
HAL Id: hal-02392488
https://unilim.hal.science/hal-02392488v1

Preprint submitted on 4 Dec 2019 (v1), last revised 19 Jun 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing syzygies in finite dimension using fast linear
algebra

Vincent Neiger, Eric Schost

To cite this version:
Vincent Neiger, Eric Schost. Computing syzygies in finite dimension using fast linear algebra. 2019.
�hal-02392488v1�

https://unilim.hal.science/hal-02392488v1
https://hal.archives-ouvertes.fr

Computing syzygies in finite dimension using fast linear algebra

Vincent Neiger

Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France

Éric Schost

University of Waterloo, Waterloo ON, Canada

Abstract

We consider the computation of syzygies of multivariate polynomials in a finite-dimensional
setting: for a K[X1, . . . , Xr]-module M of finite dimension D as a K-vector space, and given
elements f1, . . . , fm in M, the problem is to compute syzygies between the fi’s, that is, poly-
nomials (p1, . . . , pm) in K[X1, . . . , Xr]m such that p1 f1 + · · · + pm fm = 0 in M. Assuming that
the multiplication matrices of the r variables with respect to some basis of M are known, we
give an algorithm which computes the reduced Gröbner basis of the module of these syzygies,
for any monomial order, using O(mDω−1 + rDω log(D)) operations in the base field K, where
ω is the exponent of matrix multiplication. Furthermore, assuming that M is itself given as
M = K[X1, . . . , Xr]n/N , under some assumptions onN we show that these multiplication matri-
ces can be computed from a Gröbner basis ofN within the same complexity bound. In particular,
taking n = 1, m = 1 and f1 = 1 inM, this yields a change of monomial order algorithm along
the lines of the FGLM algorithm with a complexity bound which is sub-cubic in D.

Keywords: Gröbner basis, syzygies, complexity, fast linear algebra.

1. Introduction

In what follows, K is a field and we consider the polynomial ring K[X] = K[X1, . . . , Xr].
We are interested in the efficient computation of relations, known as syzygies, between elements
from a K[X]-moduleM.

Let us write the K[X]-action onM as (p, f) ∈ K[X] ×M 7→ p · f , and let f1, . . . , fm be in
M. Then, for a given monomial order ≺ onK[X]m, we want to compute the Gröbner basis of the
kernel of the homomorphism

K[X]m → M

(p1, . . . , pm) 7→ p1 · f1 + · · · + pm · fm.

This kernel is called the module of syzygies of (f1, . . . , fm) and written SyzM(f1, . . . , fm).
In this paper, we focus on the case whereM has finite dimension D as aK-vector space. Then

one may adopt a linear algebra viewpoint detailed in the next paragraph, where the elements of
M are seen as row vectors of length D and the multiplication by the variables is represented
by so-called multiplication matrices. This representation was used and studied in [2, 37, 1, 27],
mainly in the context where M is a quotient K[X]/I for some ideal I (thus zero-dimensional

of degree D) and more generally a quotient K[X]n/N for some submodule N ⊆ K[X]n with
n ∈ N>0 (see [1, Sec. 4.4 and 6]). This representation with multiplication matrices allows one to
perform computations in such a quotient via linear algebra operations.

Assume we are given a K-vector space basis F ofM. For i in {1, . . . , r}, the matrix of the
structure morphism f 7→ Xi · f with respect to this basis is denoted by Mi; this means that for f in
M represented by the vector f ∈ K1×D of its coefficients on F , the coefficients of Xi · f ∈ M on
F are f Mi. We call M1, . . . , Mr multiplication matrices; note that they are pairwise commuting.
The data formed by these matrices defines the module M up to isomorphism; we use it as a
representation ofM. For p in K[X] and for f inM represented by the vector f ∈ K1×D of its
coefficients on F , the coefficients of p · f ∈ M on F are f p(M1, . . . , Mr); hereafter this vector
is written p · f . From this point of view, syzygy modules can be described as follows.

Definition 1.1. For m and D in N>0, let M = (M1, . . . , Mr) be pairwise commuting matrices in
KD×D, and let F ∈ Km×D. Denoting by f1, . . . , fm the rows of F, for p = (p1, . . . , pm) ∈ K[X]m

we write
p · F = p1 · f1 + · · · + pm · fm = f1 p1(M) + · · · + fm pm(M) ∈ K1×D.

The syzygy module SyzM(F) is defined as

SyzM(F) = {p ∈ K[X]m | p · F = 0}.

Its elements are called syzygies for F.

In particular, if in the above context F is the matrix of the coefficients of f1, . . . , fm ∈ M on
the basis F , then SyzM(F) = SyzM(f1, . . . , fm). Our main goal in this paper is to give a fast
algorithm to solve the following problem (for the notions of monomial orders and Gröbner basis
for modules, we refer to [13] and the overview in Section 2).

Problem 1 – Gröbner basis of syzygies

Input:

• a monomial order ≺ on K[X]m,
• pairwise commuting matrices M = (M1, . . . , Mr) in KD×D,
• a matrix F ∈ Km×D.

Output: the reduced ≺-Gröbner basis of SyzM(F).

Example 1.2. An important class of examples has r = 1; in this case, we are working with
univariate polynomials. Restricting further, consider the caseM = K[X1]/〈XD

1 〉 endowed with
the canonical K[X1]-module structure; then M1 is the upper shift matrix, whose entries are all 0
except those on the superdiagonal which are 1. Given f1, . . . , fm inM, (p1, . . . , pm) ∈ K[X1]m is a
syzygy for f1, . . . , fm if p1 f1+· · ·+pm fm = 0 mod XD

1 . Such syzygies are known as Hermite-Padé
approximants of (f1, . . . , fm) [22, 40]. Using moduli other than XD

1 leads one to generalizations
such as M-Padé approximants or rational interpolants (corresponding to a modulus that splits
into linear factors) [33, 4, 49].

For r = 1, SyzM(F) is known to be free of rank m. Bases of such K[X1]-modules are often
described by means of their so-called Popov form [43, 26]. In commutative algebra terms, this
is a term over position Gröbner basis. Another common choice is the Hermite form, which is a
position over term Gröbner basis [29].

2

Example 1.3. For arbitrary r, let I be a zero-dimensional ideal in K[X] and let M = K[X]/I
with the canonical K[X]-module structure. Then, taking m = 1 and f1 = 1 ∈ M, we have

SyzM(1) = {p ∈ K[X] | p 1 = 0} = {p ∈ K[X] | p ∈ I} = I.

Suppose we know a Gröbner basis of I for some monomial order ≺1, together with the cor-
responding monomial basis of M, and the multiplication matrices of X1, . . . , Xr in M. Then
solving Problem 1 amounts to computing the Gröbner basis of I for the new order ≺.

More generally for a given f1 = f ∈ M, the case m = 1 corresponds to the computation of
the annihilator of f in K[X], often denoted by AnnK[X]({ f }). Indeed, the latter set is defined as
{p ∈ K[X] | p f = 0}, which is precisely SyzM(f).

Example 1.4. For an arbitrary r, let α1, . . . ,αD be pairwise distinct points in Kr, with αi =

(αi,1, . . . , αi,r) for all i. Let I be the vanishing ideal of {α1, . . . ,αD} andM = K[X]/I. As above,
take m = 1 and f1 = 1, so that SyzM(1) = I.

The Chinese Remainder Theorem gives an explicit isomorphismM → KD that amounts to
evaluation at α1, . . . ,αD. The multiplication matrices induced by this module structure onKD are
diagonal, with M j having diagonal (α1, j, . . . , αD, j) for 1 6 j 6 r. Taking F = [1 · · · 1] ∈ K1×D,
solving Problem 1 allows us to compute the Gröbner basis of the vanishing ideal I for any given
order ≺. This problem was introduced by Möller and Buchberger [36]; it may be extended to
cases where vanishing multiplicities are prescribed [35].

Example 1.5. Now we consider an extension of the Möller-Buchberger problem due to Kehrein,
Kreuzer and Robbiano [27]. Given r pairwise commuting d×d matrices N1, . . . ,Nr, we look for
their ideal of syzygies, that is, the ideal I of polynomials p ∈ K[X] such that p(N1, . . . ,Nr) = 0.
When r = 1, this ideal is generated by the minimal polynomial of N1.

One may see this problem in our framework by considering M = Kd×d endowed with the
K[X]-module structure given by Xk · A = ANk for all 1 6 k 6 r and A ∈ Kd×d. The ideal I
defined above is the module of syzygies SyzM(f) of the identity matrix f = Id ∈ M, so we have
m = d and D = d2 here. To form the input of Problem 1, we choose as a basis ofM the list of
elementary matrices F = (c1,1, . . . , c1,d, . . . , cd,1, . . . , cd,d) where ci, j is the matrix in Kd×d whose
only nonzero entry is a 1 at index (i, j). Then, for k ∈ {1, . . . , r}, the multiplication matrix Mk

is the Kronecker product Id ⊗ Nk, that is, the block diagonal matrix in Kd2×d2
with d diagonal

blocks, each of them equal to Nk. Besides, the input F ∈ K1×d2
is the vector of coordinates of

f = Id on the basis F , so that I = SyzM(F) where M = (M1, . . . , Mr).

Example 1.6. Our last example is a multivariate extension of Hermite-Padé approximants and
involves arbitrary parameters r > 1 and m > 2. For a positive integer d, consider the ideal
I = 〈Xd

1 , . . . , X
d
r 〉, and letM = K[X]/I. Then for given f2, . . . , fm inM, which may be seen as

polynomials truncated in degree d in each variable, the syzygy module SyzM(−1, f2, . . . , fm) is

{(p, q2, . . . , qm) ∈ K[X]m | p = q2 f2 + · · · + qm fm mod 〈Xd
1 , . . . , X

d
r 〉}.

It was showed in [19, Thm. 3.1] that this module is generated by

{ fic1 + ci | 2 6 i 6 m} ∪ {Xd
k ci | 1 6 k 6 r, 2 6 i 6 m},

where ci is the coordinate vector (0, . . . , 0, 1, 0, . . . , 0) ∈ K[X]m with 1 at index i. In the same
reference, two algorithms are given to find the Gröbner basis of this syzygy module for arbitrary
monomial orders. One algorithm uses the FGLM change of order (extended to modules), based

3

on the fact that the above generating set is a Gröbner basis for a well-chosen order. The other
one proceeds iteratively on the dr vanishing conditions; this approach is similar to the above-
mentioned algorithm of [35], and can be seen as a multivariate generalization of the classical
iterative algorithm for univariate Hermite-Padé approximation [49, 5].

