMaxMin.(m,n, k, r, ω) = O

(
m

(
n− k − 1

r

)(
n

r

)
min

(
m

(
n− k − 1

r

)
,

(
n

r

))ω−2
)

operations, where ω is the coefficient of linear algebra.

Proof. It is possible to view the system MaxMinors(C2−C1R) projected over Fq
as a linear system of m

(
n−k−1

r

)
equations, whose variables are the

(
n
r

)
unknowns

xT = det(C∗,T ) for all T ⊂ {1..n} of size r. The matrix associated to this

linear system is a matrix M of size m
(
n−k−1

r

)
×
(
n
r

)
whose coefficient in row

(i, J) : i ∈ [1..m], J ⊂ {k + 2..n},#J = r, and column xT is

M [(i, J), xT ] =

{
[αi−1] det(RT∩{1..k+1},J\β) if β = T ∩ {k + 2..n} ⊂ J,
0 otherwise.

(10)

A basis of the vector space generated by the equations MaxMinors(C2−C1R) =
0 is given by M̃ ·T where M̃ is the row echelon form of M and T is the column
vector formed by the polynomials det(C∗,T ) : #T = r. As we are searching for
equations of degree r − 1, we order the variables xT such that the ones with
1 ∈ T that correspond to polynomials det(C∗,T ) of degree r − 1 are the right-
most entries of the matrix.
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The entries of the matrix M come from minors of different sizes of R. The
non-zero entries in R being chosen uniformly at random, when the number of
rows is larger than the number of columns, the matrix M should have full
rank. Indeed, when m

(
n−k−1

r

)
≥
(
n
r

)
, generically the rank of M is not

(
n
r

)
, but(

n
r

)
− 1 because the equations are homogeneous. Hence, M̃ · T produces

(
n−1
r

)
equations of degree r, and

(
n−1
r−1

)
− 1 equations of degree r − 1, that have all

the shape det(C∗,T ) or det(C∗,T )−det(C∗,T0
) where T0 corresponds to the free

variable xT0
of the linear system, and 1 ∈ T , 1 ∈ T0.

6 Experimental results, complexity bounds, and security

6.1 Experimental results

We did various computations for different values of the parameters (m,n, k, r).
We got our best complexity results by doing the following steps:

1. compute the set of equations F which comes from
[
1 α · · · αm−1

]
S (C2 −C1R)

specialised as in (6),
2. compute the system MaxMinors(C2 −C1R),
3. compute the matrix M from (10) and its echelon form M̃ , let J be the set

of the resulting equations of degree r − 1 in the C variables,
4. if J is empty, then let J be a Gröbner basis of 〈J ,Fq〉,
5. compute G a reduced degree-d Gröbner basis of the system {F ,J ,Fq},

where

d =


r in the overdetermined case,

r or r + 1 in the intermediate case,

r + 2 in the underdetermined case.

The computations are done using magma v2.22-2 on a machine with a Intel R©

Xeon R© 2.00GHz processor. In Table 1, we list notation used in all tables.
Table 2 page 20 gives our timings on the parameters proposed in [54]. For

each set of parameters, the first row of the table gives the timing for the direct
computation of a Gröbner basis of 〈F ,Fq〉 whereas the second row gives the
timings for the Gröbner basis of 〈F , Fq, J〉. We can see that, apart for very
small parameters, the computation of the equations MaxMinors(C2 −C1R) is
negligible compared to the time of the Gröbner basis computation.

Among the proposed parameters, only the (15, 15, 8, 3) was in the case where
the system MaxMinors is underdetermined. In that case, the most consuming
part of the computation is the Gröbner basis of the system MaxMinors, that
depends only on the C variables. Once this computation is done, the remaining
Gröbner basis of {F , Fq, J} has a negligible cost.

