

Beneficial reuse of dam fine sediments as clinker raw material

A. Fauré, C. Coudray, B. Anger, I. Moulin, H. Colina, L. Izoret, F. Théry, A.

Smith

► To cite this version:

A. Fauré, C. Coudray, B. Anger, I. Moulin, H. Colina, et al.. Beneficial reuse of dam fine sediments as clinker raw material. Construction and Building Materials, 2019, 218, pp.365-384. 10.1016/j.conbuildmat.2019.05.047 . hal-02321680

HAL Id: hal-02321680 https://unilim.hal.science/hal-02321680v1

Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S0950061819312073 Manuscript_72f0ad595442935fe8420d3a6eb23d29

1	Beneficial reuse of dam fine sediments as clinker raw material
2	A. Faure ^{1,*} , C. Coudray ² , B. Anger ² , I. Moulin ¹ , H. Colina ³ , F. Théry ² , A. Smith ⁴
3	¹ LERM, SETEC Group, F-13631, Arles, France
4	² EDF Lab Les Renardières, F-77818 Moret-sur-Loing, France
5	³ ATILH, F-92974, Paris-La-Défense, France
6	⁴ ENSIL-ENSCI, Limoges University, CNRS, IRCER, UMR 7315, F-87068, Limoges, France
7	* Corresponding author. E-mail addresses: antoine.faure@lerm.setec.fr (A. Faure),
8	coryse.coudray@edf.fr (C. Coudray), baptiste.anger@edf.fr (B. Anger),
9	isabelle.moulin@lerm.setec.fr (I. Moulin), h.colina@atilh.fr (H. Colina), francois.thery@edf.fr (F.
10	Théry), agnes.smith@unilim.fr (A. Smith)

11 Abstract

12 The accumulation of fine sediments (< 200 µm) occurs in hydroelectric dams due to watershed erosion and solid transport. A rigorous and sustainable sediment management is required. 13 14 Although most of these materials are transferred into the watercourse downstream, a significant 15 quantity might have to be managed as on-land waste in the future. Considering that sediments 16 contain silica, alumina, calcia and iron oxide as main chemical constituents, they could be useful 17 candidate raw materials in the cement industry for the manufacture of clinker. This work concerns 18 sediments from French dams. Whatever their origin, each sediment is suitable for a beneficial reuse 19 as silico-aluminous raw material for clinker production. The characteristics of the raw sediments 20 can lead to specific microstructures in the clinkers. However, clinker characteristics can still be 21 controlled by adjusting raw mix proportions, maintaining a rather high sediment content in the mix 22 (between 10 and 15 wt%).

23

24 Keywords

25 Dam fine sediment, Clinkering reactions, Portland cement industry, Valorization

26

27 Highlights

- 7 dam sediments from different French regions are suitable for clinker production
- Clinkers produced using 10 to 15% of sediment are similar to industrial ones
- Special features (polymorphisms and phase ratios) can be induced by sediments
- Key-criteria: Grain size, silica ratio and minor elements (Mg, Na, K) in sediments composition

32

33 1. Introduction

34 In France, the annual volume of dredged material is estimated at 50 Mm^3 [1]. More than 90 % of this come from marine and estuarian dredging operations. The remaining fraction is attributed to 35 36 continental extraction (waterways and dams). Although the total volume of removed sediment from 37 dams can slightly vary from one year to the next, the order of magnitude is several tens of 38 thousands of cubic meters. Erosion of rocks and soils at the watershed level generates solid particles 39 that are transported by watercourses. Dam construction leads to a local reduction of the water 40 velocity. Schleiss et al. [2] estimated that between 0.5 and 1.0% of the reservoir capacity is lost 41 each year in the world because of sediment accumulation. A segregation occurs between the coarse 42 particles (gravels and sands) that deposit at the reservoir entrance and the fine particles (silts and 43 clay) that can remain in suspension. Further transport of these particles yields a final accumulation 44 close to the dam construction [3]. Nowadays, most of the solid particles are transferred from the 45 reservoir upstream to the watercourse downstream ensuring the ecological and sedimentary 46 continuity. However, technical or environmental reasons could constrain the hydroelectric dam operator to an on-land management of these materials. According to the European Directive 47 48 2008/98/CE [4], sediments extracted from reservoirs become waste. Following the waste 49 management hierarchy, beneficial reuse solutions prevail over disposal options. With this in mind, 50 coarse and fine particles need to be clearly distinguished. According to Owens et al. [5], the limit 51 can be set at 63 µm, *i.e.* the transition from silt to sand class. Particles greater than 63 µm are not a 52 critical issue since they are commonly reused as sand or aggregate. By contrast, the beneficial reuse 53 of fine sediments, *i.e.* particles smaller than 63 µm, is more challenging since no recycling solution 54 is implemented.

55 In the literature, several reuse options for fine sediments were considered such as (i) 56 construction of functional soils [6-7], (ii) sub-base layers in road or pavement construction [8-10], 57 (iii) raw material for traditional ceramic bricks manufacturing [11-13] and (iv) partial replacement 58 of sand in concrete production [14-17]. Beneficial reuse of fine sediment as a raw material to 59 produce clinker was also investigated by different authors [18-20]. Aouad et al. [18] worked on a 60 contaminated sediment from a waterway in Northern France. They obtained a satisfying clinker by 61 introducing this sediment with a mass ratio of 39.1 wt%. The product reactivity was confirmed both 62 by calorimetry and compressive strength tests on final cement pastes. Dalton et al. [19] studied one 63 sedimentary resource sampled in an US marine harbor. The finest fraction was selected (< 300 µm). 64 Tests were performed both at the lab and industrial pilot scales. Although the obtained products 65 could be described as clinkers, some biases were induced by the unadjusted thermal treatments, *e.g.*

66 no quenching and insufficient sintering temperature. Finally, Anger *et al.* [20] investigated three 67 different sediments from French hydroelectric reservoirs considering a reuse in cement industry as a 68 replacement for clay in clinker manufacture. Microstructural analyses of the produced clinkers 69 showed that all the studied sediments could be successfully recycled into clinker production.

70 In parallel to the sediment accumulation issue and the need to find some sustainable beneficial 71 reuse solutions, clinker production in cement industry requires an adequate mix of CaO (lime), SiO₂ 72 (silica), Al_2O_3 (alumina) and Fe_2O_3 (iron oxide). These essential elements are traditionally brought 73 to the raw meal by limestone, for calcium, and by clay rocks for the silico-aluminous content. 74 During the clinkering process, a temperature of 1450 °C is reached and lime combines with the 75 three other main oxides to form the usual anhydrous phases, namely alite C₃S, belite C₂S, calcium 76 aluminate C₃A and calcium alumino-ferrite C₄AF – also written C₂(A,F)¹. Along with CO₂ 77 emissions, the consumption of large volumes of natural resources is often described as an 78 environmental issue for the cement industry [21-22]. Knowing that (i) 1.7 t of raw materials are 79 required per ton of clinker [23] and (ii) 12.5 Mt of clinker were produced in France in 2015 [24], 80 the amount of consumed resources to produce clinker can be estimated at 21.3 Mt per year (fuels 81 not considered). Therefore, the replacement of non-renewable geological resources by sediments as 82 alternative raw materials seems relevant. A positive side effect can be pointed out since the 83 valorization contributes to the reduction of waste disposal. Due to the chemical composition 84 similarity between the traditional raw materials used in the cement industry and the fine sediments 85 extracted from hydroelectric reservoirs, this replacement could be technically promising. Moreover, large quantities of sediment could potentially be reused, which makes the cement industry a 86 87 relevant option for dredged material valorization. Also, it can be noticed that cement plants are 88 quite solicited to incorporate alternative raw materials into the meal. Besides, the literature presents 89 the valorization of various types of waste in the cement industry: wastes from construction and demolition operations [25-28], the metal industry [29-31], extractive activities [32] and residues 90 91 from household waste incineration [33-34].

Based on literature results and previous studies, this paper investigates and compares a significant number of sediment resources from French reservoirs, namely seven, as alternative raw materials. The objective is to take into account the pedological and geological variability from a watershed to another that directly influences the characteristics of the particles generated by erosion and accumulated in reservoirs. The effect of sediment characteristics has been examined, especially by looking at the relation between the phase polymorphism and the characteristics of the sediment introduced into the clinker raw meal. Also, compared to previous studies, a scale change is operated

¹ In cementitous notation, A, C, F, H and S refer respectively to Al₂O₃, CaO, Fe₂O₃, H₂O and SiO₂.

with the production and characterization of mortars prepared with Portland cement originating from
 clinker produced with sediments.

101 **2.** Materials and methods

102 2.1 Pretreatment of raw materials

Seven sediments were investigated. They came from four different French regions: four 103 104 sediments from the Alps named ALP1, ALP2, ALP3 and ALP4, one from Brittany labelled BRT1, one from the North-Eastern part of France called EST1 and a last one close to the Mediterranean 105 106 Sea referenced as MED1. Locations, labels and allotted colors are given in Figure 1. According to the reservoir context and the water level, fine sediments were either collected by a grab from a 107 108 barge or with a mechanical or manual shovel. Sealed plastic containers were used for transport. For 109 each sediment, a first preparation step consisted of air-drying associated with homogenization. 110 Drying was carried out at 40 °C. Afterwards, the compact blocks formed during drying were deagglomerated using a jaw crusher. It was then checked that 100 % of each sediment could pass 111 112 through a 200 µm sieve. Sediments were then considered as "pretreated materials". They were 113 stored at 40 °C until their use.

114 Concerning the rocks extracted from quarries for clinker production, the initial materials were 115 also pre-treated through coarse crushing. For lab experiments, they were finely ground using a 116 planetary ball mill until the crushed materials could be sieved through a 125 µm mesh. These 117 materials were kept at 105 °C. For the synthesis of clinker, the calcareous rock, referenced as LIM1, 118 was mixed together with a silico-aluminous material. In this respect, two clay resources namely 119 CLY1 and CLY2 were used for comparison and were partially or totally substituted by sediments in 120 raw meal formulations.