For the linear algebra viewpoint used in this paper, consider the K-vector space basis F of
M formed by all monomials Xe1

1 · · · X
er
r for 0 6 e1, . . . , er < d ordered by the lexicographic order

≺lex with X1 ≺lex · · · ≺lex Xr. Computing bases of the above syzygy module is an instance of
Problem 1 with D = dr, taking for F the matrix of the coefficients of (−1, f2, . . . , fm) on the basis
F , and for M1, . . . , Mr the multiplication matrices of X1, . . . , Xr inM with respect to F . These
matrices are types of block upper shift matrices which are nilpotent of order d. Taking r = 2
for example, M1 is block-diagonal with all diagonal blocks equal to the d × d upper shift matrix,
while M2 is a matrix formed by d rows and d columns of d × d blocks which are all zero except
those on the (blockwise) superdiagonal which are equal to the d × d identity matrix.

Main result. For r variables and an input module of vector space dimension D, we design an
algorithm whose cost is essentially that of performing fast linear algebra operations with r scalar
matrices of dimensions D × D. In the rest of the paper, ω is a feasible exponent for matrix
multiplication over a ring (commutative, with 1); the best known bound is ω < 2.38 [12, 30].

Theorem 1.7. Let ≺ be a monomial order on K[X]m, let M1, . . . , Mr be pairwise commuting
matrices in KD×D, and let F ∈ Km×D. Then there is an algorithm which solves Problem 1 using

O
(
mDω−1 + Dω(r + log(d1 · · · dr))

)
⊂ O

(
mDω−1 + rDω log(D)

)
operations in K, where dk ∈ {1, . . . ,D} is the degree of the minimal polynomial of Mk, for
1 6 k 6 r.

This theorem is proved in Section 3, based on Algorithm 3 which is built upon Algorithm 1
(computing the monomial basis) and Algorithm 2 (computing normal forms). Commonly en-
countered situations involve m 6 D (see Examples 1.3 to 1.5), in which case the cost bound can
be simplified as O(rDω log(D)). The interest in the more precise cost bound involving d1, . . . , dr

comes from situations such as that of Example 1.6, where d1 · · · dr = dr = D since all the matri-
ces M1, . . . , Mr have a minimal polynomial of degree d; in that case, the first cost bound in the
theorem becomes O(mDω−1 + rDω + Dω log(D)). Another refinement of the cost bound is given
in Remark 3.11 for a particular order ≺, namely the term over position lexicographic order.

Our algorithm deals with the multiplication matrices M1, . . . , Mr one after another, allowing
us to rely on an approach inspired by that designed for the univariate case r = 1 in [24]. This
also helps us to introduce fast matrix multiplication, by avoiding the computation of many vector-
matrix products involving each time a different matrix Mk, and instead grouping these operations
into some matrix-matrix products involving M1, then some others involving M2, etc. To our
knowledge, this is the first time a general answer is given to Problem 1. For problems such as
Examples 1.3 to 1.6, ours is the first algorithm that relies on fast linear algebra techniques, with
the partial exception of [14], as discussed below.

Our cost bound can be compared to the input and output size of the problem. The input
matrices are represented using mD + rD2 field elements, and we will see in Sections 2 and 3 that
one can represent the output Gröbner basis using at most mD + rD2 field elements as well.

4

Overview of the algorithm. To introduce matrix multiplication in our solution to Problem 1, we
rely on a linearization into linear algebra problems over K. From M and F, we build a matrix
over K whose nullspace corresponds to a set of syzygies in SyzM(F). This matrix is called a
multi-Krylov matrix, in reference to its structure which exhibits a collection of Krylov subspaces
of KD.

The multi-Krylov matrix is a generalization to several variables and to an arbitrary monomial
order of the (striped-)Krylov matrices considered for example in [26, 7]; already in [26, Chap. 6],
Popov and Hermite bases of modules over the univariate polynomials are obtained by means
of Krylov matrix computations. Its construction is similar to the Sylvester matrix and more
generally to the Macaulay matrix [47, 31, 32], which are commonly used when adopting a linear
algebra viewpoint while dealing with operations on univariate and multivariate polynomials.

In what follows, given e = (e1, . . . , er) inNr, we write Xe = Xe1
1 · · · X

er
r and Me = Me1

1 · · ·M
er
r ;

the ith coordinate vector in Km is written ci. Then the construction of the multi-Krylov matrix is
based on viewing the product Xeci · F, for a monomial Xeci ∈ K[X]m and F in Km×D, as fi Me,
where fi is the ith row of F. Since a polynomial in K[X]m is a K-linear combination of mono-
mials, this identity means that a syzygy in SyzM(F) may be interpreted as a K-linear relation
between row vectors of the form fi Me.

Choosing some degree bounds β = (β1, . . . , βr) ∈ Nr
>0, our multi-Krylov matrix is then

formed by all such rows fi Me, for 1 6 i 6 m and 0 6 e < β entrywise, ordered according to the
monomial order ≺. For sufficiently large β (taking βk = D for all k is enough, for instance), we
show in Section 3.2 that the row rank profile of this matrix corresponds to the ≺-monomial basis
of the quotient K[X]m/SyzM(F).

The main task of our algorithm is to compute this row rank profile. Adapting ideas in the
algorithms of [16, 35, 19], one would iteratively consider the rows of the matrix, looking for a
linear relation with the previous rows by Gaussian elimination. When such a linear relation is
found, the corresponding row can be discarded. Now, the multi-Krylov structure further permits
to discard all the rows that correspond to monomial multiples of the leading term of the discov-
ered syzygy, even before computing these rows. At some point, the set of rows to be considered
is exhausted, and we can deduce the row rank profile.

In this approach, a row of the multi-Krylov matrix is computed by multiplying one of the
already computed rows by one of the multiplication matrices. This results in many vector-matrix
products, with possibly different matrices each time: this is an obstacle towards incorporating
fast matrix multiplication. We circumvent this by introducing the variables one after another,
thus seemingly not respecting the order of the rows specified by the monomial order; yet, we
will manage to ensure that this order is respected in the end. When dealing with one variable
Xk, we process successive powers M2e

k in the style of Keller-Gehrig’s algorithm [28], using a
logarithmic number of iterations.

Finally, from the monomial basis, one can easily find the minimal generating set of the lead-
ing module of SyzM(F). The union of the monomial basis and of these generators is a set of
monomials, which thus corresponds to a submatrix of the multi-Krylov matrix; the left nullspace
of this submatrix, computed in reduced row echelon form, yields the reduced ≺-Gröbner basis of
syzygies.

Previous work. An immediate remark is that the number of field entries of the multi-Krylov
matrix is mβ1 · · · βrD ∈ O(mDr+1), which significantly exceeds our target cost. Exploiting the
structure of this matrix is therefore a common thread in all efficient algorithms.

5

For the univariate case r = 1, first algorithms with cost quadratic in D were given in [45, 42]
for Hermite-Padé approximation (Example 1.2); they returned a single syzygy of small degree.
Later, work on this case [48, 5] showed how to compute a basis of the module of syzygies in
time O(mD2) and the more general M-Padé approximation was handled in the same complexity
in [49, 4, 6, 7], with the algorithm of [7] returning the reduced ≺-Gröbner basis (called the shifted
Popov form in that context) of syzygies for an arbitrary monomial order ≺. Then a cost quasi-
linear in D was achieved for M-Padé approximation by a divide and conquer approach based
on fast polynomial matrix multiplication [5, 21, 24], with the most recent algorithms returning
the reduced ≺-Gröbner basis of syzygies for an arbitrary ≺ at such a cost [23, 25]. M-Padé
approximation exactly corresponds to instances of Problem 1 with r = 1 and a multiplication
matrix in Jordan normal form (which is further nilpotent for Hermite-Padé approximation) [24].
For achieving such costs, that are better than quadratic in D, it is necessary that the multiplication
matrix exhibits such a structure and that the algorithm takes advantage of it, since in general
merely representing the input multiplication matrix already requires D2 field elements.

Still for r = 1, the case of an upper triangular multiplication matrix M1 was handled in [7,
Algo. FFFG] by relying on the kind of linearization discussed above. This algorithm exploits
the triangular shape to iterate on the D leading principal submatrices of M1, which extends the
iteration for M-Padé approximation in [49, 4, 6] and costs O(mD2 + D3) operations (see [38,
Prop. 6.5] for a complexity analysis). To take advantage of fast matrix multiplication, another
approach was designed in [24, Sec. 7], considering the same Krylov matrix as in [7] but process-
ing its structure in the style of Keller-Gehrig’s algorithm [28]. The algorithm in [24] supports
an arbitrary matrix M1 at the cost O(mDω−1 + Dω log(d)), and the algorithm in this paper can
be seen as a generalization of it to the multivariate case since both coincide when r = 1 (up to
the conversion between shifted Popov forms and reduced ≺-Gröbner bases). This generalization
is not straightforward: besides the obvious fact that the output basis usually has more than m
elements because most submodules ofK[X]m are not free (unlike in the univariate case), as high-
lighted above the multivariate case also involves a more complex management of the order in
which rows in the multi-Krylov matrix are inserted and processed, in relation with the monomial
order ≺ and the successive introductions of the different variables.

On the other hand, previous algorithms dealing with the case r > 1 were developed indepen-
dently of this line of work, starting from Möller and Buchberger’s algorithm [36] and Faugère et
al.’s FGLM algorithm [16]. The former computes the ideal of a finite set of points (Example 1.4),
while the latter is specialized to the change of monomial order for ideals (Example 1.3), with a
cost bound in O(rD3). Note however that the input in the FGLM algorithm is not the same as in
Problem 1; this is discussed below.

A first generalization of [36, 16] was presented in [35, Algo. 1], still in the case m = 1 and
f1 = 1: the input describesM = K[X]/I for some zero-dimensional ideal I of degree D, and
the algorithm outputs a ≺-Gröbner basis of I. The cost bound for this algorithm involves a term
O(rD3), but also a term related to the description of the input. This input description is different
from ours: it consists of a set of linear functionals which defines the ideal I; thus one should
be careful when comparing this work to our results. Another related extension of [36] is the
Buchberger-Möller algorithm for matrices given in [27, Sec. 4.1.2], which solves Example 1.5;
the runtime is not specified in that reference.