Table 3 page 21 gives timing for different values of k and r, with m =
14 and n = 18 fixed. For r = 2, the values k ∈ {1..11} correspond to the
overdetermined case, the value k = 12 to the intermediate one, and k = 13 to
the underdetermined case. The values k ∈ {1..11} behave all like k = 11. As
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Notation value signification

nS (r − 1)(m− r) the number of variables in S,
nC r(n− 1) the number of variables in C,
neq m(n− k − 1) the number of equations in F ,

d : nsyz the number of equations in J , were d denotes
the degree of the equations and nsyz the num-
ber of them.

r − 1 :
(
n−1
r−1

)
− 1 in the overdetermined case,

r − 1 : m
(
n−k−1

r

)
−

(
n−1
r

)
in the intermediate case,

r : m
(
n−k−1

r

)
in the underdetermined case.

Tsyz. time of computing the nsyz equations of degree
r − 1 or r in J ,

TGbsyz time of the Gröbner basis computation of
{J ,Fq},

TGb time of the Gröbner basis computation of
{F ,J ,Fq},

dff the degree where we observe the first fall of
degree,

dmax the maximal degree where some new polyno-
mial is produced by the F4 algorithm,

“Max Matrix size” the size of the largest matrix reduced during
the F4 computation, given by magma. We did’nt
take into account the useless steps (the matri-
ces giving no new polynomials)

Table 1. Notation used in Tables 2 to 4
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for the parameters from [54], the hardest cases are the ones when the system
MaxMinors is underdetermined, where the maximal degree reached during the
computation is r+2. For the overdetermined cases, the maximal degree is r, and
for the intermediate cases, it may be r or r + 1.

For r = 3, the overdetermined cases are k ∈ {1..8}, k = 9 is intermediate
and k ∈ {10..11} are underdetermined. Values of k ≥ 12 do not allow a unique
decoding for r = 3, the Gilbert-Varshamov bound being 2 for those values.

For r = 4 the tradeoff are 1 ≤ k ≤ 6, k = 7 and 8 ≤ k ≤ 9 for the three
cases, and for r = 5, 1 ≤ k ≤ 5, k = 6 and 7 ≤ k ≤ 8. We couldn’t perform the
computations for the intermediates and underdetermined cases, due to a lack of
memory. We also observe that the first fall of degree (dff ) doesn’t always predict
the complexity of the computation.

Table 4 page 21 gives the timings for a fixed r = 3, a ratio n = 2k and
various values of k. Again, we can observe that for defavorable cases (k = 6, 7)
the maximal degree is r + 2 or r + 1 rather than r, making the computation
harder for small values of k than for larger.

Table 2. We compare the behavior of the Gröbner basis computation for the param-
eters considered in [47], with and without adding to the system the equations from
J .

m n k r nS nC neq nsyz Tsyz TGbsyz TGb dff dmax Max Mat Size

25 30 15 2 23 58 350 0.4 s 3 3 18550 ×19338
1:28 0.4 s 0.02 s 2 2 1075 × 749

30 30 16 2 28 58 390 0.5 s 3 3 22620 × 25288
1:18 0.4 s 0.02 s 2 2 1260 × 899

30 50 20 2 28 98 870 2.2 s 3 3 67860 × 57898
1:48 3.8 s 0.07 s 2 2 2324 × 1499

50 50 26 2 48 98 1150 7.4 s 3 3 112700 × 120148
1:48 3.5 s 0.2 s 2 2 3589×2499

15 15 7 3 24 42 105 60.1 s 4 4 77439 × 153532
2:90 0.2 s 0.06 s 3 3 8860 × 13658

15 15 8 3 24 42 90 – 4 ≥5 –
3:300 0.3 s 162 s 0.2 s 4 5 191515 × 457141

20 20 10 3 34 57 180 450 s 4 4 233672 × 543755
2:170 1.0 s 0.2 s 3 3 22124 × 35087
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Table 3. m = 14 and n = 18.

k r nsyz nS nC neq TSyz. TGbsyz TGb dff dmax Max Matrix size Mem.