121 In the following sections, "*raw materials*" will refer to the "*pretreated materials*".

122 2.2 Raw materials characterizations

123

• Physical properties

Particle size distributions of the raw materials were analyzed by laser diffraction using a 124 125 MALVERN INSTRUMENTS Mastersize 2000 device. The suspensions used for analyses were prepared by mixing 2 g of powder with 50 mL of deionized water, followed by ultrasonic dispersion 126 127 for two minutes. Results are presented in Figure 2 and Table 1. According to Owen's criteria [5], most sediments can be considered as fine since the particle size is less than 63 µm. The only 128 129 exception is EST1 since 18.6 vol% is between 63 µm and 2 mm. Regarding the quarried materials, 130 their particle size distributions fulfill the requirements for their use as raw materials in clinker 131 production.

4

132 Densities were assessed by helium pycnometry (MICROMERITICS AccuPyc 1330 133 equipment). Specific surface areas (SSA) were estimated by two different methods: (i) the 134 Brunauer-Emmett-Teller (BET) technique [35] and (ii) the Blaine method. BET SSA measurements 135 were performed with gaseous N₂ on a MICROMERITICS Tristar II apparatus. SSA measurements 136 were preceded by a degassing step at 120 °C for 15 hours. Blaine SSA determinations were carried out according to the NF EN 196-6 standard [36] with an instrument from CONTROLAB Company. 137 138 Blaine protocol consists in measuring the time required for the transfer of a known air volume 139 through a compacted powder bed. This duration is related to specific surface area and fineness. SSA 140 and pycnometry results are given in Table 2. For lime and most clays, the densities are close to the 141 values of the constituents, except for BRT1 and EST1. This difference is due to the presence of 142 organic matter as witnessed by thermal analysis (see *Mineralogical properties* subsection). 143 Concerning the specific surface area, the values are quite dependent on the technique [37]. Blaine 144 SSA values are lower than BET SSA values. This difference can be attributed to the surface 145 roughness and porosity of the particles. BET corresponds to N₂ forming a single monolayer over the surface of the exposed material while the Blaine technique relies on a gas going through a 146 147 compacted powder.

148

• *Chemical properties*

149 Elemental compositions of materials were obtained by X-Ray fluorescence (XRF). Fused 150 beads were prepared for XRF analysis using a melting agent that contained lithium tetraborate 151 (99.5 wt%) and lithium iodide (0.5 wt%). 1 g of the analyzed sample was mixed with 10 g of 152 melting agent (1:10 mass ratio) in order to prepare the bead. A PANalytical Zetium device was used 153 to carry out the elemental composition measurements operating with a 1 kW generator and a Rh 154 anode. The elemental chemical composition of each raw material is presented in Table 3. For all 155 clay minerals, the main oxides are SiO₂, Al₂O₃ and CaO. The compositions have been plotted in a 156 Rankin's diagram (see Figure 3). The four alpine sediments and BRT1 are located in the same region on the diagram, slightly different from the CLY1 and CLY2 location. EST1 and MED1 are 157 158 different since they contain respectively slightly less alumina and more lime than the other 159 sediments.

160

• Mineralogical properties

161 Mineralogical compositions were obtained by X-Ray Diffraction (XRD). Two types of 162 investigations were performed: powder analysis and clay species identification. Both were 163 performed on a BRUKER D8 Advance device mounted on a Bragg-Brentano geometry θ - θ . The 164 apparatus was equipped with a copper anticathode ($\lambda = 1.5406$ Å), a high speed LynxEye XE 165 detector and operated at 40 kV and 40 mA. For powder analyses, measurements were made 166 between 3 and 70 °2 θ , with a 0.012 °2 θ step and a time per step of 0.6 s. Crystalline phases were

167 identified using the BRUKER DIFFRACPlus EVA software and the ICDD PDF4+ database. To perform the semi-quantitative XRD analyses, zincite (ZnO) was added to the sample (10 % by 168 mass). XRD quantifications were carried out by the Rietveld method on a BRUKER TOPAS 169 170 software. Concerning the distinct identification of clay minerals and their semi-quantification, a 171 preferential orientation of the clay minerals in the sample according to the 001 plan was needed in order to increase the intensity of the basal X-ray reflexions. To do so, a suspension was prepared 172 173 from fine sediment: wet sieving (40 µm mesh) and centrifugation (8000 revolutions per minute – 30 min). The supernatant was extracted with a pipette and placed on a glass slide. In order to make 174 175 possible identification according to d-spacing, three different treatments were performed: natural 176 air-drying at room temperature, polyalcool atmosphere (adapted to swelling clays) and thermal 177 treatment at 490 °C (differentiation between kaolinite and chlorite). Angles between 3 and 35 °20 were explored with a step size of 0.008 °2 θ and a time per step of 0.84 s. Clay species were semi-178 179 quantified using the relative peak intensities according to the technique described by Holtzapffel [38]. Results of powders and clay semi-quantifications are presented in Table 4. 180

181 CLY1 and CLY2 present the highest percentage of quartz, which is in accordance with the 182 chemical analysis. The sediments contain quartz (between 17 and 35 wt%), clay minerals (between 183 26 and 36 wt%) and carbonated phases (between 26 and 46 wt%). MED1, a calcareous sediment, 184 contains the highest percentage of carbonates. In the four alpine sediments and EST1, the clay 185 minerals are mostly illite and some chlorite. CLY1 and CLY2 contain kaolinite and some illite. 186 MED1 and BRT1 contain illite, chlorite and kaolinite. Whatever the nature of the silico-aluminous 187 materials, alkaline ions are present, either potassium in illite and microcline, or sodium in albite.

188 Thermal behaviors of raw materials were analysed by thermogravimetric analysis (TGA) 189 coupled with differential thermal analysis (DTA). Measurements were carried out on a SETARAM 190 Setsys 16/18 thermobalance, using calcined alumina as inert reference. The reference and the 191 analysed materials were placed in platinum crucibles. TGA and DTA were followed in the 30-192 1000 °C range with a heating ramp of 5 °C/min. Mass loss for each raw material is given in Table 5 193 with the corresponding temperature range and the associated phenomenon. The sediments present 194 greater mass losses than CLY1 or CLY2. This is explained by both the presence of carbonates 195 (Table 4) and organic matter (OM). Organic matter content is analysed for the fine sediments by 196 loss on ignition according to NF EN 12880 protocol [39], *i.e.* a calcination operation in a muffle 197 electric furnace at 550 °C for 2 hours. 2 g of material were used each time. Organic matter contents 198 are given in Table 6. The OM content has influence upon the density (see Table 2): BRT1 and 199 EST1 which present the lowest densities have the highest OM.

200 2.3 Clinker synthesis

201

• Formulation strategy

From the chemical composition of each raw material (*i.e.* quarried rocks, sediments; see Table 3), clinker raw meals were formulated applying the empirical moduli used in the cement industry. These moduli correspond to ratios between the main oxides and they are used to target raw meals with the correct stoichiometry. The three most common parameters - named Lime Saturation Factor (LSF), Silica Ratio (SR) and Alumina Ratio (AR) - are given in Equations 1, 2 and 3, respectively [40].

LSF =
$$\frac{\% CaO}{2.80 \times \% SiO_2 + 1.20 \times \% Al_2O_3 + 0.65 \times \% Fe_2O_3} \times 100$$
 Eq. 1

$$SR = \frac{\% SiO_2}{\% Al_2O_3 + \% Fe_2O_3}$$
Eq. 2

$$AR = \frac{\%Al_2O_3}{\%Fe_2O_3}$$
Eq. 3

208 Each of them is supposed to control one or several characteristics of the final clinker. LSF 209 ensures the right stoichiometry between calcium oxide and the three other main chemical 210 components. Theoretically, if the target for LSF is between 92 to 98, a right balance is found 211 between providing enough CaO to complete the clinkering reaction and limiting the free 212 (uncombined) lime content [39]. Working on German industrial clinkers, Locher noticed that the LSF range is actually wider (90 to 104) [41]. Concerning the Silica Ratio, it helps to fix the relative 213 214 proportion between silicate phases, C₃S and C₂S, and the aluminate ones, that is to say C₃A and 215 C₄AF. Aluminate phases are commonly liquid at high temperature (above 1300 $^{\circ}$ C) and they both 216 form the interstitial phase. Thus, SR operates also as a relevant index for the liquid phase content 217 during the clinkering process. Suitable clinker SR is in the range 2.0 to 3.0 [40] but a more 218 restrictive and optimized domain can be given: 2.4 to 2.6 [42]. Finally, AR controls the relative 219 mass contents in the interstitial phases between the iron-free mineral C₃A and the only clinker phase 220 that contains iron, *i.e.* C₄AF. A large [40] and a narrow [42] range can be identified for the Alumina 221 Ratio, [1.0; 4.0] and [1.5; 1.8] respectively.

Two different formulation strategies were considered. The first one consisted in maximizing the dam sediment content with a total replacement of the clay fraction by this alternative raw material. These mixes were called "*binary mixes*". As the limestone is relatively pure, it can be considered that the whole silico-aluminous fraction is brought to the meal by the material coming from the dredging operation. Using only two different constituents, the chemical adjustment possibilities for the raw meal are limited to one compositional parameter. LSF was chosen since combination of lime is the most critical factor. A LSF value of 97 was targeted yielding the 229 formulation of *binary mixes* (Table 7). It can be observed that CLY1 and CLY2 contents in binary 230 mixes were lower than every sediment mass ratios, whatever the origin. It can be explained by the 231 higher CaO content of the dredged materials compared to the quarried clay rocks. As a 232 consequence, sediments replaced on one hand the whole silica, alumina and iron oxide supply and, 233 on the other hand, a fraction of limestone. That is why the most calcareous sediment, *i.e.* MED1, showed the highest substitution level in binary preparations with 34.81 wt%. As replacement 234 235 percentages are relatively high, the effect of sediment on clinker properties is supposed to be 236 exacerbated. SR and AR were not adjusted in these formulations. It explains why some of the 237 theoretical SR and AR values could be outside of the usual ranges. None of the SR was in the 238 optimum range [2.4; 2.6]. In most cases, they were lower – due to the high alumina content – 239 except for EST1 and CLY2 rock. Depending on the alumina-to-iron ratio of each sediment, AR of 240 binary mixes could also be higher, e.g. MED1-Bin, or lower, e.g. BRT1-Bin and EST1-Bin, than 241 the supposed optimum domain.