Another type of generalizations of [36] was detailed in [35, Algo. 2], [19, Algo. 4.7], and [39,
Algo. 3.2], with the last reference tackling syzygy modules with m > 1 and arbitrary f1, . . . , fm
like in this paper, yet with assumptions onM; the cost bounds given in [35] and [19] involve a
term in O(rD3) whereas [39] does not report on complexity bounds. The assumptions onM are

6

specified in the input of [35, Algo. 2], in [19, Eqn. (4.1)], and in [39, Eqn. (5)], and they imply
that one can solve the problem by finding iteratively Gröbner bases for a sequence of “approx-
imating” modules of syzygies which decrease towards the actual solution. Such assumptions
lead to instances of Problem 1 which generalize to r > 1 the above-mentioned cases of M-Padé
approximation and of a triangular multiplication matrix when r = 1; [39, Sec. 5] explicitly men-
tions the link with Beckermann and Labahn’s algorithm for M-Padé approximation [6, 7]. In
both the univariate and multivariate settings, it seems that such an iterative approach cannot be
applied to the general case of Problem 1, where the input module has no other property than
being finite-dimensional, and is described through arbitrary commuting matrices.

For the particular case of the change of order for ideals (Example 1.3), so with m = 1, when
the target order is the lexicographic order ≺lex, and under the assumption that the ideal is in
Shape Position, fast matrix multiplication was used for the first time in [15], yielding a sub-cubic
complexity. Indeed, if for example Xr is the smallest variable, these assumptions ensure that
only Mr is needed; with this matrix as input, [15, Prop. 3] gives a probabilistic algorithm to
compute the ≺lex-Gröbner basis of syzygies within the cost bound O(Dω log(D)+ rM(D) log(D)).
Besides ideas from [17, 18], this uses repeating squaring as in [28]. In this paper, we manage
to incorporate fast matrix multiplication without assumption on the module, and for an arbitrary
order.

Still for the particular of Example 1.3, Faugère and Mou give in [17, 18] probabilistic al-
gorithms based on sparse linear algebra. These papers do not consider the computation of the
multiplication matrices, which are assumed to be known. While we do not make any sparsity
assumption on the multiplication matrices, for the sake of comparison we still summarize this
approach below. Noticing that the multiplication matrices arising from the context of polynomial
system solving are often sparse, [17, 18] tackle Problem 1 from a point of view similar to the
Wiedemann algorithm. Evaluating the monomials in K[X]/I at certain linear functionals allows
one to build a multi-dimensional recurrent sequence which admits I as its ideal of syzygies (this
is only true for some type of ideals I). In terms of the multi-Krylov matrices we are consider-
ing in Section 3 concerning Problem 1, this is similar to introducing an additional projection on
the right of the multiplication matrices to take advantage of the sparsity by using a black-box
point of view. Then recovering a ≺lex-Gröbner basis of this ideal of syzygies can be done via the
Berlekamp-Massey-Sakata algorithm [44], or the recent improvements in [8, 9, 10, 11].

Application: change of order. The FGLM algorithm [16] solves the change of order problem
for Gröbner bases of ideals in O(rD3) operations for arbitrary orders ≺1 and ≺2: starting only
from a ≺1-Gröbner basis G1 for the input order ≺1, it computes the ≺2-Gröbner basis G2 of the
ideal I = 〈G1〉. Following [17, Sec. 2.1], one can view the algorithm as a two-step process: it first
computes from G1 the multiplication matrices ofM = K[X]/I with respect to the ≺1-monomial
basis, and then finds G2 as a set of K-linear relations between certain normal forms modulo G1.
The algorithm extends to the case of submodules of K[X]n for n > 1 (see e.g. [19, Sec. 2]).

Our algorithm for Problem 1 incorporates fast linear algebra into the second step, so once
the multiplication matrices are known, one can find the reduced ≺2-Gröbner basis in O(nDω−1 +

rDω log(D)) operations. We now discuss how fast linear algebra may be incorporated into the
computation of the multiplication matrices (Problem 2).

Our solution to this problem finds its roots in [15, Sec. 4], which focuses on the case where
n = 1 and I = 〈 f1, . . . , fs〉 is an ideal in K[X]. In the context studied in this reference only
the matrix Mr of the smallest variable Xr is needed, and it is showed that this matrix can be
simply read off from the input Gröbner basis without arithmetic operations, under some structural

7

Problem 2 – Computing the multiplication matrices

Input:

• a monomial order ≺ on K[X]n,
• a reduced ≺-Gröbner basis { f1, . . . , fs} ⊂ K[X]n such that
M = K[X]n/〈 f1, . . . , fs〉 has finite dimension as a K-vector
space.

Output: the multiplication matrices M1, . . . , Mr of X1, . . . , Xr in
M = K[X]n/〈 f1, . . . , fs〉 with respect to its ≺-monomial basis.

assumption on the ideal of leading terms of I described in [15, Prop. 7]. Here we consider
the more general case of submodules N = 〈 f1, . . . , fs〉 of K[X]n, and we design an algorithm
which computes all multiplication matrices M1, . . . , Mr inM = K[X]n/N using O(rDω log(D))
operations, under a structural assumption on the module of leading terms ofN . This assumption
naturally extends the one from [15] to the case of submodules and is described in the following
definition.

Definition 1.8. Given a monomial order ≺ on K[X]n such that Xr ≺ · · · ≺ X1 and a monomial
submodule N ⊂ K[X]n, we define the statement H(N): “for all monomials f ∈ N , for all
j ∈ {1, . . . , r} such that X j divides f , for all i ∈ {1, . . . , j − 1}, we have Xi

X j
f ∈ N”.

In fact, instead of considering all monomials inN , one can observe thatH(N) holds if and only
if the property holds for each monomial in the minimal generating set of N (see Lemma 2.2).

Theorem 1.9. For n > 1, let ≺ be a monomial order on K[X]n such that Xr ≺ · · · ≺ X1 and let
{ f1, . . . , fs} be a reduced ≺-Gröbner basis defining a submodule N = 〈 f1, . . . , fs〉 of K[X]n such
that K[X]n/N has dimension D as a K-vector space. AssumingH(〈lt≺(N)〉),
• Problem 2 can be solved using O(rDω log(D)) operations in K;
• the change of order problem, that is, computing the reduced ≺2-Gröbner basis of N for a

monomial order ≺2, can be solved using O(nDω−1 + rDω log(D)) operations in K.

Concerning the first item, an overview of our approach is presented in Section 4.1 and the
detailed algorithms and proofs are in Sections 4.2 and 4.3, with a slightly refined cost bound
in Proposition 4.7. The second item is proved in Section 4.4, based on Algorithm 7 which
essentially calls our algorithms to compute first the multiplication matrices (Problem 2) and then
the ≺2-Gröbner basis of N by considering a specific module of syzygies (Problem 1).

Our structural assumption has been considered before, in particular in the case where n = 1,
and we work modulo an ideal I = 〈 f1, . . . , fs〉. In this case, it holds assuming for instance that the
coefficients of f1, . . . , fs are generic (that is, pairwise distinct indeterminates over a given ground
field) and that the Moreno-Socias conjecture holds [15, Sec. 4.1]. Another important situation
where the assumption holds is when the leading ideal 〈lt≺(I)〉 is Borel-fixed and the characteristic
of K is zero, see [13, Sec. 15.9] and [15, Sec. 4.2]. A theorem first proved by Galligo in power
series rings [20], then by Bayer and Stillman [3, Prop. 1] for a homogeneous ideal I in K[X]
shows that after a generic change of coordinates, 〈lt≺(I)〉 is Borel-fixed.

The most general version of this result we are aware of is due to Pardue [41]. It applies to
K[X]-submodules N ⊂ K[X]n, for certain monomial orders ≺ on K[X]n; the precise conditions
on ≺ are too technical to be stated here, but they hold in particular for the term over position

8

order induced by a monomial order onK[X] which refines (weighted) total degree. In such cases,
Pardue shows that after a generic linear change of variables, 〈lt≺(N)〉 satisfies a Borel-fixedness
property on K[X]n which implies thatH(〈lt≺(N)〉) holds, at least in characteristic zero.

For polynomial system solving, with n = 1, an interesting particular case of the change
of order problem is that of ≺1=≺drl being the degree reverse lexicographic order and ≺2=≺lex
being the lexicographic order (so that in characteristic zero, Pardue’s result shows that in generic
coordinates, our structural assumption holds for such inputs). Fast algorithms for this case have
been studied in [15, 14]. The former assumes the ideal I is in Shape Position, whereas this
assumption is not needed here. In [14], an algorithm is designed to compute the multiplication
matrices from a ≺drl-Gröbner basis in time O(βrωDω), where β is the maximum total degree of
the elements of the input Gröbner basis. This is obtained by iterating over the total degree: the
normal forms of all monomials of the same degree are dealt with using only one call to Gaussian
elimination. While this does not require an assumption on the leading ideal, it is unclear to us
how to remove the dependency in β in general.

2. Notations and definitions

Monomial orders and Gröbner bases for modules. Hereafter, we consider a multivariate poly-
nomial ring K[X] = K[X1, . . . , Xr], for some field K. Recall that the coordinate vectors are
denoted by c1, . . . , cm, that is,

c j = (0, . . . , 0, 1, 0, . . . , 0) ∈ K[X]m with 1 at index j.

A monomial in K[X] is defined from exponents e = (e1, . . . , er) ∈ Nr as Xe = Xe1
1 · · · X

er
r and a

monomial inK[X]m is f c j = (0, . . . , 0, f , 0, . . . , 0) with 1 6 j 6 m and where f is any monomial
of K[X]. A term in K[X] or in K[X]m is a monomial multiplied by a nonzero scalar from K.
Given terms f and g in K[X], we say that the term f c j is divisible by the term gck if j = k and f
is divisible by g in K[X].

A submodule of K[X]m generated by monomials of K[X]m is called a monomial submodule.
A submodule of K[X]m generated by homogeneous polynomials of K[X]m is called a homoge-
neous submodule.