11 2 1:16 12 34 84 < 0.1s < 0.1s 2 2 322 × 251 34 Mo

12 2 1:4 12 34 70 < 0.1s < 0.1s 3 3 1820 × 2496 34 Mo

13 2 2:84 12 34 56 < 0.1s 32 s 0 s 3 4 231187 × 141064 621 Mo

8 3 2:135 22 51 126 0.6 s 0.1 s 3 3 13179 × 18604 34 Mo

9 3 2:104 22 51 112 0.5 s 0.7 s 3 3 10907 × 18743 67 Mo

4 4 3:679 30 68 182 12.1 s 53.7 s 2 4 314350 × 650610 1.3 Go
5 4 3:679 30 68 168 9.4 s 59.3 s 4 4 314350 × 650610 2.0 Go
6 4 3:679 30 68 154 7.1 s 69.4 s 4 4 281911 × 679173 3.6 Go

2 5 4:2379 36 85 210 138.8 s 27.5 s 2 4 416433 × 669713 1.1 Go
5 5 4:2379 36 85 196 44.8 s 5h08 2 5 7642564 × 30467163 253.6 Go

Table 4. The parameters are r = 3, m = n, k = n
2

.

k nsyz nS nC neq Tsyz TGbsyz TGb dmax Memory

6 3:120 18 33 60 0.2s 117 s 0.02s 5 4.9 Go
7 3:280 22 39 84 0.1s 9.7 s 0.1s 4 0.3 Go

8 2:104 26 45 112 0.2s 0.1s 3 .04 Go
17 2:527 62 99 544 34.3s 4.7s 3 0.3 Go
27 2:1377 102 159 1404 650.2s 161.3s 3 2.7 Go
37 2:2627 142 219 2664 5603.6s 3709.4s 3 15.0 Go
47 2:4277 182 279 4324 26503.9s 26022.6s 3 83.0 Go

6.2 Complexity analysis and security

Now, we give an upper bound on the complexity of our algebraic approach to
solve the (m,n, k, r)-decoding problem using the modelling of Section 3.3. The
complexity is estimated in terms of the number of operations in Fq that the
algorithm uses. This allows us to update the number of bits of security for
several cryptosystems, as showed in Table 5: Loidreau’s one [48], ROLLO [7],
and RQC [3].

The complexity bound follows from the fact that the Gröbner basis algorithm
works with Macaulay matrices of degree δ for increasing values of δ up to d, the
degree for which the Gröbner basis is found (see Section 4 for a more detailed de-
scription). At each of these steps, the algorithm performs a Gaussian elimination

algorithm on a Macaulay matrix which has at most
(

(m−r)(r−1)+(n−1)r
δ

)
columns,

which is the number of squarefree monomials of degree δ in (m−r)(r−1)+(n−1)r
variables, at fewer rows than columns.

In general, Gaussian elimination of a µ× ν matrix of rank ρ over a field has
a complexity of O(ρω−2µν) operations in that field [18,53], a bound which is in
O(max(µ, ν)ω). This constant ω is the exponent in the complexity of multiplying
two matrices; we obviously have ω ≥ 2 and naive matrix multiplication yields
ω ≤ 3. The best known value for ω at the time of writing is ω ≈ 2.37 [46],
by an improvement of Coppersmith-Winograd’s algorithm. In terms of practical
performances, the best known method is based on Strassen’s algorithm, which
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Cryptosystem Parameters (m,n, k, r) d = r d = r + 1 Previous

Loidreau (128, 120, 80, 4) 98.3 119.1 256

ROLLO-I-128 (79, 94, 47, 5) 116.9 136.5 128

ROLLO-I-192 (89, 106, 53, 6) 144.2 164.5 192

ROLLO-I-256 (113, 134, 67, 7) 176.0 197.3 256

ROLLO-II-128 (83, 298, 149, 5) 134.3 157.4 128

ROLLO-II-192 (107, 302, 151, 6) 163.5 187.0 192

ROLLO-II-256 (127, 314, 157, 7) 193.6 217.4 256

ROLLO-III-128 (101, 94, 47, 5) 119.1 139.2 128

ROLLO-III-192 (107, 118, 59, 6) 147.7 168.6 192

ROLLO-III-256 (131, 134, 67, 7) 177.9 199.5 256

RQC-I (97, 134, 67, 5) 123.1 144.0 128

RQC-II (107, 202, 101, 6) 156.2 178.5 192

RQC-III (137, 262, 131, 7) 190.4 213.9 256

Table 5. Security (in bits) for several cryptosystems with respect to our attack, taking
ω = 2.807 and d = r or d = r + 1. The values in bold correspond to the most realistic
case, depending on whether the condition given by Eq. (1) holds. The last column
corresponds to the previous security values, based on the combinatorial attack in [10].

allows one to take ω ≈ 2.807, and when the base field is a finite field, this expo-
nent is indeed observed in practice for matrices with more than a few hundreds
rows and columns.