242 The second formulation strategy consisted in using CLY1 or CLY2 plus a sediment as a 243 silico-aluminous bearer. In other words, a clay rock from a quarry is partially substituted and 244 complemented by an alternative dredged material (Table 8). As three components were introduced 245 into each mix ("*ternary mix*"), it allowed the adjustment of another compositional parameter. The 246 second most important one, SR, was chosen and a value of 2.4 was targeted. To reach this value, the 247 adequate complementing clay had to be selected, that is to say the aluminous CLY1 for EST-Ter 248 and the siliceous CLY-2 for all the other meals (SR \leq 2.4 in binary). In addition to ternary mixes 249 with sediment, a reference mix – named CLY-Ter – was also studied with both CLY1 and CLY2 as 250 silico-aluminous sources. After resolving the equations, clinker raw meal formulations were 251 obtained and are presented in Table 8. Compared to binary mixes, sediment contents were 252 diminished to values less than 20 %, except for ALP4-Ter. These mass ratios ranging from 10.78 to 253 18.43 wt% are closer to what is actually observed concerning the use of alternative materials in a 254 cement plant. With respect to the ALP4-Ter case, the calculated AR was already rather close to 2.4 255 in the binary mix ALP4-Bin (2.32). It justifies why the ALP4 content was kept relatively high, even 256 in ternary meal. Regarding the last compositional parameter, which was not intentionally adjusted, 257 it can be noticed that the transition from binary to ternary mix tended to buffer AR too. Indeed, all 258 the calculated AR were located in the optimum range for ternary meals.

259

• Lab clinker preparation

Clinkers were prepared at the lab scale. To do so, powdered raw materials were initially dried at 105 °C until reaching a constant mass. Then, 100 g of raw meal were prepared according to the mass contents obtained by calculation and presented in Tables 7 and 8 for binary and ternary raw meals, respectively. Dried powders were homogenized using a three-dimensional Turbula mill for 264 one hour. In a rotary kiln of a cement plant, clinker nodulization results from both the rotative 265 movement and the presence of a liquid phase. Using a static electric lab furnace, nodulization is impossible. To overcome this laboratory issue, a granulation step was added to the process in 266 267 analogy to what is done in the industrial semi-dry plants. In the literature, other authors suggested 268 this methodology to ensure the shaping of raw meal and an intimate homogenization of the particles 269 at the lab scale [25;43]. Granules with diameters from 5 to 10 mm were obtained using a water-to-270 powder ratio of 0.22. Afterwards, free water was fully evaporated in an oven at 100 °C. Pellets were 271 then sintered in a bottom lift furnace using a Pt-Rh crucible. After a residence period of 45 min at 272 the clinkering temperature of 1450 °C, clinker granules were air-quenched. This rapid cooling 273 methodology was necessary to make sure that C₃S formed at 1450 °C would not decompose into 274 C_2S and calcium oxide, a reverse reaction that occurs if slow cooling is used.

275 2.4 Anhydrous clinker characterization

276 Several analyses and characterizations were performed on lab clinkers. The first one consisted 277 in assessing the success of lime combination with the other oxides to synthetize the four usual 278 phases, two silicates (C₂S, C₃S) and two aluminates (C₃A, C₄AF). The usual experimental technique 279 is based on an acidic titration of the remaining uncombined lime in the clinkering product, also 280 known as "free lime", after a selective chemical attack by ethylene glycol. This method was first 281 suggested by Schläpfer and Bukowski in 1933 [44]. After grinding, 1 g of clinker is stirred in 282 ethylene glycol heated at 70 °C. This specific attack transforms free lime into calcium glycolate, (CaCH₂O)₂. After vacuum filtration, calcium glycolate is titrated with HCl 0,1 mol.L⁻¹ and the end-283 point is detected with bromocresol green indicator. The acidic titration reaction is given in 284 285 Equation 4.

$$(CaCH_2O)_2 + 2HCl \rightarrow (CH_3O)_2 + CaCl_2$$
 Eq. 4

The upper limit which is usually accepted for free lime content is 2 wt%, even if proportions between 2 and 3 % can be tolerated [42]. Due to the formulation step with the LSF adjustment, the free lime content is theoretically supposed to be correct. However, depending on the raw material properties, free lime content might differ from the expected values.

Clinker chemical analyses were performed by XRF with a protocol similar to what was described for the elemental analysis of raw materials. NF EN 197-1 [45] set two different chemical limits for Portland clinker – referenced as "K" in the standard – when used as a component of Portland cement. These restrictions and the typical composition range for Portland clinker according to Baroghel-Bouny [46] are given in Table 9. Knowing the main oxide contents, Bogue defined in 1929 a numerical method to estimate the potential phase composition. Four equations, one for each crystalline phase, were suggested and are given in Equations 5 to 8.

$$C_4AF = 3.0432 Fe_2O_3$$
 Eq. 5

$$C_3A = 2.6504 Al_2O_3 - 1.6920 Fe_2O_3$$
 Eq. 6

$$C_2S = -3.0710 \text{ CaO} + 8.6024 \text{ SiO}_2 + 5.0683 \text{ Al}_2\text{O}_3 + 1.0785 \text{ Fe}_2\text{O}_3$$
 Eq. 7

$$C_3S = 4.0710 \text{ CaO} - 7.6024 \text{ SiO}_2 - 6.7187 \text{ Al}_2\text{O}_3 - 1.4297 \text{ Fe}_2\text{O}_3$$
 Eq. 8

These equations were employed on lab clinkers with a correction for CaO: the lime proportion was
substracted from the total CaO content.

299 Clinker XRD analyses were carried out following the same experimental methodology as 300 the one used for bulk raw materials. In addition to the crystalline phase identification in the 301 complete diffraction diagram, several specific windows were selected for the determination of C_3S , 302 C₂S and C₃A polymorphs according to literature. Concerning tricalcium silicate, two angle ranges 303 were examined: 36.0 to 38.0 °20 and 55.5 to 57.5 °20 [47]. Regarding dicalcium silicate forms, both 304 30.5 to 32.0 °20 and 32.7 to 33.6 °20 areas were studied [48-49]. For tricalcium aluminate, two 305 other windows were taken into account: between 18.0 and 22.5 °20 and from 47.0 to 48.0 °20 [49-306 50].

307 2.5 Fresh and hardened state behaviors

Concerning the clinker referenced as ALP1-Ter, standard tests from the cement industry were performed pursue more deeply the demonstration of the beneficial reuse potential of dam sediment in clinker manufacture. A cement equivalent to a CEM I made with clinker ALP1-Ter was compared to an industrial CEM I 52.5N Portland cement (named hereafter Control CEM I) for all the experiments. Both cements were prepared in order to reach an identical SO₃ content (2.6 wt%) and the same Blaine fineness (3600 cm²/g) after clinker and gypsum co-grinding. The chemical composition and the potential phase contents of the Control CEM I are shown in Table 10.

315 First, the setting times (initial and final) were measured with a Vicat apparatus after the 316 assessment of the water-to-cement ratio (w/c) to reach normal consistency according to NF EN 196-317 3 [51]. The evaluation of standard consistency and required water content gives information on the 318 fresh state workability of the hydraulic binder. Several parameters come into play: cement fineness, 319 solid particle flocculation and hydration kinetics (consistency modification due to paste stiffening) 320 [52]. Then, strength tests were performed on mortar in agreement with NF EN 196-1 [53]. Flexural 321 and compressive strengths were measured on prismatic samples after curing times of 2, 7 and 322 28 days. The aim of this test was to determine the strength class of ALP1-Ter cement according to 323 NF EN 197-1 [45] with (i) the compressive strength reached after 28 days (32.5, 42.5 or 52.5 MPa) and (ii) the early-age strength development (normal N or rapid R). Another parameter that was 324

investigated is the cement heat of hydration. This test was performed by the semi-adiabatic technique given in NF EN 196-9 [54]. In this methodology, a mortar incorporating the tested cement is made and cast in a semi-adiabatic cell. The temperature evolution is followed for 120 h and compared to the temperature of an "inert" mortar (for which hydration is complete). The cumulative hydration at a given time t, labelled Q(t), can be calculated according to Equation 9.

$$Q(t) = \frac{C_{Tot}}{m_c} \times \theta_t + \frac{1}{m_c} \times \int_0^t \alpha \, \theta_t \, dt$$
 Eq. 9

In Equation 9, C_{Tot} refers to the heat capacity of the complete calorimeter (J.K⁻¹), m_c corresponds to 330 331 the cement mass contained in the mortar sample (g), t is attributed to the hydration time (h), α is a coefficient related to the specific heat loss of the calorimeter and θ_t indicates the difference of 332 333 temperature between the tested sample and the reference inert mortar at time t. The last investigated 334 parameter is the shrinkage of mortar in a controlled drying atmosphere (20 °C and 50 % RH) 335 according to NF P15-433 [55]. In these conditions, a large part of the total shrinkage is explained by 336 drying shrinkage: evaporation of pore water through the surfaces. In addition to dimensional 337 variations, mass evolution was also followed for 28 days.

338 3. Results and discussion

The measured clinker properties are presented in three sections. Section 3.1 refers to the clinkers obtained with binary mixes; limestone was blended with a unique silico-aluminous material which was either a quarried clay (CLY1 or CLY2) or a dredged sediment. Section 3.2 focuses on ternary mixes in which silica, alumina and iron oxide are introduced by an adequate blend of one sediment and one clay rock traditionally used by cement plants. The last section summarizes both approaches and establishes some relationships between the initial sediment properties and the final clinker characteristics.

- 346 *3.1 Binary clinkers*
- 347

• Anhydrous clinker characteristics

348 The first important parameter that should be considered is the achievement of lime combination reactions. It was assessed by measuring the remaining free lime in clinker that is the 349 350 calcium oxide that was not found in the cementitious phases. Results for binary clinkers are given in 351 Figure 4a. Chemical compositions of binary clinkers are given in Table 11. Bogue calculations were 352 used to estimate the potential phase proportions for C₃S, C₂S, C₃A and C₄AF. These values are 353 summarized in Table 11 as well. Using the LSF adjustment, most clinkers present a free lime 354 content below the threshold of 2 wt% and a relatively high C₃S/C₂S ratio. EST1-Bin is different 355 since its lime percentage is 3.62 wt% and the C₃S content is the lowest. This can be correlated with 356 its particle size distribution (see Figure 2 and Table 1) showing the presence of $> 100 \,\mu m$ particles

that could be quartz. The presence of large quartz particles is known to promote the formation of significant quantities of C_2S to the detriment of C_3S .