Following [13, Sec. 15.3], a monomial order on K[X]m is a total order ≺ on the mono-
mials of K[X]m such that, for any monomials f , g of K[X]m and any monomial h of K[X],
f ≺ g implies f ≺ h f ≺ hg. Hereafter, we only consider monomial orders such that
Xr ≺ · · · ≺ X1; this can be ensured without loss of generality up to renaming the variables.
Examples of common monomial orders on K[X]m are so-called term over position (top) and po-
sition over term (pot). In both cases, we start from a monomial order on K[X] written ≺. Then,
given monomials f ci and gc j, we say that f ci ≺

top gc j if f ≺ g or if f = g and i < j. Similarly,
we say that f ci ≺

pot gc j if i < j or if i = j and f ≺ g.
For a given monomial order ≺ onK[X]m and an element f ∈ K[X]m, the ≺-leading term of f ,

denoted by lt≺(f), is the term of f whose monomial is the greatest with respect to ≺. This extends
to any collection F ⊆ K[X]m of polynomials: lt≺(F) is the set of leading terms {lt≺(f) | f ∈ F }
of the elements of F . In particular, for a moduleN inK[X]m, 〈lt≺(N)〉 is a monomial submodule
of K[X]m which is called the ≺-leading module of N .

Definition 2.1 (Gröbner basis). Let ≺ be a monomial order on K[X]m and let N be a K[X]-
submodule ofK[X]m. A generating set { f1, . . . , fs} ofN is said to be a ≺-Gröbner basis ofN if the
≺-leading module ofN is generated by {lt≺(f1), . . . , lt≺(fs)}, that is, 〈lt≺(N)〉 = 〈lt≺(f1), . . . , lt≺(fs)〉.

9

There is a specific ≺-Gröbner basis of N , called the reduced ≺-Gröbner basis of N , which
is uniquely defined in terms of the module N and the monomial order ≺. Namely, this is the
Gröbner basis { f1, . . . , fs} of N such that for 1 6 i 6 s, lt≺(fi) is monic and does not divide any
term of f j for j , i.

Monomial basis and staircase monomials. In what follows, the submodules N ⊆ K[X]m we
consider are such that the quotient K[X]m/N has finite dimension as a K-vector space. We will
often use its basis formed by the monomials not in lt≺(N) [13, Thm. 15.3]; this basis is denoted
by E = (ε1, . . . , εD) and called the ≺-monomial basis of K[X]m/N . Any polynomial f ∈ K[X]m

can be uniquely written f = g + h, where g ∈ N and h ∈ K[X]m is a K-linear combination
of the monomials in E; this polynomial h is called the ≺-normal form of f (with respect to N)
and is denoted by nf≺(f). We extend the notation to sets of polynomials F ⊆ K[X]m, that is,
nf≺(F) = {nf≺(f) | f ∈ F }.

As in [35, Sec. 3] (which focuses on the case of ideals), we will use other sets of monomials
related to this monomial basis. First, we consider the monomials obtained by multiplying those
of E by a variable:

S = {Xkε j | 1 6 k 6 r, 1 6 j 6 D} ∪ {ci | 1 6 i 6 m such that ci < E}.

This allows us to define the border B = S−E, which is a set of monomial generators of 〈lt≺(N)〉.
Then the polynomials { f − nf≺(f) | f ∈ B} form a canonical generating set of N , called the
≺-border basis of N [34, 35]. Finally, we consider the minimal generating set L of 〈lt≺(N)〉: it
is a subset of B such that the reduced ≺-Gröbner basis of N is G = { f − nf≺(f) | f ∈ L}. In
particular, we have L = lt≺(G) = {lt≺(g) | g ∈ G}.

By construction, Card(L) = Card(G) 6 Card(B) 6 Card(S). Above, S is defined as the
union of a set of cardinality at most rD and a set of cardinality at most m, hence Card(S) 6
rD + m. Besides, since the coordinate vectors in the second set are in the minimal generating
set L of 〈lt≺(N)〉, we have Card(B − L) 6 rD. Note that if the upper bound on Card(S) is an
equality, then all coordinate vectors c1, . . . , cm are inL, which holds only in the caseN = K[X]m

(in particular E = ∅ and D = 0).
Finally, we give an characterization of the structural assumption of monomial submodules

described in Definition 1.8, showing that one can focus on the monomials in the minimal gener-
ating set instead of all monomials in the module.

Lemma 2.2. Let ≺ be a monomial order onK[X]m such that Xr ≺ · · · ≺ X1, letN be a monomial
submodule of K[X]m, and let { f1, . . . , fs} be the minimal generating set of N . ThenH(N) holds
if and only if for all k ∈ {1, . . . , s}, for all j ∈ {1, . . . , r} such that X j divides fk, for all i ∈
{1, . . . , j − 1}, we have Xi

X j
fk ∈ N .

Proof. Obviously, H(N) implies the latter property since each fk is a monomial in N . Con-
versely, we assume that for all k ∈ {1, . . . , s}, for all j ∈ {1, . . . , r} such that X j divides fk, for
all i ∈ {1, . . . , j − 1}, we have Xi

X j
fk ∈ N , and we want to prove that H(N) holds. Let f be a

monomial in N , let j ∈ {1, . . . , r} be such that X j divides f , and let i ∈ {1, . . . , j − 1}; we want
to prove that Xi

X j
f ∈ N . Since N is a monomial module, f = X` fk for some 1 6 ` 6 r and

1 6 k 6 s. First, if ` = j, then Xi
X j

f = Xi fk ∈ N . On the other hand, if ` , j then X j divides fk,

hence Xi
X j

fk ∈ N by assumption, and it follows that Xi
X j

f = X`
Xi
X j

fk ∈ N .

10

3. Computing bases of syzygies via linear algebra

In this section, we focus on Problem 1 and we prove Theorem 1.7. Thus, we are given
pairwise commuting matrices M = (M1, . . . , Mr) in KD×D, a matrix F ∈ Km×D and a monomial
order ≺ on K[X]m = K[X1, . . . , Xr]m; we compute the reduced ≺-Gröbner basis of SyzM(F).

The basic ingredient is a linearization of the problem, meaning that we will interpret all
operations on polynomials as operations of K-linear algebra. In Section 3.1, we show a corre-
spondence between syzygies of bounded degree and vectors in the nullspace of a matrix over
K which exhibits a structure that we call multi-Krylov. The multi-Krylov matrix is formed by
multiplications of F by powers of the multiplications matrices; its rows are ordered according to
the monomial order ≺ given as input of Problem 1.

Then, in Section 3.2, we show that the row rank profile of this multi-Krylov matrix exactly
corresponds to the ≺-monomial basis of the quotientK[X]m/SyzM(F). To compute this row rank
profile efficiently, we use in particular an idea from [28] which we extend to our context, while
also both exploiting the structure of the multi-Krylov matrix to always work on a small subset
of its rows and ensuring that the rows are considered in the right order. Finally, in Section 3.3,
we exploit the knowledge of the ≺-monomial basis to compute the reduced ≺-Gröbner basis of
syzygies.

3.1. Monomial basis as the rank profile of a multi-Krylov matrix
We first describe expansion and contraction operations, which convert polynomials of bounded

degrees into their coefficient vectors and vice versa (the bound is written β below). It will be con-
venient to rely on the following indexing function.

Definition 3.1. Let β = (β1, . . . , βr) ∈ Nm
>0 and let ≺ be a monomial order on K[X]m. Then we

define the (≺,β)-indexing function φ≺,β as the unique bijection

φ≺,β : {Xeci | 0 6 e < β, 1 6 i 6 m} → {1, . . . ,mβ1 · · · βr}

which is increasing for ≺, that is, such that Xeci ≺ Xe′ ci′ if and only if φ≺,β(Xeci) < φ≺,β(Xe′ ci′).

In other words, take the sequence of monomials (Xeci, 0 6 e < β, 1 6 i 6 m) and sort it
according to ≺; then φ≺,β(Xeci) is the index of Xeci in the sorted sequence (assuming indices
start at 1).

Hereafter, K[X]<β stands for the set of polynomials p ∈ K[X] such that degXk
(p) < βk for

1 6 k 6 r. This yields a K-linear correspondence between bounded-degree polynomials and
vectors

E≺,β : K[X]m
<β → K1×mβ1···βr

p =
∑

f=Xe ci
06e<β,16i6m

u f f 7→ v = [uφ−1
≺,β(k) | 1 6 k 6 mβ1 · · · βr]

called expansion, with inverse C≺,β called contraction. For a polynomial p ∈ K[X]m
<β, E≺,β(p) is

the vector in K1×mβ1···βr whose entry at index φ≺,β(Xeci) is the coefficient of the term involving
Xeci in p.

Example 3.2. Consider the case with r = 2 variables and m = 2, using the ≺lex-term over position
order ≺top

lex on K[X,Y]2. Choosing the degree bounds β = (2, 3), the monomials

{X jYk ci | 0 6 (j, k) < (2, 3), 1 6 i 6 2}
11

are indexed as follows, according to Definition 3.1:

Monomial Index
X jYk ci φ

≺
top
lex ,(2,3)(X

jYk ci)[
1 0

]
1[

0 1
]

2[
Y 0

]
3[

0 Y
]

4[
Y2 0

]
5[

0 Y2
]

6[
X 0

]
7[

0 X
]

8[
XY 0

]
9[

0 XY
]

10[
XY2 0

]
11[

0 XY2
]

12

Let p be the polynomial in K[X,Y]2
<(2,3) and v be the vector in K1×12 defined by

p =
[
46 + 95Y + 75X + 10XY 36 + 18Y + 38Y2 + 77X + 83XY + 35XY2

]
,

v =
[
86 0 32 83 54 26 0 68 86 0 54 22

]
.

In this case, the expansion of p and the contraction of v are given by

E≺,β(p) =
[
46 36 95 18 0 38 75 77 10 83 0 35

]
,

C≺,β(v) =
[
86 + 32Y + 54Y2 + 86XY + 54XY2 83Y + 26Y2 + 68X + 22XY2

]
.

Now, we detail the construction of the multi-Krylov matrix. Let M = (M1, . . . , Mr) be
pairwise commuting matrices in KD×D that define a K[X]-module structure on K1×D, and let
F be in Km×D, with rows f1, . . . , fm. As mentioned in Definition 1.1, for a polynomial p =

[p1, . . . , pm] ∈ K[X]m we write

p · F = p1 · f1 + · · · + pm · fm = f1 p1(M) + · · · + fm pm(M).