The Macaulay matrices encountered in the Gröbner basis computations we
consider are usually very sparse and exhibit some structure. Some Gaussian
elimination algorithms have been designed specifically for matrices over F2 [4],
also for sparse matrices [15], and even to take advantage of the specific structure
of Macaulay matrices (see [16]; we expect Magma’s closed-source implementation
of F4 to use similar techniques). However, despite practical speed-ups, none
of these optimized algorithms has been proven to reach a complexity which is
asymptotically better than the one mentioned above.

As a result, we bound the complexity of the step of degree δ in the Gröbner
basis computation by that of performing Gaussian elimination on a matrix of
size µ ≤ ν =

(
(m−r)(r−1)+(n−1)r

δ

)
. Overall, the complexity bound is the following:

O

((
d∑
δ=0

(
(m− r)(r − 1) + (n− 1)r

δ

) )ω)
. (11)

Let us now focus on the case m = n = 2k and r ≈
√
n. Then the complexity

of our approach is as in Eq. (11) with d = r. Using a similar analysis, the
approach based on Kipnis-Shamir’s modelling has a complexity of

O

((
r+2∑
δ=0

(
km+ r(n− r)

δ

)))ω
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operations. In the former complexity the dominant term is of the order of
2

3
2ωr log2(n), while in the Kipnis-Shamir complexity it is of the order of 22ωr log2(n).

Moreover, 2 was added to all entries in Table 5, due to the expected number
of attempts to find a solution which is at most 4; we explain this point below. In
Section 3.3, we presented the modelling we use, and introduced some assumptions
under which it will indeed yield the sought solution λe. It remains to explain
how to proceed in the case where we do not get such a solution, that is, when
the assumptions were not valid. We use notation from Section 3.3 and we start
from the system given by Eq. (5) with the first column of S set to [1 0 · · · 0]T.
Then we use Algorithm 1 in order to specialize more variables: this algorithm
first makes an attempt with the specialization detailed in Section 3.3, and if
that one fails, follow on with other similar attempts until a solution is found.
This algorithm assumes m� 4r and uses the subroutine Solve(S,C,R), which
augments the system as explained in Section 5 and returns a solution to Eq. (5)
if one is found and ∅ otherwise.

Input: Matrix R
Output: A solution to the system in Eq. (5)
nb attempts = 0 ;
col index = 0 ;
solution = ∅ ;
S = m× r matrix of variables ;
C = r × n matrix of variables ;

Set the first column and the first row of S to
[
1 0 · · · 0

]
;

while solution == ∅ do
identity index = 0 ;
col index = col index + 1 ;

Set the col index-th column of C to
[
1 0 · · · 0

]T
;

while identity index < 4 and solution == ∅ do
Set the (r − 1)× (r − 1) block in S starting at the

position (2 + identity index · (r − 1), 2) to Ir−1 ;
solution = Solve(S,C,R) ;
identity index = identity index + 1 ;
nb attempts = nb attempts + 1 ;

end

end
return solution ;

Algorithm 1: (m,n, k, r)-Decoding

In the next proposition, we call number of attempts the number of times that
the previous algorithm calls the Solve procedure.

Proposition 3. For a (m,n, k, r)-rank decoding instance, Algorithm 1 returns
a solution to the system in Eq. (5) after an expected number of attempts bounded
from above by 4.
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Proof. By Lemma 2 in Appendix, if the first coordinate e1 of e is nonzero, the
expected number of attempts to find an invertible (r− 1)× (r− 1) block in S is
bounded from above by

r−1∏
i=1

1− qi−m

1− qi−r
.