359 The full diffraction diagrams shown in Figure 5 confirm the presence of the four typical 360 crystalline phases of clinker and show some low intensity peaks for calcium oxide resulting from 361 the presence of free lime traces. Figure 5 does not show any complementary phase. To investigate 362 in greater details the effect of sediment introduction on the clinkering reactions, it was decided to 363 identify not only which of the four main phases were present, but also their polymorphism. The cases of alite, belite and tricalcium aluminate cases are examined. Concerning C₃S, two XRD 364 365 windows were selected allowing allotropes identification. The corresponding diagrams are given in 366 Figures 6a and 6b. The identified C₃S polymorphs are M₃ when sediments are added, while the 367 usual M₁ polymorphs are formed in CLY1-Bin and CLY2-Bin. As shown in Figure 7 it is related to 368 the MgO content of the sediment according to the empirical diagram from Maki et Goto (1982) 369 [56]. Higher MgO content increases the probability of formation of M₃. MgO comes from dolomite 370 and is also present in the trioctahedral sheets of illite, in the trioctahedral sheets of chlorite and in 371 the brucite sheets of chlorite (see Table 4). Figure 8 shows the C₂S polymorphs present in the 372 different binary mixes. Typical β-C₂S are formed when CLY1, CLY2 and MED1 are used (most 373 common form in clinkers; Figure 8a). However, the high temperature α -belite is stabilized for the 374 other clinkers (Figure 8b). Since clinker preparation protocols are equivalent, the only explanation 375 is a stabilization by Na supplied by the Na-feldspars like albite (no feldspar is usually present in 376 industrial rocks). Concerning C_3A , Figure 9 shows that the typical cubic C_3A phase is formed in 377 CLY1-Bin, CLY2-Bin and MED1-Bin. Orthorhombic C₃A is identified for all the other clinkers. Again, the greater the Na content, the more likely is the stabilization of the orthorhombic form of 378 379 C_3A .

380

388

• Hardened state properties

381 Differences can be observed at 2 or 7 days (Figure 10). This can be attributed to differences 382 in clinker reactivity, in mass percentage of each phase, in the gypsum quantity or in the fineness 383 after grinding. Nevertheless, all the samples show suitable strengths after 28 days. The important 384 increase between young age and 28 days for samples using sediments might be linked to the 385 formation of the C₂S α -polymorph which is delayed (compared to C₃S) but which is also known to 386 be a highly reactive belite polymorph.

387 *3.2 Ternary clinkers*

• Anhydrous clinker characteristics

A study, which was similar to the investigations on binary clinkers, was also carried out on clinkers obtained from ternary meals. Free lime contents were evaluated and results are reported in Figure 4b. The diagram presented in Figure 4b demonstrates that all the clinkering products 392 exhibited a free lime content less than the typical limit of 2 wt%, or slightly higher for ALP4-Ter. 393 Hence, it can be said that the clinkering reaction were relatively successful. Combination of lime 394 with the three other oxides was efficient. Interesting observations come from the comparison of the 395 free lime content between binary and ternary mix for a same sediment source. The most remarkable 396 example is the EST1 sample, since free lime content was reduced from 3.62 wt% for the binary 397 clinker to 1.70 wt% for EST1-Ter. This improved raw meal burnability can be explained by the 398 decrease of the sediment fraction in the meal, from 26.27 % to 10.78 %, and its substitution by an 399 aluminous clay rock (CLY1) that increased the melt content. A high liquid phase proportion 400 facilitates the combination of lime, especially the transition from C_2S to C_3S . Melt acts as a medium for Ca^{2+} ion diffusion [40]. Although the EST1 content was maintained at a relatively high level 401 (> 10 wt%), the negative effect of coarse PSD and high silica ratio were fully corrected using an 402 appropriate industrial clay from the cement industry. This good result for a ternary blend was 403 404 obtained only by mix adjustment and without any modification of the clinkering process, particularly the burning time. Contrary to the EST1 sediment, all the other resources – MED1, 405 406 BRT1 and alpine materials – were complemented by a clay rock CLY2 with a high silica ratio. Due to the reduction of the liquid phase fraction, ternary mixes were in most cases harder to burn than 407 408 for binary mixes. Free lime contents increased although they still remained in a satisfactory range.

409 After the successful assessment of lime combination, chemical compositions of ternary 410 clinkers were determined, and analyses are presented in Table 12 along with potential mineralogical 411 compositions which were calculated according to Bogue calculations. Table 12 shows that the 412 chemical composition tends to be more uniform from one clinker to another due to the simultaneous 413 use of one dam sediment and one quarried clay, which allows a good adjustment of the chemical 414 parameters. For instance, the SiO₂ content was increased for all the clinkers prepared by incorporating a sediment with low SR, i.e. ALP1, ALP2, ALP3, ALP4, BRT1 and MED1, in 415 416 comparison to the binary clinkers. Chemical compositions comply with the typical range as defined 417 by [46]. Moreover, the ternary clinkers satisfied both criteria concerning the MgO content and the 418 ratio between lime and silica as defined in NF EN 197-1. In parallel, the mineralogical 419 compositions according to Bogue calculations were also stabilized due to SR adjustment during the 420 mix formulation step. The ratio between silicate and aluminate phases was relatively constant 421 between all the ternary clinkers, with an interstitial phase (C_3A and C_4AF) that accounted for 18.5 422 to 20.3 wt%. It should be noticed that only three components were used to obtain homogeneous and 423 well-proportioned clinkers (Table 8). The adjustment could even be better, particularly by setting 424 the alumina ratio, *i.e.* controlling the composition of the liquid phase. Depending on the expected 425 clinker, iron oxide or alumina – often in the form of bauxite – can be added to the raw meal.

426 Since adequate ratios between crystalline phases were demonstrated for ternary clinker, 427 attention was then focused on the polymorphs. Specific XRD windows allowing alite identification 428 are shown in Figure 11. First, in Figure 11a, the presence or absence of the diffraction peak located 429 at 36.7 °20 helps in discriminating which samples contain alite with the M3 allotrope and which 430 ones are free from this monoclinic form. It can be observed that all the ternary samples prepared 431 with sediment do contain M₃-C₃S. In contrast, CLY-Ter clinker did not present the typical reflection 432 peak at 36.7 °20. This observation for the reference CLY-Ter clinker was not very surprising since 433 the binary clinkers prepared with the individual quarried clays did not initially present M₃-alite. 434 Considering, as a second step, the 55.5 to 57.5 $^{\circ}2\theta$ window in Figure 11b, it can be mentioned that 435 the control lab clinker CLY-Ter presented the expected characteristic pattern of M₁-C₃S. Regarding 436 the clinkers produced with sediment in ternary blends, it should be noticed that a broad double peak 437 can now be distinguished between 56.2 and 56.7 $^{\circ}2\theta$. This pattern could be interpreted as a 438 coexistence of M_1 and M_3 polymorphs. Compared to the binary clinkers, a relevant evolution to 439 consider is the relatively equal intensity between the peak at 36.4 (M_1) and the peak at 36.6 (M_3) . 440 Intensities were almost equivalent for all the ternary clinker whereas the M_3 peak was clearly the 441 strongest in binary clinkers produced with sediment (Figure 6). To sum up, the main conclusion 442 concerning alite polymorphism during the transition from binary to ternary mix was a distinct 443 increase of monoclinic M_1 - C_3S proportion and, in parallel, a relative decrease of M_3 - C_3S . The 444 decrease of sediment content and its replacement by clay low in magnesium oxide reduces the 445 quantity of incorporated magnesium that acts as a stabilizing agent in the M₃ form due to 446 substitutions in crystal lattice.

447 Concerning C₂S polymorphism, the same windows as for binary clinkers were chosen for 448 ternary products. These selected angle ranges are presented in Figure 12. Figure 12a, which focuses 449 on the angle range 30.5 to $32.0 \circ 2\theta$, shows similar diffraction patterns for all the studied clinkers, 450 except for ALP4-Ter. The common feature is an association of two close peaks: a first one just 451 below 31.0 °2 θ and another one at 31.6 °2 θ . This combination is typical of the β -C₂S phase, which 452 is industrially the most frequent polymorph. With a moderate level of stabilizing agents and a 453 **moderate** to rapid cooling rate, β -belite is the obtained form of C₂S. Theoretically, this polymorph is 454 metastable at room temperature and should be transformed into the unreactive orthorhombic γ -C₂S. 455 However, due to chemical stabilizers and/or the size of crystallites [40], this transition to the γ -form does not occur. In ternary clinkers, it should also be noticed that no peak could be observed at 456 457 33 °2 θ contrary to observations for binary clinkers observations. It means that the high temperature 458 α -C₂S form was no longer contained in clinkers from ternary blends, except for ALP4-Ter. This 459 observation can be explained by the reduction in alkali content, especially Na₂O which is known to 460 promote the α -form when combined with rapid cooling [57]. Thus, considering the results for 461 binary and ternary blends, it is clear that the sediment content in clinker raw meal may modify the 462 polymorphism of C₂S. High replacement ratios are likely to preserve high temperature forms whereas a mix with a reduced amount of alternative raw material would favor the cooling 463 464 transformations towards α'_{H} , α'_{L} and the traditional β -form. Even if most sediments – MED1 465 excluded – tend to add stabilizers for high temperature belite, all these polymorphs are supposed to 466 present a hydraulic reactivity. The unreactive γ was never observed, neither the typical "dusting" 467 phenomenon due to the 13 % volume change when crystals evolve from monoclinic- β to 468 orthorhombic- γ .

469 During the binary clinkers characterization, it was shown that C₃A was the third phase with 470 a polymorphism affected by sediment addition. Crystallographic changes of this mineral were also 471 investigated for ternary mixes, using the usual 47.0 to 48.0 °20 angle range. This portion of XRD 472 patterns is given for each ternary clinker in Figure 13. The main comment that can be made on 473 Figure 13 is the prevalence of the 47.8 $^{\circ}2\theta$ peak for all the ternary clinkers, except for ALP4-Ter. It means that the cubic polymorph, that is to say the undistorted lattice form, was dominant. This 474 475 result can be explained by a reduced amount of sodium impurities provided by sediment and 476 contained in Na-feldspars and, to a lesser extent, in clay minerals.