As a result, a polynomial p is in SyzM(F) if its coefficients form a K-linear combination of
vectors of the form fi Me which is zero. If furthermore p is nonzero and has its degrees in each
variable bounded by (β1, . . . , βr), then it corresponds to a nontrivialK-linear relation between the
row vectors

{ fi Me | 0 6 e < β, 1 6 i 6 m}.

This leads us to consider the matrices formed by these vectors, ordered according to φ≺,β.

12

Definition 3.3. Let ≺ be a monomial order onK[X]m, let M = (M1, . . . , Mr) ∈ KD×D be pairwise
commuting matrices, let F ∈ Km×D whose rows are f1, . . . , fm, and let β = (β1, . . . , βr) ∈ Nr

>0.
The (≺,β)-multi-Krylov matrix for (M, F), denoted by K≺,β(M, F), is the matrix in Kmβ1···βr×D

whose row at index φ≺,β(Xeci) is Xeci · F = fi Me, for 0 6 e < β and 1 6 i 6 m.

Example 3.4. Following on from Example 3.2, we consider the vector space dimension D = 3
and matrices F in K2×3 and M = (MX , MY) in K3×3 such that MX MY = MY MX . Then from the
indexing function φ

≺
top
lex ,(2,3) described above we obtain

K
≺

top
lex ,(2,3)(M, F) =



F
FMY

FM2
Y

FMX

FMX MY

FMX M2
Y


∈ K12×3.

By construction, we have the following result, which relates the left nullspace of the multi-
Krylov matrix with the set of bounded-degree syzygies.

Lemma 3.5. If v ∈ K1×mβ1···βr is in the left nullspace ofK≺,β(M, F), then its contraction C≺,β(v) ∈
K[X]m

<β is in SyzM(F). Conversely, if p ∈ K[X]m
<β is in SyzM(F), then its expansion E≺,β(p) ∈

K1×mβ1···βr is in the left nullspace of K≺,β(M, F).

Our first step towards finding a ≺-Gröbner basis G of SyzM(F) consists in computing the
≺-monomial basis E of the quotient K[X]m/SyzM(F); we are going to prove that it corresponds
to the row rank profile of the multi-Krylov matrix. From the above discussion, we know that
considering this matrix only gives us access to syzygies which satisfy degree constraints. In
what follows, we will choose β = (β1, . . . , βr), with βi > D for all i. In particular, for this choice,
all elements in the monomial basis of K[X]m/SyzM(F) are in K[X]m

<β.
We recall that, for a matrix A in Kµ×ν, the row rank profile of A is the lexicographically

smallest subtuple (ρ1, . . . , ρ∆) of (1, . . . , µ) such that ∆ is the rank of A and the rows (ρ1, . . . , ρ∆)
of A have rank ∆.

Theorem 3.6. Let ≺ be a monomial order on K[X]m, let M = (M1, . . . , Mr) be pairwise com-
muting matrices in KD×D, let F ∈ Km×D, and let β = (β1, . . . , βr), with βi > D for all i. Let
further (ρ1, . . . , ρ∆) ∈ N∆

>0 be the row rank profile of K≺,β(M, F). Then the ≺-monomial basis E
of K[X]m/SyzM(F) is equal to {φ−1

≺,β(ρ1), . . . , φ−1
≺,β(ρ∆)}.

Proof. Write ρ j = φ≺,β(Xe j ci j), so that {φ−1
≺,β(ρ1), . . . , φ−1

≺,β(ρ∆)} = {Xe1 ci1 , . . . , Xe∆ ci∆ }. We want
to prove that lt≺(SyzM(F)) is the set of monomials not in {Xe1 ci1 , . . . , Xe∆ ci∆ }.

First, consider any monomial Xeci for 1 6 i 6 m and e ∈ Nr such that e ≮ β. Such a
monomial cannot be in {Xe1 ci1 , . . . , Xe∆ ci∆ } since by construction of K≺,β(M, F) we have e j < β
for all j. On the other hand, Xeci cannot be in the ≺-monomial basis E either. Indeed, writing
Xe = Xe1

1 · · · X
er
r , e ≮ β means that ek > βk > D for some index k; if Xeci is in E then Xek

k ci

is also in E, and thus there exists an element in the Gröbner basis G with leading term Xη
k ci for

some η > ek, and in particular η > D; this is impossible. Thus, Xeci is in lt≺(SyzM(F)).
Now, let Xeci ∈ lt≺(SyzM(F)) be such that e < β. Then there is a polynomial p in SyzM(F)

such that lt≺(p) = Xeci, and Lemma 3.5 implies that E≺,β(p) is in the left nullspace ofK≺,β(M, F).

13

Since by construction the rightmost nonzero entry of E≺,β(p) is 1 at index φ≺,β(Xeci), the vector
E≺,β(p) expresses the row of K≺,β(M, F) with index φ≺,β(Xeci) as a K-linear combination of
the rows with smaller indices. By definition of the row rank profile, this implies φ≺,β(Xeci) <
{ρ1, . . . , ρ∆}, and therefore Xeci < {Xe1 ci1 , . . . , Xe∆ ci∆ }.

Conversely, let Xeci < {Xe1 ci1 , . . . , Xe∆ ci∆ } be a monomial such that e < β. Then φ≺,β(Xeci) <
{ρ1, . . . , ρ∆}. Thus, by definition of the row rank profile, there is a nonzero vector v ∈ K1×mDr

such that v is in the left nullspace of K≺,β(M, F) and the rightmost nonzero entry of v is 1 at
index φ≺,β(Xeci). Then lt≺(C≺,β(v)) = Xeci, and according to Lemma 3.5, C≺,β(v) is in SyzM(F),
hence lt≺(C≺,β(v)) ∈ lt≺(SyzM(F)).

In particular, we see that the dimension ∆ of K[X]m/SyzM(F) as a K-vector space is equal
to the rank of the multi-Krylov matrix K≺,β(M, F). In particular this implies ∆ 6 D, since
K≺,β(M, F) has D columns.

3.2. Computing the monomial basis
We now show how to exploit the structure of the multi-Krylov matrix so as to efficiently

compute its row rank profile, yielding the ≺-monomial basis E of K[X]m/SyzM(F).
For β as in Theorem 3.6, the dense representation of K≺,β(M, F) uses at least mDr+1 field

elements, which is well beyond our target cost O˜(mDω−1 + rDω). On the other hand, this matrix
is succinctly described by the data (≺, M, F), which requires O(mD + rD2) field elements. Like
previous related algorithms [36, 16, 35], we will never compute the full dense representation of
this matrix, but rather always store and use a minimal amount of data that allows the algorithm
to progress. The main property behind this is that once some monomial is found not to be in the
sought monomial basis, then all multiples of that monomial can be discarded from the rest of the
computation.

Our algorithm for computing the monomial basis E = (ε1, . . . , ε∆) also returns the matrix
B ∈ K∆×D whose rows are ε1 · F, . . . , ε∆ · F; it will be needed later on. The algorithm exploits
the structure of this matrix, and uses fast arithmetic for matrices over K through
• a procedure RowRankProfile which computes the row rank profile of any matrix in Kµ×ν

of rank ρ in O(ρω−2µν) operations in K, as described in [46, Sec. 2.2];
• matrix multiplication which is incorporated by following a strategy in the style of Keller-

Gehrig [28].
In short, the latter strategy can be thought of as precomputing powers of the form M2e

j of
the multiplication matrices, which then allows us to group many vector-matrix products into a
small number of matrix-matrix products. To achieve this we work iteratively on the variables,
thus first focusing on all operations involving M1, then on those involving M2, etc. The order of
the rows specified by ≺ is not respected in this process, since at a fixed stage of the algorithm we
will only have considered a submatrix of the multi-Krylov matrix which does not involve the last
variables. To fix this we constantly re-order, according to ≺, the rows that have been processed
and the ones that we introduce.

Proposition 3.7. Algorithm 1 returns the ≺-monomial basis E = (ε1, . . . , ε∆) ofK[X]m/SyzM(F)
and the matrix B ∈ K∆×D whose rows are ε1 · F, . . . , ε∆ · F. It uses

O
(
mDω−1 + Dω(r + log(d1 · · · dr))

)
⊂ O

(
mDω−1 + rDω log(D)

)
operations in K, where dk ∈ {1, . . . ,D} is the degree of the minimal polynomial of Mk, for
1 6 k 6 r.

14

Algorithm 1 – MonomialBasis
Input:

• monomial order ≺ on K[X]m = K[X1, . . . , Xr]m,
• pairwise commuting matrices M = (M1, . . . , Mr) in KD×D,
• matrix F ∈ Km×D.

Output:

• the ≺-monomial basis E = (ε1, . . . , ε∆) of K[X]m/SyzM(F),
• the matrix B ∈ K∆×D whose rows are ε1 · F, . . . , ε∆ · F.

1. β← 2dlog2(D)e+1; β← (β, . . . , β) ∈ Nr
>0

2. φ≺,β ← the indexing function in Definition 3.1
3. π← the permutation matrix in {0, 1}m×m such that the tuple t = π[φ≺,β(c1), . . . , φ≺,β(cm)]T

is increasing
4. B← πF
5. δ̂, (i1, . . . , iδ̂)← RowRankProfile(B)
6. For k from 1 to r // iterate over the variables

a. P← Mk; e← 0
b. Do

(i) δ← δ̂

(ii) (ρ1, . . . , ρδ)← subtuple of t with entries i1, . . . , iδ
(iii) B← the submatrix of B with rows i1, . . . , iδ
(iv) ρ̂ j ← φ≺,β(X2e

k φ
−1
≺,β(ρ j)) for 1 6 j 6 δ

(v) π ← the permutation matrix in {0, 1}2δ×2δ such that the tuple t =

π[ρ1, . . . , ρδ, ρ̂1, . . . , ρ̂δ]T is increasing

(vi) B← π

[
B

BP

]
(vii) δ̂, (i1, . . . , iδ̂)← RowRankProfile(B)

(viii) P← P2; e← e + 1
Until δ̂ = δ and (ρ1, . . . , ρδ) = subtuple of t with entries i1, . . . , iδ

7. Return E = (φ−1
≺,β(ρ1), . . . , φ−1

≺,β(ρδ)) and the submatrix of B with rows i1, . . . , iδ

15

Proof. Let β = 2dlog2(D)e+1 as in the algorithm; for 1 6 k 6 r and 0 6 e 6 log2(β), let us consider
the set of monomials

Sk,e = {Xeci | 1 6 i 6 m, 0 6 e < (β, . . . , β, 2e, 1, . . . , 1)},

where 2e is the kth entry of the tuple. Then we denote by Ck,e ∈ K(mβk−12e)×D the submatrix of
K≺,β(M, F) formed by its rows in φ≺,β(Sk,e). For 0 6 e 6 e′ 6 log2(β), Ck,e is a submatrix of
Ck,e′ , but not necessarily a top submatrix of it. Remark also that for k < r, Ck,log2(β) = Ck+1,0.