To take into account the fact that one needs to find a nonzero component in e,
one can bound from above the expected total number of attempts by⌈

qr

qr − 1

r−1∏
i=1

1− qi−m

1− qi−r

⌉

which is always smaller or equal to 4 as long as 1 < r < m and q ≥ 2.

7 Conclusion

In this paper we introduce a new approach for solving the Rank Metric Decoding
problem with Gröbner basis techniques. Our approach is based on adding partial
syzygies to a newer version of a modelling due to Ourivski and Johansson.

Overall our analysis shows that our attack, for which we give a general es-
timation, clearly outperforms all previous attacks in rank metric for a classical
(non quantum) attacker. In particular we obtain an attack below the claimed
security level for all rank-based schemes proposed to the NIST Post-Quantum
Cryptography Standardization Process.

Although our attack really improves on previous attacks for rank metric,
it meanwhile suffers from two limitations. First these attacks do not benefit
from a direct Grover quantum speed-up, unlike combinatorial attacks. For the
NIST parameters, the best quantum attacks remain quantum attacks based on
combinatorial attacks, because of the Grover speed-up. Second, these attacks
need an important amount of memory for large parameters.
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Appendix: Proof of Proposition 3

Let n,m, k, r, l be positive integers such that n and m are both greater than
r and l smaller than bm−1

r c. Let E be a vector space of Fqm of dimension r
spanned by {E1, E2, . . . , Er}, let e be a vector of length n whose components are
elements of E and such that its first component e1 is non-zero and let λ = e−1

1 .
Now, we focus on the vector space λE = 〈λE1, λE2, . . . , λEr〉. Given a basis
(1, α, . . . , αm−1) of Fqm over Fq, one can write a basis of λE as a matrix S in
Fm×rq . By construction, 1 is in λE, so we can fix the first column and the first

row of S to the vectors
[
1 0 · · · 0

]T
and

[
1 0 · · · 0

]
with respective length m and

r. The remaining (m − 1) × (r − 1) part of S is named Ŝ. We want to find an

(r − 1)× (r − 1) non-singular block in Ŝ, starting by the top-first one. Then, if
the first one is singular, one considers the next block, i.e. the block starting at
the r-th row, and so on until one reaches at most the l-th block. One wants to
count those attempts, this is the topic of the following lemma.
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Lemma 2. With the same notation and hypotheses as above, if E and e are
chosen at random, then the expected number of attempts one needs to find an
invertible (r − 1)× (r − 1) block in Ŝ is bounded from above by

r−1∏
i=1

1− qi−m

1− qi−r
.

Proof. As E and e are chosen at random, the vector space λE will be uniformally
distributed among all the vector spaces in Fqm of dimension r which contains

1. By construction, Ŝ will be a (m − 1) × (r − 1) matrix of full rank, so the
probability for its first (r − 1)× (r − 1) block to be invertible is given by(∏r−1

i=1 (qr−1 − qi−1)
)
q(r−1)(m−r)∏r−1

i=1 (qm−1 − qi−1)
=
r−1∏
i=1

1− qi−r

1− qi−m
:= pinv.

which is the ratio between the amount of (m − 1) × (r − 1) matrice with an
invertible first (r−1)×(r−1) block and the amount of full-ranked (m−1)×(r−1)
matrices.

For k in {1, . . . , l}, the probability to succeed in finding an invertible (r −
1) × (r − 1) block in Ŝ at the k-th attempt, i.e. after k − 1 failed attempts, is
given by(
q(r−1)2 −

∏r−1
i=1 (qr−1 − qi−1)

)k−1 (∏r−1
i=1 (qr−1 − qi−1)

)
q(r−1)(m−1−k(r−1))∏r−1

i=1 (qm−1 − qi−1)
:= preal.

If all the attempts were independent, the probability to find a solution at the
k-th attempt would be

(1− pinv)k−1pinv := pindep

Even if it is clearly not the case, the important fact is that for all k in {1, . . . , l},
preal ≥ pindep.

This fact enables one to over-estimate the expected number of attempts that
will be required to find a non-singular block by considering it as the expected
value of a geometric distribution of parameter pinv, i.e.

1

pinv
=

r−1∏
i=1

1− qi−m

1− qi−r
.
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