477

• Fresh and hardened state properties on mortar

478 It was previously shown that ternary clinkers did not show any particular feature in 479 comparison to the binary ones. Furthermore, the characteristics were rather homogenous from one 480 ternary clinker to another due to a more precise adjustment of the raw meal chemistry, except for 481 ALP4-Ter. Thus, it was decided to investigate more deeply one clinker formulation. For its greater 482 availability, ALP1-Ter was selected. Several standard tests, on the mortar and in the fresh state, 483 were carried out on a Portland cement produced with fine-grained sediment, yielding results which 484 were never observed before in literature. The properties of ALP1-Ter cement were compared (i) to 485 the cement standards when available and (ii) to the hydration characteristics of an industrial 486 Portland cement, considered as reference in the experimentation. As a reminder, both cements were prepared to obtain a similar Blaine fineness ($3600 \text{ cm}^2/\text{g}$) and identical SO₃ contents (2.6 wt%). 487

488 First and foremost, setting times were measured after establishing the water-to-binder ratio which yields standard consistency. Results are given in Table 13. Since the production in the 489 490 laboratory of ALP1-Ter lab cement was limited (2 kg), the number of possible w/c trials to reach 491 standard consistency was reduced. It explains why there is no strict value given in Table 13. 492 According to the accomplished tests, it can be said that w/c ratio of ALP1-Ter cement at standard 493 consistency was slightly lower than 0.245. In comparison, the reference CEM I presented a w/c 494 ratio of 0.260. According to Zhang [58], standard consistency generally lies in the range 0.24 to 495 0.30. Thus, the studied ALP1-Ter cement required a rather low water amount while maintaining an 496 interesting workability. Concerning setting times, it can be mentioned that the initial setting time is 497 30 minutes shorter for ALP1-Ter cement compared to the control sample. This observation could be 498 explained by the difference in C₃A content which plays a main role in early reactivity. According to 499 the NF EN 197-1 standard [45], a 52.5 strength class cement must exhibit an initial setting time greater than 45 min. This condition was satisfied by ALP1-Ter and by the reference cement as well. 500 501 Regarding the final setting times, they are similar from one cement to another (around 3 hours). According to Siddiqi [59], a final setting time less than 10 h should be recommended for any 502 503 binder. Again, this requirement was fulfilled by ALP1-Ter cement. Therefore, a hydraulic reactivity 504 was demonstrated by the alternative laboratory cement. Short setting times ensure rapid hardening 505 and quick strength development.

506 The heat generated by ALP1-Ter cement hydration was followed for 120 h using semi-507 adiabatic calorimetry and compared to the Portland cement made with an industrial clinker. 508 Cumulative heats of hydration for both cements are presented in Figure 14. After 120 h, the 509 cumulative heat of hydration is stabilized for both Portland binders. Mortar manufactured with ALP1-Ter cement generated 413 J/g, which was 8.7 % higher than the control CEM I (380 J/g). 510 511 Each clinker phase exhibits a very different heat of hydration. Two of them mainly participate in 512 total heat generation: C₃A (1000 to 1200 J/g) and C₃S (500 to 525 J/g) [60]. Therefore, the higher content in tricalcium aluminate of the laboratory clinker could explain the greater heat generated 513 514 during its hydration compared to the control sample, especially at the very beginning of setting. 515 Although the total heat generated by ALP1-Ter cement was rather high, it is still tolerable for a 516 CEM I binder. For different reasons (thermal cracking risks and delayed ettringite formation), a 517 limitation of heat of hydration might be required. ALP1 sediment could still be valorized using 518 supplementary cementitious materials in addition to ALP1-Ter or adjusting the raw meal to 519 synthesize less C₃A.

520 Mortar compressive strength with ALP1-Ter cement was assessed after 2, 7 and 28 days in 521 standard conditions. Results are given in Figure 15 and Table 14 and compared to the industrial 522 reference CEM I. After 28 days, ALP1-Ter cement presented a compressive strength of 57.9 MPa. 523 According to the strength value after a curing time of 2 days (< 30 MPa), ALP1-Ter cement can be 524 classified as a 52.5N binder. It can be noticed that at any curing time, compressive strengths of the 525 laboratory cement made with sediment were higher than the reference Portland cement. ALP1-Ter 526 cement showed a high reactivity and strength gain at the earliest ages (2 and 7 days). The maximum 527 compressive strength difference between the tested cement and the control sample was observed 528 after 7 days (17.3 % higher). In contrast, this discrepancy tended to diminish at a later age, *i.e.* 529 28 days. The described strength development is rather consistent with the semi-adiabatic calorimeter results and relatively short setting times. In summary, mechanical performances of the
Portland cement prepared with 11.4 wt% of sediment were fully acceptable.

532 Dimensional and mass variations of mortars stored in a cabinet with controlled atmosphere 533 were assessed during 28 days (Figure 16). Mortar shrinkage with ALP1-Ter cement was stabilized 534 after 21 days at 390 µm/m (Figure 16a). This value is low compared to the reference Portland 535 cement (500 µm/m). Generally speaking, the lower the shrinkage, the more performant the cement. 536 Shrinkage limits are no longer given in cement standards. However, the withdrawn NF P15-301 537 standard set a maximum limit at 1000 µm/m for a cement that reaches 55 MPa after 28 days. This 538 criterion is respected for ALP1-Ter cement and the reference one as well. Moreover, studying 8 539 different industrial CEM I cements, Massazza observed that shrinkage in the same conditions lies in 540 a range from 329 to 461 µm/m [61], which is similar to the manufactured ALP1-Ter mortar. Blaine 541 fineness is often presented as a key-explanation for drying shrinkage. However, in this study, Blaine 542 fineness was kept constant in order to avoid this bias. Therefore, the small difference in shrinkage 543 between the ALP1-Ter mortar and the control one can mainly be attributed to the progress of the 544 hydration reaction that was greater for the laboratory ALP1-Ter sample in an equivalent time. More 545 water participated in hydration reactions compared to the other sample, meaning less water is 546 available for evaporation in the porous system. To complete dimensional interpretations, it can be 547 observed in Figure 16b that whatever the drying time, mass loss was lower for ALP1-Ter mortar 548 compared to the control CEM I. This result is consistent with dimensional variations, since mass 549 loss and shrinkage are both related to the evaporated water quantity. To sum up, it can be said that 550 ALP1-Ter shrinkage is absolutely satisfying.

As a conclusion of this result part concerning the "advanced" experiments related to ALP1-Ter cement, it can be said that this alternative binder fulfilled all the tested requirements either in a fresh or a hardened state.

554 *3.3 Link between sediment properties and clinker characteristics*

It's interesting to represent the different mineralogical compositions in a framework, as 555 556 proposed by Haurine *et al.* in 2016 [13] in order to classify the sediments according to their interest in being used in the tile and brick industry. In the present work, we have chosen a representation 557 that highlights the presence of alkaline ions which are known to play a significant role during 558 559 sintering. The poles are the following: (1) clay minerals and microcline since they contain 560 potassium (especially illite as shown in Table 4 and microcline), (2) albite which can supply sodium during sintering, and (3) quartz. All sediments are quite distinct from CLY1 and CLY2. Thus a 561 562 chemical and a mineralogical framework to predict the effect of sediment addition on clinker

563 characteristics can be proposed (Figure 17). From Figure 17a, the following points can be 564 underlined:

565 - The greater the CaO content, the greater amount of sediment can be used in the raw meal.

566 - When the quantity of SiO_2 increases, the burnability decreases.

567 - The interstitial phase is abundant when the composition in enriched with alumina.

Figure 17b presents the mineral compositions of the sediments in a mineralogical framework. One pole corresponds to K rich phases, a second pole to Na rich phases and the last pole to quartz. If the composition contains a significant amount of albite, then orthorhombic C_3A and α - C_2S are present in the clinker. These frameworks are simplified and obviously they need to be completed with similar studies on a variety of sediments. Nevertheless, they could be a useful decision support tool for a cement company to decide if a sediment could be incorporated into a raw meal as it is or if it needs to be mixed with other sources of raw materials.

575 **4.** Conclusions

576 Beneficial reuse of waste as alternative raw materials for industry is a challenging, but 577 necessary, objective for the future. Concerning the cement industry, large amounts of natural 578 geological resources are consumed each year to manufacture clinker, component of concrete which 579 is the most widely used construction material. In parallel, great amounts of fine-grained sediment 580 might have to be dredged from French reservoirs in the future. In this context, an industrial ecology 581 approach could be implemented in order to introduce dam sediments into clinker raw meals, 582 reducing at the same time waste disposal and the extraction of quarried rock. Compared to previous studies which were "case-specific", this paper aimed to take into account the soils and geological 583 variations from one French region to another, working simultaneously on 7 sediments from 584 585 different locations. The essential conclusions are listed below:

- In terms of chemical composition, all the studied sediment resources contain SiO₂, Al₂O₃
 and CaO as the main oxides but with various concentrations. A direct relationship can be
 made with the mineralogical phases, *e.g.* CaO is carried by carbonates (primarily calcite)
 while silica is contained in quartz, phyllosilicates and feldspars. Additional minor elements
 can also be indicated, especially for alpine sediments, like Mg (illite, chlorite and dolomite)
 and alkalis (feldspars and illite).
- Very high sediment replacement ratios (from 25 to 35 wt%) are reached in the total clay
 substitution strategy, called binary mixes. This approach is challenging since the adjustment
 of the composition is restricted to the lime saturation factor. According to the identified
 crystalline phases, the products can be considered as "Portland" clinkers. In several cases,
 special features are observed due to sediment introduction (lime combination success,

- 597 interstitial phase content, polymorphism). The impact of dredged materials on clinkering
 598 reactions was never described with such details previously in literature.
- Considering the clinker obtained with ternary meals, it can be said that a replacement of 10 to 15 wt% of the usual raw material by any of the sediments does not significantly impact the clinker properties, even the phase polymorphism. After gypsum addition, a CEM I 52.5N cement can be obtained, with a high hydraulic reactivity and no constraint in terms of fresh state workability and shrinkage. To sum up, fine-grained sediments can be reused in clinker raw meal to produce any type of clinker.
- Due to the significant number of investigated sediments, this study provides a solid foundation for future work and in particular to test with an industrial pilot scheme. Moreover, additional practical aspects must be considered such as full-scale drying after dredging operation and transport conditions. It should also be noticed that durability tests are a legitimate extension of this work, particularly the sensitivity to chemical attacks, according to the desired cement type and the expected application.