The correctness of the algorithm is proved by an induction that involves k and e. For 1 6
k 6 r, denote by `k > 0 the last value of the index e for which we enter the body of the Do-Until
loop (Step 6.b). Then, for 1 6 k 6 r and 0 6 e 6 `k, define the following assertions, that we
consider at the beginning iteration (k, e) of the Do-Until loop:
A1 : the rows of indices i1, . . . , iδ̂ in B are the rows defining the row rank profile of Ck,e;
A2 : the entries of indices i1, . . . , iδ̂ in t are the indices of these rows in K≺,β(M, F).

We will prove by induction that these properties hold for all values of k and e considered above.
For k = 1 and e = 0, C1,0 is the submatrix of K≺,β(M, F) with rows in {φ≺,β(c1), . . . , φ≺,β(cm)};
therefore, by choice of the permutation π at Step 3, we have C1,0 = πF = B at Step 4. Thus,
upon entering the For loop for the first time, with k = 1 and e = 0, we see that A1 and A2 hold.

Then let k be in {1, . . . , r} and e in {0, . . . , `k}; we assume that A1 and A2 hold at indices
k and e. Let us denote ρ = {ρ1, . . . , ρδ} as defined in Step 6.b.(ii), and let ρ̂ = {ρ̂1, . . . , ρ̂δ},
where ρ̂ j = φ≺,β(X2e

k φ
−1
≺,β(ρ j)) for 1 6 j 6 δ are the indices computed at Step 6.b.(iv). Let also

(γ1, . . . , γν) be the indices of the rows of K≺,β(M, F) corresponding to the row rank profile of its
submatrix Ck,e+1. Then we claim that the following holds:

Lemma 3.8. (γ1, . . . , γν) is a subsequence of the tuple t.

Proof. Let j be in {1, . . . , ν} and let us prove that γ j is in ρ∪ ρ̂. By assumption, the row of index
γ j inK≺,β(M, F) is not a linear combination of the rows of smaller indices in the submatrix Ck,e+1
of K≺,β(M, F).

Suppose first that φ−1
≺,β(γ j) is in Sk,e, so that γ j actually corresponds to a row in Ck,e. Since

Ck,e is a submatrix of Ck,e+1, the remark above implies that the row of index γ j in K≺,β(M, F) is
not a linear combination of the rows of smaller indices in Ck,e. This means that this row belongs
to the row rank profile of Ck,e, and so (by A2) γ j is in ρ.

Now, we assume that φ−1
≺,β(γ j) ∈ Sk,e+1 − Sk,e, and we prove that γ j ∈ ρ̂, or in other words,

that φ−1
≺,β(γ j) ∈ {X2e

k φ
−1
≺,β(ρ j) | 1 6 j 6 δ}. Since φ−1

≺,β(γ j) ∈ Sk,e+1 − Sk,e, we can write φ−1
≺,β(γ j) =

X2e

k X f ci, with X f ci in Sk,e. Suppose that X f ci is not in φ−1
≺,β(ρ), so that by A2, the row of index

φ≺,β(X f ci) in K≺,β(M, F) is a linear combination of the previous rows in Ck,e. Right-multiply all
these rows by M2e

k ; this shows that the row indexed by γ j in K≺,β(M, F) is a linear combination
of rows of smaller indices in its submatrix Ck,e+1, a contradiction. Our claim is proved.

Now, by A1 and A2, after the update at Steps 6.b.(vi), the rows of B are precisely the rows of
K≺,β(M, F) of indices in ρ ∪ ρ̂ sorted in increasing order. Thus, after the row rank profile com-
putation at Step 6.b.(vii), the rows in B of indices i1, . . . , iδ̂ are the rows of Ck,e+1 corresponding
to its row rank profile, and the subtuple of t with entries i1, . . . , iδ̂ is precisely (γ1, . . . , γν).

If e < `k, this implies that A1 and A2 still hold at step (k, e + 1). Suppose next that instead,
e = `k. We claim the following.

16

Lemma 3.9. We have `k 6 dlog2(dk)e; equivalently, if we exit the Do-Until loop at the end of
iteration e, then e 6 dlog2(dk)e.

Proof. First, we make the following observation: the indices of the rows in K≺,β(M, F) corre-
sponding to the row rank profile of Ck,e−1, and of those corresponding to the row rank profile
of Ck,e, are different. Indeed, A1 and A2 show that the former correspond to indices (ρ1, . . . , ρδ)
obtained at Step 6.b.(ii) at iteration e − 1, the latter to the same indices at iteration e, and the fact
that we did not exit the loop at step e − 1 implies that they are different.

Suppose then, by means of contradiction, that e > dlog2(dk)e + 1, so that e > log2(dk) + 1.
Consider a row r in Ck,e that is not in Ck,e−1; then, r = sM2e−1

k for some row s in Ck,e−1. By
assumption, 2e−1 is at least equal to the degree dk of the minimal polynomial of Mk. In particular,
M2e−1

k is a linear combination of powers of Mk of exponent less than 2e−1. Now, all rows sMi
k,

for i < 2e−1, are in Ck,e, and have lower indices than r. This implies that r is not in the row
rank profile of Ck,e, and thus Ck,e−1 and Ck,e have the same row rank profile. This contradicts the
property in the previous paragraph, hence e 6 dlog2(dk)e.

Using this property, we prove that A1 and A2 now hold for indices k + 1 and e = 0 (this will
be enough to conclude our induction proof).

Lemma 3.10. If we exit the Do-Until loop after step e (equivalently, if e = `k), then the rows
in B of indices i1, . . . , iδ̂ are the rows of Ck,log2(β) corresponding to its row rank profile, and the
subtuple of t with entries i1, . . . , iδ̂ are the indices of these rows in K≺,β(M, F).

Proof. Our assumption means that (γ1, . . . , γν) = (ρ1, . . . , ρδ); this is equivalent to saying that
the indices inK≺,β(M, F) of the row rank profiles of its submatrices Ck,e and Ck,e+1 are the same.
In particular, any row in Ck,e+1 is a linear combination of rows of lower indices in Ck,e.

We will prove the following below: any row in Ck,log2(β) is a linear combination of rows of
lower indices in Ck,e. In particular, this implies that the indices inK≺,β(M, F) of the row rank pro-
files of its submatrices Ck,e+1 and Ck,log2(β) are all the same. Since we saw that after Step 6.b.(vii),
the rows in B of indices i1, . . . , iδ̂ are the rows of Ck,e+1 corresponding to its row rank profile, and
the subtuple of t with entries i1, . . . , iδ̂ are the indices of these rows inK≺,β(M, F), this is enough
to prove the lemma.

We prove our claim by induction on the rows of Ck,log2(β). Let thus r be a row in Ck,log2(β), and
assume the claim holds for all previous rows.

If r is from its submatrix Ck,e, we are done. Else, since e + 1 6 log2(β) holds (from the
previous lemma), r can be written as r = sMc

k , for some c > 0, where s is a row in Ck,e+1. We
know that s is a linear combination of rows s1, . . . , sι of lower indices in Ck,e, so that r is a linear
combination of s1 Mc

k , . . . , sιM
c
k . All these rows are in Ck,log2(β) and have lower indices than r. By

our induction assumption, they are linear combinations of rows of lower indices in Ck,e, and thus
so is r.

If k < r then we can turn to the next variable Xk+1, since the former lemma, together with
the equality Ck,log2(β) = Ck+1,0, shows that A1 and A2 hold for indices (k + 1, 0). For k = r,
since Cr,log2(β) = K≺,β(M, F), the lemma shows that the output of the algorithm is indeed the row
rank profile of K≺,β(M, F) and the submatrix of K≺,β(M, F) formed by the corresponding rows.
According to Theorem 3.6, the ≺-monomial basis can directly be deduced from the rank profile
of K≺,β(M, F). This concludes the proof of correctness.

17

Concerning the cost bound, according to [46, Thm. 2.10], the row rank profile computation
at Step 4 can be computed in O(ρω−2mD) operations, where ρ 6 D is the rank of F. In particular,
this is O(mDω−1).

Let us now focus on the iteration (k, e) and we show that it uses O(Dω) operations. First,
note that δ 6 D holds throughout (since δ is the rank of a matrix with D columns). Since upon
entering Step 6.b.(vi), B has δ 6 D rows and D columns, its update and the row rank profile
of the latter can be computed in O(Dω) operations. Finally, squaring the D × D matrix P at
Step 6.b.(viii) is also done in O(Dω) operations.

To conclude the proof of the cost bound, we recall from Lemma 3.9 that in iteration k of the
For loop, we pass `k + 1 6 dlog2(dk)e + 1 times through the body of the Do-Until loop.

Remark 3.11. We may slightly refine the analysis for some particular monomial orders. Indeed,
the order in which the For and Do-Until loops introduce the new monomials to be processed
precisely corresponds to the ≺lex-term over position order ≺top

lex over K[X]m. As a result, the
behaviour and the cost bound of the algorithm can be described with more precision if the input
monomial order is ≺ = ≺

top
lex .

In this case, we are processing the rows of K≺,β(M, F) in the order they are in the matrix.
In particular, the permutation π at Steps 3 and 6.b.(v) is always the identity matrix, and the
tuple (ρ1, . . . , ρδ) inside the loops consists of the first δ entries of the actual row rank profile of
K≺,β(M, F).

Furthermore, the fact that we are processing the rows in their actual order has a small impact
on the cost bound, as follows. Let us denote by G the reduced ≺-Gröbner basis of SyzM(F), and
let β̂ = (β̂1, . . . , β̂r) be the tuple of maximum degrees in G, that is, β̂k = maxp∈G degXk

(p) for
1 6 k 6 r.