611 Acknowledgements

612 The National Association of Technical Research (ANRT) is sincerely acknowledged for its 613 financial support. Additionally, the authors would like to thank the interns from ENSIL-ENSCI 614 Engineering school who were involved for several weeks in this project. Their experimental work 615 was sincerely appreciated.

616 **References**

- [1] Ministry of Ecology, Energy, Sustainable Development and Territorial Planning, Circulaire du 04/07/08 relative à la procédure concernant la gestion des sédiments lors de travaux ou d'opérations impliquant des dragages ou vurages maritimes et fluviaux, Official Bulletin of MEEDDAT n° 2008/15, 2008.
- [2] A.J. Schleiss, M.J. Franca, C. Juez, G. De Cesare, Reservoir sedimentation, J. Hydraul. Res. 54 (2016) 595-614. doi:10.1080/00221686.2016.1225320.
- [3] S. Munir, Role of sediment transport in operation and maintenance of supply and demand based on irrigation canals, CRC Press, Boca Raton, 2011.
- [4] Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives, O. J. L 312-3, 2008.
- [5] P.N. Owens, R.J. Batalla, A.J. Collins, B. Gomez, D.M. Hicks, A.J. Horowitz, G.M. Kondolf, M. Marden, M.J. Page, D.H. Peacock, E.L. Petticrew, W. Salomons, N.A. Trustrum, Finegrained sediment in river systems: environmental significance and management issues, River Res. Appl. 21 (2005) 693-717. doi:10.1002/rra/878.
- [6] C. Sheehan, J. Harrington, J.D. Murphy, A technical assessment of topsoil production from dredged material, Resour. Conserv. Recy. 54 (2010) 1377-1385. doi:10.1016/j.resconrec.2010.05.012.
- [7] G. Fourvel, L. Vidal-Beaudet, A. Le Bocq, V. Brochier, F. Théry, D. Landry, T. Kumarasamy,
 P. Cannavo, Early structural stability of fine dam sediment in soil construction, J. Soils
 Sediments. 18 (2018) 1-17. doi:10.1007/s11368-018-1926-2.
- [8] V. Dubois, N.E. Abriak, R. Zentar, G. Ballivy, The use of marine sediments as a pavement base material, Waste Manage. 29 (2009) 774-782. doi:10.1016/j.wasman.2008.05.004.
- [9] S. Kamali, F. Bernard, N. E. Abriak, P. Degrugilliers, Marine dredged sediments as new materials resource for road construction, Waste Manage. 28 (2008) 919-928. doi:10.1016/j.wasman.2007.03.027.
- [10] M. Le Guern, T.A. Dang, M. Boutouil, Implementation and experimental monitoring of a subgrade road layer based on treated marine sediments, J. Soils Sediments. 17 (2017) 1815-1822. doi:10.1007/s11368-017-1652-1.
- [11] K. Hamer, V. Karius, Brick production with dredged harbour sediments. An industrial scale experiment, Waste Manage. 22 (2001) 521-530. doi:10.1016/S0956-053X(01)00048-4.
- [12] A. Mezencevova, N.N. Yeboah, S.E. Burns, L.F. Kahn, K.E. Kurtis, Utilization of Savannah Harbor river sediment as the primary raw material in production of fired brick, J. Environ. Manage. 113 (2012) 128-136. doi:10.1016/j.envman.2012.08.030.

- [13] F. Haurine, I. Cojan, M.-A. Bruneaux, Development of an industrial mineralogical framework to evaluate mixtures form reservoir sediments for recovery by the heavy clay industry: Application to the Durance system (France), Appl. Clay Sci. 132 (2016) 508-517. doi:10.1016/j.clay.2016.07.022.
- [14] J. Limeira, M. Etxeberria, M. Agulló, D. Molina, Mechanical and durability properties of concrete made with dredged marine sand, Constr. Build. Mater. 25 (2011) 4165-4174. doi:10.1016/j.conbuildmat.2011.04.053.
- [15] N. Junakova, J. Junak, M. Balintova, Reservoir sediment as a secondary raw material in concrete production, Clean Technol. Envir. 17 (2014) 1161-1169. doi:10.1007/s10098-015-0943-8.
- [16] J. Couvidat, M. Benzaazoua, V. Chatain, A. Bouamrane, H. Bouzahzah, Feasibility of the reuse of total and processed contaminated marine sediments as fine aggregates in cemented mortars, Constr. Build. Mater. 112 (2016) 892-902. doi:10.1016/j.conbuildmat.2016.02.186.
- [17] P. Ozer-Erdogan, H. Merve Basar, I. Erden, L. Tolun, Beneficial use of marine dredged materials as a fine aggregate in ready-mixed concrete: Turkey example, Constr. Build. Mater. 124 (2016) 690-704. doi:10.1016/j.conbuildmat.2016.07.144.
- [18] G. Aouad, A. Laboudigue, N. Gineys, N.E. Abriak, Dredged sediments used as a novel supply of raw material to produce cement clinker, Cement and Concrete Composites. 34 (2012) 788-793. doi:10.1016/j.cemconcomp.2012.02.008.
- [19] J.L. Dalton, K.H. Gardner, T.P. Seager, M.L. Weimer, J.C.M. Spear, B.J. Magee, Properties of Portland cement made from contaminated sediments, Resour. Conserv. Recy. 41 (2004) 227-241. doi:10.1016/j.resconrec.2003.10.003.
- [20] B. Anger, I. Moulin, J.-P. Commène, F. Théry, D. Levacher, Fine-grained reservoir sediments: an interesting alternative raw material for Portland cement clinker production, Eur. J. Environ. Civ. En., (2017) 1-14. doi:10.1080/19648189.2017.1327890.
- [21] C. Meyer, The greening of the concrete industry, Cement Concrete Comp. 31 (2009) 601-605. doi:10.1016/j.cemconcomp.2008.12.010.
- [22] T. Gao, L. Shen, M. Shen, L. Liu, F. Chen, Analysis of material flow and consumption in cement production process, J. Clean. Prod. 112 (2016) 553-565. doi:10.1016/j.clepro.2015.08.054.
- [23] H.G. van Oss, A.C. Padovani, Cement Manufacture and the Environment. Part II: Environmental Challenges and Opportunities, J. Ind. Ecol. 7 (2003) 93-126. doi:10.1162/108819803766729212.
- [24] Cimbéton, Infociments 2016. L'essentiel, 2016.

- [25] J. Schoon, L. Van der Heyden, P. Eloy, E.B. Gaigneux, K. De Buysser, I. Van Driessche, N. De Belie, Waste fibrecement: An interesting alternative raw material for a sustainable Portland clinker production, Constr. Build. Mater. 36 (2012) 391-403. doi:10.1016/j.conbuildmat.2012.04.095.
- [26] J. Schoon, K. De Buysser, I. Van Driessche, N. De Belie, Feasibility study on the use of cellular concrete as alternative raw material for Portland clinker production, Constr. Build. Mater. 48 (2013) 725-733. doi:10.1016/j.conbuildmat.2013.07.083.
- [27] M. De Schepper, K. De Buysser, I. Van Driessche, N. De Belie, The regeneration of cement out of Completely Recyclable Concrete: Clinker production evaluation, Constr. Build. Mater. 38 (2013) 1001-1009. doi:10.1016/j.conbuildmat.2012.09.061.
- [28] C. Diliberto, A. Lecomte, J.-M. Mechling, L. Izoret, A. Smith, Valorisation of recycled concrete sands in cement raw meal for cement production, Mater. Struct. 50 (2017). doi:10.1617/s1152-7-017-0996-8.
- [29] G. Bernardo, M. Marroccoli, M. Nobili, A. Telesca, G. Valenti, The use of oil well-derived drilling waste and electric arc furnace slag as alternative raw materials in clinker production, Resour. Conserv. Recy. 52 (2007) 95-102. doi:10.1016/j.resconrec.2007.02.004.
- [30] P.E. Tsakiridis, P. Oustadakis, S. Agatzini-Leonardou, Black Dross Leached Residue: An Alternative Raw Material for Portland Cement Clinker, Waste Biomass Valori. 5 (2014) 973-983. doi:10.1007/s12649-014-9313-8.
- [31] R.I. Iacobescu, G.N. Angelopoulos, P.T. Jones, B. Blanpain, Y. Pontikes, Ladle metallurgy stainless steel slag as a raw material in Ordinary Portland Cement production: a possibility for industrial symbiosis, J. Clean. Prod. 112 (2016) 872-881. doi:10.1016/j.jclepro.2015.06.006.
- [32] M.Y. Hassaan, Basalt rock as an alternative raw material in Portland cement manufacture, Mater. Lett. 50 (2001) 172-178. doi:10.1016/S0167-577X(01)00220-8.
- [33] N. Saikia, S. Kato, T. Kojima, Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash, Waste Manage. 27 (2007) 1178-1189. doi:10.1016/j.wasman.2006.06.004.
- [34] J.R. Pan, C. Huang, J.-J. Kuo, S.-H. Lin, Recycling MSWI bottom and fly ash as raw materials for Portland cement, Waste Manage. 28 (2008) 1113-1118. doi:10.1016/j.wasman.2007.04.009.
- [35] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 60 (1938) 309-319. doi: 10.1021/ja01269a023.
- [36] AFNOR, NF EN 196-6. Methods of testing cements Part 6: Determination of fineness, 2012.
- [37] E.C. Arvaniti, M.C.G. Juenger, S.A. Bernal, J. Duchesne, L. Courard, S. Leroy, J.L. Provis, A. Klemm, N. De Belie, Determination of particle size, surface area, and shape of supplementary

cementitious materials by different techniques, Materials and Structures. 48 (2015) 3687-3701.