Then, at iteration k of the For loop, the Do-Until loop does O(log2(β̂k + 1)) iterations (once
we introduce powers of the variable Xk greater than β̂k, the partial row rank profile (ρ1, . . . , ρδ)
will not be modified anymore, and we will exit the Do-Until loop). Therefore the total number of
iterations is O(

∑
16k6r log(β̂k + 1)). Now we claim that∑

16k6r

log(β̂k + 1) 6 r log
(
β̂1 + · · · + β̂r

r
+ 1

)
6 r log

(D
r

+ 2
)
. (1)

As a result, when the input order is ≺ = ≺
top
lex , Algorithm 1 uses

O
(
mDω−1 + rDω log

(D
r

+ 2
))

operations in K.
We now prove our claim. The first inequality in Eq. (1) is a direct application of the arithmetic

mean-geometric mean inequality. The second inequality follows from the bound β̂1 + · · · + β̂r 6
D+r−1, which holds since the ≺-monomial basis, whose cardinality ∆ is at most D, contains the
1+β̂1+· · ·+β̂r−r distinct monomials specified hereafter. By definition of β̂, for each k ∈ {1, . . . , r}
such that β̂k > 0, there is a monomial appearing in some element of G which is a multiple of
Xβ̂k

k cik for some 1 6 ik 6 m. Thus Xβ̂k
k cik is either in the ≺-monomial basis or in its border, which

implies that the ≺-monomial basis contains {cik , Xk cik , . . . , X
β̂k−1
k cik }. Considering the union of all

such sets for 1 6 k 6 r (with the empty set if β̂k = 0) yields at least 1 + (β̂1 − 1) + · · · + (β̂r − 1)
distinct monomials, since each intersection of a pair of such sets has at most one element (the
coordinate vector).

18

3.3. Fast computation of the basis of syzygies

Next, we present our algorithm to compute the reduced Gröbner basis of SyzM(F). By def-
inition, it can be described by the minimal generators of the leading module of SyzM(F) along
with the associated normal forms. We first show how to use the knowledge of the monomial
basis to compute such normal forms efficiently. In all this section, we let M = (M1, . . . , Mr) be
pairwise commuting matrices in KD×D, F be in Km×D, ≺ be a monomial order on K[X]m, and E
be the ≺-monomial basis of K[X]m/SyzM(F).

3.3.1. Simultaneous computation of normal forms of monomials
First, for some arbitrary monomials {Xe1 ci1 , . . . , Xes cis }, we give an algorithm that computes

their ≺-normal forms with respect to SyzM(F). Each of these ≺-normal forms is a uniquely
defined K-linear combination of the monomials in the ≺-monomial basis E; the main task of our
algorithm is to find the coefficients of these s combinations, which we gather below in an s × ∆

matrix N.
In the linearized viewpoint, we associate the monomials {Xe1 ci1 , . . . , Xes cis } with a matrix

T ∈ Ks×D, whose jth row is Xe j ci j · F = fi j Me j , where fi j is the i jth row of F (we are using
the notation of Definition 1.1). Similarly, we associate the monomial basis E with a matrix
B ∈ K∆×D, where ∆ = dimK(K[X]m/SyzM(F)) as above; if we write E = (ε1 ≺ · · · ≺ ε∆), then
the jth row of B is ε j · F.

Then the rows of T are K-linear combinations of the rows of B: there is a matrix N ∈ Ks×∆

such that T = NB. (The notation T stands for terms, while B stands for basis, and N for normal
forms.) To compute this matrix N, one can directly use N = TB−1 if B is square, and more
generally one can use a similar identity N = T̄B̄−1 where B̄ is a ∆ × ∆ invertible submatrix of B,
as detailed in Step 1 of Algorithm 2.

Proposition 3.12. Algorithm 2 is correct and uses O(∆ω−1(D + s)) operations in K.

Proof. For the correctness, we focus on the case s = 1; to prove the general case s > 1 it suffices
to apply the following arguments for each j ∈ {1, . . . , s}, to the jth row of T and the corresponding
output element ν j. Thus, we consider T = Xeci · F = fi Me for some e ∈ Nr and 1 6 i 6 m, and
our goal is to prove that nf≺(Xeci) = ν1ε1 + · · · + ν∆ε∆ where N = [ν1 · · · ν∆] is the unique
vector in K1×∆ such that T = NB. Choosing large enough exponent bounds β ∈ Nr

>0, such as
β = (max(e,D)+1, . . . ,max(e,D)+1), we recall from Definition 3.3 that T is a row of the multi-
Krylov matrixK≺,β(M, F), and from Theorem 3.6 that B is the submatrix ofK≺,β(M, F) formed
by the rows corresponding to its row rank profile. This proves the existence and uniqueness of N
such that T = NB.

We now explain the computation of N in Step 1. We use the column rank profile of B as a
specific set of column indices ρ̄1 < · · · < ρ̄∆ such that the corresponding ∆ × ∆ submatrix B̄ of
B is invertible. Then, writing T̄ ∈ K1×∆ for the subvector of T formed by its entries {ρ̄1, . . . , ρ̄∆},
the identity T = NB yields T̄ = NB̄, hence N = T̄B̄−1.

Since the jth row of B is ε j · F, we have 0 = T − NB = (Xeci − ν1ε1 + · · · + ν∆ε∆) · F, hence
Xeci − ν1ε1 + · · · + ν∆ε∆ is in SyzM(F). Thus

nf≺(Xeci) = nf≺(ν1ε1 + · · · + ν∆ε∆) = ν1ε1 + · · · + ν∆ε∆;

indeed ν1ε1 + · · · + ν∆ε∆ is already in ≺-normal form as it is a combination of the ≺-monomial
basis E of K[X]m/SyzM(F). This concludes the proof of correctness.

19

Algorithm 2 – NormalForm
Input:

• matrix T ∈ Ks×D,
• list of monomials E = (ε1, . . . , ε∆) in K[X]m,
• matrix B ∈ K∆×D with full row rank.

Output: list (ν1, . . . , νs) of elements of K[X]m

Ensures: assuming the following holds:
• M = (M1, . . . , Mr) are pairwise commuting matrices in KD×D,
• F is a matrix in Km×D with rows f1, . . . , fm,
• ≺ is a monomial order on K[X]m,
• the jth row of T is Xe j ci j · F = fi j Me j for some monomial Xe j ci j ,
• E is the ≺-monomial basis of K[X]m/SyzM(F),
• the jth row of B is ε j · F,

then ν j = nf≺(Xe j ci j) for 1 6 j 6 s.
1. /* Compute the matrix N ∈ Ks×∆ such that T = NB */

(ρ̄1, . . . , ρ̄∆)← the column rank profile of B
B̄ and T̄ ← submatrices of B and T formed by the columns {ρ̄1, . . . , ρ̄∆}

N = [νi, j]16i6s,16 j6∆ ← T̄B̄−1

2. /* Deduce normal forms */

For i from 1 to s: νi ← νi,1ε1 + · · · + νi,∆ε∆ ∈ K[X]m

3. Return (ν1, . . . , νs)

20

Concerning the cost bound, Steps 2 and 3 do not require operations in K. In Step 1, the col-
umn rank profile is obtained in O(∆ω−1D) operations according to [46, Thm. 2.10]; the inversion
of B̄ costs O(∆ω); and the multiplication T̄B̄−1 uses O(s∆ω−1) operations if s > ∆, and O(∆ω)
otherwise. Since ∆ 6 D we obtain the announced bound.

3.3.2. Computing reduced Gröbner bases of syzygies
To compute the reduced ≺-Gröbner basis G of SyzM(F), we start by using Algorithm 1 to

find the ≺-monomial basis E = (ε1, . . . , ε∆), together with the matrix B giving all εk · F. From
E, we deduce the set L = {lt≺(p) | p ∈ G} formed by the ≺-leading terms of the polynomials in
G, as explained in the next paragraph. Finally, having L, we compute ≺-normal forms modulo
SyzM(F) using Algorithm 2 so as to obtain G = { f − nf≺(f) | f ∈ L}. We refer to Section 2 for
more details concerning the latter identity and the sets of monomials S and B used in the next
paragraph.

To find L, we start from E = (ε1, . . . , ε∆) and consider the set of multiples

S = {Xkε j | 1 6 k 6 r, 1 6 j 6 ∆} ∪ {ci | 1 6 i 6 m such that ci < E}.

It gives us the border, as B = S − E. The latter is a set of monomial generators for the mono-
mial submodule 〈lt≺(SyzM(F))〉, while L is the minimal generating set of the same submodule.
Thus L can be found from B by discarding all monomials in B which are divisible by another
monomial in B. The number of generators Card(G) is not known in advance; it is at least m, and
at most r∆ + m as explained in Section 2. In particular, the output Gröbner basis is represented
using rD2 + mD field elements, as claimed in the introduction.

The ≺-normal forms of the monomials in L will be computed using Algorithm 2; for this,
we need to know f · F, for f in L. The matrix B describes all εk · F, for 1 6 k 6 ∆; on the
other hand, we know that any f in L which is not among {c1, . . . , cm} is a product of the form
f = Xkε`, for some k in {1, . . . , r} and ` in {1, . . . ,∆}. In such a case, f · F can be computed as
(εk · F)M`; in the algorithm, we use fast matrix multiplication to compute several f · F at once.
Altogether, Algorithm 3 and Proposition 3.13 prove Theorem 1.7.

Proposition 3.13. Algorithm 3 is correct and uses

O
(
mDω−1 + Dω(r + log(d1 · · · dr))

)
⊂ O

(
mDω−1 + rDω log(D)

)
operations in K, where dk ∈ {1, . . . ,D} is the degree of the minimal polynomial of Mk, for
1 6 k 6 r.

Proof. Concerning correctness, the construction of B ensures that after Step 2.d, the rows of
Tk are the rows X−1

k Xek, j cik, j · F. Therefore, after Step 2.e the rows of Tk are the rows Xek, j cik, j ·

F = fik, j Mek, j . Then Proposition 3.12 implies that νk, j computed at Step 3 is the normal form
nf≺(Xek, j cik, j), for 1 6 j 6 sk and 0 6 k 6 r. This shows the correctness of the algorithm since,
as explained above, the reduced ≺-Gröbner basis of syzygies is { f − nf≺(f) | f ∈ L}.