- [38] T. Holtzapffel, Les minéraux argileux. Préparation. Analyse diffractométrique et détermination, Société Géologique du Nord, Villeneuve d'Ascq, 1985.
- [39] AFNOR, NF EN 12880. Caractérisation des boues Détermination du résidu sec et de la teneur en eau, 2000.
- [40] H.F.W. Taylor, Cement Chemistry, Academic Press, Londres, 1990.
- [41] F.W. Locher, Cement: Principles of production and use, Verlag Bau+Technik, Düsseldorf, 2006.
- [42] G. Moir, Cements, in: J. Newman, B.S. Choo (Eds.), Advanced Concrete Technology, Butterworth-Heinemann, Oxford, 2003, pp. 1/1-1/45.
- [43] V. Michaud-Poupardin, R. Suderman, Sulfates in high SO3/alkali clinker. Their dissolution kinetics and their influence on concrete workability and durability, in: K. Scrivener, J. Skalny (Eds.), International RILEM Workshop on Internal Sulfate Attack and Delayed Ettringite Formation, RILEM Publications, Bagneux, 2002, pp. 28-40.
- [44] P. Schläpfer, R. Bukowski, Untersuchungen über die Bestimmung des freien Kalkes und des Kalziumhydroxydes in Zement-klinkern, Zementen, Schlacken und abgebundenen hydraulischen Mörteln, Eidgenössische Materialprüfungsanstalt an der E.T.H. in Zürich. 63.
- [45] AFNOR, NF EN 197-1. Cement Part 1: Composition, specifications and conformity criteria for common cements, 2012.
- [46] V. Baroghel-Bouny, Caractérisation microstructurale et hydrique des pâtes de ciment et des bétons ordinaires et à très hautes performances, PhD thesis: Ecole Nationale des Ponts et Chaussées. 1994.
- [47] H. Li, W. Xu, X. Yang, J. Wu, Preparation of Portland cement with sugar filter mud as limebased raw material, J. Clean. Prod. 66 (2014) 107-112. doi:10.1016/j.jclepro.2013.11.003.
- [48] K. Morsli, A.G. De la Torre, J.M. Cuberos, M. Zahir, M.Á. García, Preparación y caracterización de cementos belíticos blancos activados con dopantes alcalinos, Mater. Construcc. 59 (2009) 19-29. doi:10.3983/mc.2009.44307.
- [49] P.E. Stutzman, Guide for X-Ray Powder Diffraction Analysis of Portland Cement and Clinker, National Institute of Standards and Technology, Gaithersburg, 1996.
- [50] A.P. Kirchheim, V. Fernàndez-Altable, P.J.M. Monteiro, D.C.C. Dal Molin et I. Casanova, Analysis of cubic and orthorhombic C3A hydration in presence of gypsum and lime, J. Mater. Sci. 44 (2009) 2038-2045. doi:10.1007/s10853-009-3292-3.
- [51] AFNOR, NF EN 196-3. Methods of testing cements. Part 3 Determination of setting times

and soundness, 2017.

- [52] L. Struble, Hydraulic Cements-Physical Properties, in: J.F. Lamond, J.H. Pielert (Eds.), Significance of Tests and Properties of Concrete & Concrete-Making Materials, ASTM International, West Conshohocken, 2006, pp. 435-449.
- [53] AFNOR, NF EN 196-1. Methods of testing cement Part 1: Determination of strength, 2016.
- [54] AFNOR, NF EN 196-9. Methods of testing cement Part 9: Heat of hydration Semi-adiabatic method, 2010.
- [55] AFNOR, NF P15-433. Methods of testing cement: Determination of shrinkage and swelling, 1994.
- [56] I. Maki, K. Goto, Factors influencing the phase constitution of alite in Portland cement clinker, Cement Concrete Res. 12 (1982) 301-308. doi:10.1016/0008-8846(82)90078-3.
- [57] A. Gies, D. Knöfel, Influence of alkalies on the composition of belite-rich cement clinkers and the technological properties of the resulting cements, Cement Concrete Res. 16 (1986) 411-422. doi:10.1016/0008-8846(86)90117-1.
- [58] H. Zhang, Building materials in civil engineering, Woodhead Publishing, Cambridge, 2011.
- [59] Z. A. Siddiqi, Concrete Structure: Part II, second ed., Help Civil Engineering Publisher, Lahore, 2012.
- [60] P. Acker, Prise et durcissement des bétons Les effets thermomécaniques. C2235 V2, Techniques de l'Ingénieur, Saint-Denis, 1998.
- [61] F. Massazza, Pozzolana and Pozzolanic Cements, in: P.C. Hewlett (Ed.), Lea's Chemistry of Cement and Concrete, Butterworth-Heinemann, Oxford, 2004, pp. 471-635.

617

Figure 1 - Location of dam sediments on the French territory and corresponding

abbreviations.

Figure 2 - Particle size distributions of the raw sediments (a) and the quarried materials (b).

Figure 3 - Raw material locations in Rankin's diagram.

Figure 4 - Free lime contents of clinkers from (a) binary and (b) ternary mixes.

Figure 5 - XRD of binary clinkers (1: M_1 - C_3S ; 2: M_3 - C_3S ; 3: β - C_2S ; 4: α - C_2S ; 5: Cubic- C_3A ; 6: Orthorhombic- C_3A ; 7: C_4AF ; 8: CaO).

Figure 6 - Identification of C₃S polymorphism of binary clinkers in the 36.0 to $38.0 \circ 2\theta$ window (a) and in the 55.5 to 57.5 $\circ 2\theta$ window (b). M₁ and M₃ are two alite polymorphs.

Figure 7 - Relationship between MgO/SO $_3$ content on polymorphic transformations of alite

and location of binary lab clinkers (adapted from [56]).

Figure 8 - Identification of C₂S polymorphism of binary clinkers in the 30.5 to 32.0 °2 θ window (a) and in the 32.7 to 33.6 °2 θ window (b).

Figure 9 - Identification of C₃A polymorphism of binary clinkers in the 47.0 to 48.0 $^{\circ}2\theta$

window.

Figure 10 - Compressive strength on cement pastes produced from binary clinkers.

Figure 11 - Identification of C₃S polymorphism of ternary clinkers in the 36 to 38 °2 θ window (a) and in the 55.5 to 57.5 °2 θ window (b). M₁ and M₃ are two alite polymorphs.

Figure 12 - Identification of C₂S polymorphism of ternary clinkers in the 32.7 to 33.6 °2 θ window (a) and in the 32.7 to 33.6 °2 θ window (b).

Figure 13 - Identification of C₃A polymorphism of ternary clinkers in the 47.0 to 48.0 $^{\circ}2\theta$

window

Figure 14 - Cumulative heat of hydration of ALP1-Ter cement and control CEM I.

Figure 15 - Compressive strength of standard NF EN 196-1 mortars prepared with ALP1-Ter cement and with the control CEM I.

Figure 16 – Mortar shrinkage (a) and mortar mass variation (b) versus time for ALP1-Ter cement and control CEM I.

Figure 17 - Proposition of a chemical (a) and mineralogical (b) framework to predict the influence of sediments introduction in clinker manufacture.

	LIM1	CLY1	CLY2	ALP1	ALP3	ALP2	ALP4	BRT1	EST1	MED1
$d_{v10} (\mu m)$	1.1	1.0	1.0	3.3	2.4	3.0	3.0	2.5	3.2	2.2
$d_{v50} \left(\mu m \right)$	3.6	5.6	6.8	11.7	6.9	9.1	12.9	8.6	17.3	7.3
d _{v90} (µm)	14.5	21.0	21.9	35.8	20.0	27.1	53.8	35.0	113.4	23.0
Clay fraction (vol%) < 4 µm	30.1	23.6	20.8	16.5	30.9	20.9	18.1	22.5	16.4	26.6
Silt fraction (vol%) 4 µm - 63 µm	69.9	76.4	79.2	82.7	69.1	78.9	76.6	74.2	65.0	73.1
Sand fraction (vol%) 63 µm – 2 mm	0.0	0.0	0.0	0.8	0.0	0.2	5.3	3.3	18.6	0.3

Table 1 – 10th, 50th and 90th percentiles of sediments particle size distributions and volumic

distribution of clay, silt and sand fractions.

	LIM1	CLY1	CLY2	ALP1	ALP2	ALP3	ALP4	BRT1	EST1	MED1
Density (g.cm ⁻³)	2.74	2.66	2.75	2.79	2.81	2.70	2.79	2.55	2.59	2.67
BET SSA (m ² .g ⁻¹)	4.1	47.1	28.3	5.9	7.0	11.7	5.2	17.9	7.8	16.8
Blaine SSA (cm ² .g ⁻¹)	5852	6377	6154	5741	10502	12498	7547	7132	4931	12069

Table 2 - Density and specific surface areas of raw materials.

wt%	LIM1	CLY1	CLY2	ALP1	ALP2	ALP3	ALP4	BRT1	EST1	MED1
SiO ₂	1.79	50.65	61.22	43.52	44.51	42.76	46.95	46.96	49.63	35.04
Al ₂ O ₃	0.76	16.07	11.63	13.40	13.70	12.38	11.58	11.97	7.41	10.46
Fe ₂ O ₃	1.28	5.95	4.82	5.63	5.81	5.22	5.09	5.79	3.07	3.90
CaO	52.71	7.79	6.43	14.18	14.64	14.09	13.78	12.13	15.64	23.14
MgO	0.48	1.64	1.14	2.87	1.83	1.84	3.03	1.72	2.10	1.56
TiO ₂	0.02	0.90	0.92	0.60	0.70	0.68	0.56	0.64	0.39	0.48
MnO	0.04	0.03	0.02	0.10	0.16	0.15	0.11	0.05	0.06	0.08
P ₂ O ₅	0.06	0.10	0.05	0.16	0.19	0.17	0.14	0.29	0.13	0.10
SrO	0.03	0.02	0.02	0.05	0.08	0.06	0.05	0.08	0.04	0.07
Na ₂ O	0.00	0.13	0.06	0.91	0.65	0.83	0.94	0.75	0.70	0.27
K ₂ O	0.13	3.15	2.24	2.69	2.18	2.50	2.32	2.08	1.58	1.81
SO ₃	0.10	1.07	1.27	0.17	0.36	0.28	0.08	0.30	0.11	0.34
LOI	42.54	12.35	10.09	15.60	15.06	18.92	15.28	17.05	19.02	22.72
Total	99.94	99.85	99.91	99.88	99.87	99.88	99.91	99.81	99.88	99.97

Table 3 - Chemical composition of raw materials.

wt%	LIM1	CLY1	CLY2	ALP1	ALP2	ALP3	ALP4	BRT1	EST1	MED1
Silico aluminous ph	ases									
Quartz	1	45	59	29	35	28	30	31	32	17
Clay minerals	-	28	22	29	23	21	22	27	21	31
Albite	-	-	1	12	7	12	12	11	8	4
Microcline	-	3	2	2	5	7	3	5	3	2
Carbonated phases										
Calcite	98	20	15	23	29	30	25	18	28	43
Dolomite	1	-	-	5	1	2	8	-	8	3
Aragonite	-	-	-	-	-	-	-	8	-	-
Mineral phases that	contain s	ulfur								
Pyrite	-	3	4	-	-	-	-	-	-	-
Gypsum	-	1	1	-	-	-	-	-	-	-
Detailed clay minero	al composi	itions								
Illite	-	41	45	62	54	55	68	24	63	45
Chlorite	-	-	-		46	45	32	36	37	25
Kaolinite	-	59	55	38	-	-	-	40	-	30

Table 4 - Mineral composition of raw materials.

Temperature range (°C)	Attributed phenomenon	Mass loss (wt%)									
		LIM1	CLY1	CLY2	ALP1	ALP2	ALP3	ALP4	BRT1	EST1	MED1
105-150	Remaining adsorbed water evaporation and organic matter oxidation	0.1	0.7	0.4	1.1	0.8	1.2	0.8	5.3	3.8	1.5
450-650	Phyllosilicates dehydroxylation – Dolomite decomposition	0.4	1.2	0.9	2.5	2.2	3.1	1.7	4.1	2.8	3.1
650-850	Calcite decomposition	12.9	2.5	2.0	11.4	10.2	17.1	10.5	6.9	10.5	17.1
850-1000	Ending of phyllosilicates degradation	0.0	0.1	0.0	0.2	0.1	0.1	0.2	0.1	0.2	0.1
105-1000	Total mass loss	13.4	4.5	3.3	15.2	13.3	13.9	13.2	16.4	17.3	21.8

Table 5 - TGA for the raw materials between 105 and 1000 $^{\circ}\text{C}$ and associated phenomena.

	LIM1	CLY1	CLY2	ALP1	ALP2	ALP3	ALP4	BRT1	EST1	MED1
Organic matter (wt%)	n.d.	n.d.	n.d.	3.2	3.2	3.9	3.0	8.7	5.6	4.8

Note: n.d. = not determined

Table 6 - Organic matter content of raw materials.

Meal	Limestone	Silico-aluminous raw material (wt%)										AR
reference	(wt%)	CLY1	CLY2	ALP1	ALP2	ALP3	ALP4	BRT1	EST1	MED1	51	AK
CLY1-Bin	76.70	23.30									1.97	1.83
CLY2-Bin	79.24		20.76								2.81	1.50
ALP1-Bin	72.70			27.30							1.97	1.71
ALP2-Bin	72.13				27.87						2.07	1.68
ALP3-Bin	73.12					26.88					1.97	1.70
ALP4-Bin	73.82						26.18				2.32	1.58
BRT1-Bin	74.20							25.80			2.21	1.49
EST1-Bin	73.73								26.27		3.37	1.43
MED1-Bin	65.19									34.81	2.11	1.89

Table 7 - Composition of binary clinker meals (LSF = 97).

Meal	Limestone		Silico-aluminous raw material (wt%)									
reference	(wt%)	CLY1	CLY2	ALP1	ALP2	ALP3	ALP4	BRT1	EST1	MED1	АК	
CLY-Ter	78.18	9.67	12.14								1.65	
EST1-Ter	75.48	13.74							10.78		1.69	
ALP1-Ter	76.50		12.06	11.44							1.59	
ALP2-Ter	75.72		10.48		13.79						1.60	
ALP3-Ter	76.70		12.14			11.16					1.59	
ALP4-Ter	74.84		3.90				21.25				1.56	
BRT1-Ter	76.04		7.60					16.36			1.50	
MED1-Ter	71.80		9.77							18.43	1.71	

Table 8 - Composition of ternary clinker meals (LSF = 97 and SR = 2.4).

Usual com	position range	NF EN 197-1 requ	uirements [45]		
SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	CaO/SiO ₂	MgO
19-25	2-9	1-5	62-67	> 2.0	< 5.0

Table 9 - Chemical requirements for Portland clinker.

wt%	Control CEM I
SiO ₂	19.94
Al ₂ O ₃	5.33
Fe ₂ O ₃	4.21
CaO	65.74
MgO	0.69
TiO ₂	0.31
MnO	0.04
P ₂ O ₅	0.07
SrO	0.08
Na ₂ O	0.09
K ₂ O	0.41
SO_3	2.69
LOI	0.26
Total	99.86
Mineralogical composition	according to Bogue calculations
C ₃ S	70.9
C_2S	5.2
C ₃ A	7.2
C4AF	13.1

Table 10 - Chemical and mineralogical composition of the control CEM I used as reference in

the standard cement tests.

Clinker	CLY1-Bin	CLY2-Bin	ALP1-Bin	ALP2-Bin	ALP3-Bin	ALP4-Bin	BRT1-Bin	EST1-Bin	MED1-Bin
SiO ₂	20.02	21.45	20.61	20.72	20.98	20.93	20.21	22.61	20.82
Al ₂ O ₃	6.58	4.85	6.53	6.40	6.58	5.69	5.67	4.06	6,56
Fe ₂ O ₃	3.64	3.02	3.79	3.79	3.69	3.77	3.93	2.83	3.51
CaO	65.20	67.86	65.23	65.89	65.56	66.50	66.75	66.21	66.32
MgO	1.15	0.93	1.75	1.30	1.45	1.84	1.28	1.41	1.29
TiO ₂	0.32	0.35	0.34	0.31	0.35	0.19	0.31	0.15	0.28
MnO	0.03	0.04	0.10	0.14	0.11	0.10	0.06	0.10	0.10
P2O5	0.11	0.10	0.13	0.15	0.13	0.11	0.20	0.14	0.11
SrO	0.05	0.05	0.06	0.07	0.07	0.06	0.07	0.06	0.07
Na ₂ O	0.14	0.08	0.41	0.28	0.37	0.35	0.35	0.29	0.16
K ₂ O	1.17	0.44	0.34	0.26	0.50	0.23	0.27	0.21	0.33
SO ₃	1.39	0.56	0.09	0.12	0.13	0.03	0.23	0.06	0.08
LOI	0.14	0.20	0.52	0.50	0.02	0.12	0.58	1.84	0.33
Total	99.94	99.93	99.90	99.93	99.94	99.92	99.91	99.97	99.96
NF EN 197-1 cher	nical requir	ements on c	linker						
%MgO	< 5 wt%	< 5 wt%	< 5 wt%	< 5 wt%	< 5 wt%	< 5 wt%	< 5 wt%	< 5 wt%	< 5 wt%
%CaO / %SiO2	3.3	3.2	3.2	3.2	3.1	3.2	3.3	2.9	3.2
Mineralogical com	positions ac	cording to	Bogue calci	ulations					
C ₃ S	62.1	68.77	56.8	60.6	55.8	59.8	66.6	51.6	60.6
C_2S	10.6	9.70	16.3	13.7	18.0	14.9	7.7	25.9	14.0
СзА	11.3	7.74	10.9	10.6	11.2	8.7	8.4	6.0	11.5
C4AF	11.1	9.19	11.5	11.5	11.2	11.5	12.0	8.6	10.7

Table 11 - Chemical and mineralogical compositions of binary clinkers.

Clinker	CLY-Ter	ALP1-Ter	ALP2-Ter	ALP3-Ter	ALP4-Ter	BRT1-Ter	EST1-Ter	MED1-Ter
SiO ₂	20.40	20.61	20.74	21.78	20.95	21.12	20.94	21.14
Al ₂ O ₃	5.40	5.86	5.62	5.64	5.54	5.85	6.01	5.73
Fe ₂ O ₃	3.14	3.29	3.23	3.26	3.41	3.54	3.18	3.16
CaO	68.29	67.20	67.68	66.25	67.11	66.61	66.59	67.16
MgO	1.02	1.24	1.06	1.21	1.68	1.19	1.23	1.14
TiO ₂	0.30	0.32	0.33	0.31	0.21	0.33	0.28	0.28
MnO	0.02	0.07	0.08	0.09	0.09	0.07	0.08	0.09
P2O5	0.10	0.08	0.11	0.11	0.12	0.13	0.09	0.09
SrO	0.05	0.05	0.05	0.06	0.06	0.06	0.05	0.06
Na ₂ O	0.11	0.17	0.12	0.18	0.31	0.17	0.19	0.13
K ₂ O	0.42	0.43	0.35	0.38	0.20	0.40	0.55	0.36
SO ₃	0.55	0.47	0.30	0.33	0.06	0.41	0.63	0.36
LOI	0.18	0.16	0.30	0.32	0.23	0.10	0.14	0.26
Total	99.98	99.95	99.97	99.92	99.97	99.98	99.96	99.96
Mineralogical compositions according to Bogue calculations								
C ₃ S	74.27	68.3	70.2	59.4	63.2	59.8	60.0	65.6
C_2S	2.52	7.6	6.5	17.6	12.4	15.4	14.8	11.1
C ₃ A	9.00	10.0	9.4	9.4	8.9	9.5	10.5	9.8
C ₄ AF	9.55	10.0	9.8	9.9	10.4	10.8	9.7	9.6

Table 12 - Chemical and mineralogical compositions of ternary clinkers.

	ALP1-Ter cement	Control CEMI
w/c at standard consistency	< 0.245	0.260
Initial setting time (min)	95	125
Final setting time (min)	180	185

Table 13 - Setting times of ALP1-Ter cement and the control CEM I.

Curing time (d)	ALP1-T	er cement	Control CEMI		
Curing time (u) –	Flexural strength	Compressive strength	Flexural strength	Compressive strength	
2	4.9	25.8	5.0	23.9	
7	7.4	46.8	7.6	39.9	
28	8.3	57.9	8.6	57.9	

Table 14 - Flexural and compressive strength values for standard NF EN 196-1 mortar

prepared with ALP1-Ter cement and control CEM I.