Concerning the cost bound, the cost of Step 1 is given in Proposition 3.7 and is precisely the
cost bound in the present proposition. Then, at the iteration k of the For loop, the multiplication
at Step 2.e involves the sk × D matrix Tk and the D × D matrix Mk. For k in {1, . . . , r}, since
we have by definition sk = Card(Lk) 6 Card(E) = ∆ 6 D, this multiplication is performed in
O(Dω) operations; over the r iterations, this leads to a total of O(rDω) operations. For k = 0, we
have s0 = m, so the cost is O(mDω−1 + Dω). Finally, we have L0 ∪ · · · ∪ Lr = L and therefore
s0 + · · · + sr 6 Card(L) 6 r∆ + m 6 rD + m; hence the cost for computing normal forms at
Step 3 is in O(∆ω−1(D + s0 + · · · + sr)) ⊆ O(mDω−1 + rDω) according to Proposition 3.12.

21

Algorithm 3 – SyzygyModuleBasis
Input:

• monomial order ≺ on K[X1, . . . , Xr]1×m,
• pairwise commuting matrices M = (M1, . . . , Mr) in KD×D,
• matrix F ∈ Km×D.

Output: the reduced ≺-Gröbner basis of SyzM(F).
1. /* Compute monomial basis */

E = (ε1, . . . , ε∆), B← MonomialBasis(≺, M, F)
2. /* Compute leading monomials and their linearizations */

L ← minimal generating set of 〈lt≺(SyzM(F))〉, deduced from E
L0 ← L∩ {ci | 1 6 i 6 m}
write L0 as {ci0, j | 1 6 j 6 s0} for some indices i0,1, . . . , i0,s0

(e0,1, . . . , e0,s0)← (0, . . . , 0)
For k from 1 to r

a. Lk ← { f ∈ L − (L0 ∪ · · · ∪ Lk−1) | Xk divides f and X−1
k f ∈ E}

b. write Lk as {Xek, j cik, j | 1 6 j 6 sk} for some exponents and indices ek, j, ik, j
c. For j from 1 to sk: µ j ← index such that X−1

k Xek, j cik, j = εµ j

d. Tk ← matrix formed by the rows µ1, . . . , µsk of B, in this order
e. Tk ← Tk Mk

T ←


T0
T1
...

Tr


3. /* Compute normal forms νk, j = nf≺(Xek, j cik, j) and return */

(ν0,1, . . . , ν0,s0 , . . . , νr,1, . . . , νr,sr)← NormalForm(T,E, B)
Return {Xek, j cik, j − νk, j | 1 6 j 6 sk, 0 6 k 6 r}

22

Remark 3.14. By considering B instead of L at the second step, one could slightly modify
Algorithm 3 so that, instead of the reduced ≺-Gröbner basis, it returns the border basis with
respect to the ≺-monomial basis computed at the first step. One can verify that the computation
of that monomial basis remains the most expensive step of the modified algorithm, and thus that
the overall cost bound is the same as the one in Proposition 3.13.

4. Computing multiplication matrices from the Gröbner basis

In this section, we tackle Problem 2 and prove Theorem 1.9. In what follows,N is a submod-
ule of K[X]n such that K[X]n/N has finite dimension D as a K-vector space, ≺ is a monomial
order on K[X]n, and G is the reduced ≺-Gröbner basis of N . Having as input G, we give an al-
gorithm to compute the multiplication matrices for this quotient with respect to the ≺-monomial
basis, under the assumption on the leading module of N described in Definition 1.8. For con-
ciseness, hereafter this assumption is called the structural assumption; it requires in particular
that Xr ≺ · · · ≺ X1, which we therefore assume in this section without loss of generality since it
holds up to a renumbering of the variables.

4.1. Overview of the algorithm
We first discuss the shape of the ≺-monomial basis ofK[X]n/N (see [16] and [35, Sec. 3] for

similar observations in the case of ideals), and then we present an overview of our approach for
computing the multiplication matrices.

Let E = (ε1, . . . , εD) be the ≺-monomial basis of K[X]n/N . Below, when discussing multi-
plication matrices (with respect to E) and elements of K[X]n/N represented on the basis E, we
assume that one has fixed an order on the elements of this basis, for example ε1 ≺ · · · ≺ εD.
Then the sought multiplication matrices M1, . . . , Mr ∈ KD×D are such that the row j of Mk is
the coefficient vector of the normal form nf≺(Xkε j) represented in the basis E, for 1 6 k 6 r and
1 6 j 6 D. Thus, we consider the set of these monomials obtained by multiplying those of E by
a variable:

S = {Xkε j | 1 6 k 6 r, 1 6 j 6 D} ∪ {ci | 1 6 i 6 n such that ci ∈ lt≺(N)}.

Note that we have added the coordinate vectors ci that are in the leading module lt≺(N), or
equivalently that are not in E. This is because the normal forms of these coordinate vectors will
also be computed by our algorithm, for a negligible cost since they will be directly obtained from
the ≺-Gröbner basis.

Regarding the computation of the normal forms of the monomials in S, we can divide them
into three disjoint categories:

S = (S − B) ∪ L ∪ (B − L),

where B = S−E is the border and L = lt≺(G) ⊆ B is the minimal generating set of 〈lt≺(N)〉 (see
Section 2 for more details).

The first set S − B is contained in E; precisely,

E = (S − B) ∪ {ci | 1 6 i 6 n such that ci < lt≺(N)}.

As a result, each monomial in S − B is its own ≺-normal form, and the corresponding rows of
the multiplication matrices are coordinate vectors of length D which are obtained for free.

23

X

Y

Figure 1: Illustration of the sets of exponents in the case of the bivariate monomial ideal generated by L =

{Y13,Y11X,Y10X2,Y8X3,Y5X4,Y4X5,Y2X6, X7}. The elements of L are represented by squares, those of B − L by
diamonds, and those of S − B by circles. Here, the monomial basis is E = {1} ∪ (S − B). Monomials in the greyed area
are those in 〈L〉, or in other words, those not in E.

The monomials in the second set L are the ≺-leading terms of the elements of G, so that
G = { f − nf≺(f) | f ∈ L}. Thus, from the knowledge of G, one can obtain nf≺(L) using at most
sD computations of opposites in K, where s = Card(G); by opposite, we mean having on input
α ∈ K and computing −α. We recall from Section 2 that s = Card(L) 6 Card(S) < rD + n (the
bound is strict here since D > 0).

Thus, to obtain the multiplication matrices, the main task is to compute the normal forms of
the third set B − L. As discussed above, our algorithm works under the structural assumption
H(〈lt≺(N)〉) from Definition 1.8. The next lemma summarizes the above discussion about the
computation of nf≺(E∪L), and also highlights one example of how one can exploit the structural
assumption; note that this result appears in [14, Sec. 7] in the case of ideals, under slightly
different assumptions.

Lemma 4.1. Given the reduced ≺-Gröbner basis G of N , one can compute nf≺(E ∪ L) using
at most sD operations in K, where s is the cardinality of G. Assuming H(〈lt≺(N)〉), we have
{Xrε j | 1 6 j 6 D} ⊂ E ∪ L and thus Mr can be read off from nf≺(E ∪ L).

Proof. The first claim follows from the above discussion, recalling that s is also the cardinality
of L. Indeed, nf≺(E) is obtained for free, and for each monomial f in L, its normal form nf≺(f)
is computed using at most D computations of opposites of elements of K.

Now, assumeH(〈lt≺(N)〉) and suppose by contradiction that Xrε j < E∪L for some j. Since
Xrε j is not in E, it is in lt≺(N), and thus it is a multiple Xrε j = Xα1

1 · · · X
αr
r f of some f ∈ L,

for some exponents α1, . . . , αr. Since Xrε j < L, we have αk > 0 for some 1 6 k 6 r. If
αr > 0, then ε j = Xα1

1 · · · X
αr−1
r f ∈ lt≺(N), which is absurd since ε j ∈ E; hence k < r and

24

Xrε j = Xα1
1 · · · X

αr−1
r−1 f . But then 1

Xk
Xrε j ∈ lt≺(N), and using H(〈lt≺(N)〉) we arrive at the same

contradiction: Xk
Xr

1
Xk

Xrε j = ε j ∈ lt≺(N). Therefore Xrε j ∈ E ∪ L for all j, which proves the
inclusion in the lemma.

The last claim follows, since each row of Mr is the ≺-normal form of a monomial Xrε j, for
some 1 6 j 6 D.

Computing the remaining multiplication matrices requires to compute normal forms of mono-
mials in the third set B−L, which is more involved. Our main algorithmic ingredient to compute
those efficiently is a procedure which computes a collection of vector-matrix products of the form
vMe, where M is some D×D matrix; in our context M is one of the multiplication matrices that
are already known at some point of the algorithm. We call this operation Krylov evaluation and
we give an algorithm for it in Section 4.2. The next example gives a simple illustration of how
Krylov evaluation occurs in the computation of multiplication matrices.

Remark 4.2. Assume N is an ideal of K[X] = K[X1, X2], that is, r = 2 and n = 1. The above
lemma shows how to compute M2 under the structural assumption. Having M2, we will now see
how Krylov evaluation allows us to compute M1 using O(Dω log(D)) operations in K; hence, in
this context, both multiplication matrices are obtained in this cost bound.

As explained above, the rows of M1 that correspond to normal forms in nf≺(E∪L) are found
using O(D2) operations, since here s 6 D. Thus, it remains to compute its rows that are in
nf≺(B1), where B1 = {X1ε j | 1 6 j 6 D} − (E ∪ L). Write L = {Xα j

1 Xβ j

2 | 1 6 j 6 s} with
(α j+1, β j+1) ≺lex (α j, β j) for 1 6 j < s; since L is the minimal generating set of 〈lt≺(N)〉, (α j)
is decreasing with αs = 0 and (β j) is increasing with β1 = 0. Then B1 = {Xα j

1 Xβ j+k
2 | 1 6 k <

β j+1 − β j, 1 6 j < s}.
Now let v j ∈ K1×D be the vector which represents nf≺(Xα j

1 Xβ j

2) in the basis E; since {v1, . . . , vs}

represent nf≺(L), these vectors are among the rows of M1 that have already been computed. Then
the vectors representing nf≺(B1) are

{v j Mk
2 | 1 6 k < β j+1 − β j, 1 6 j < s}.

Performing this Krylov evaluation using the algorithm in Section 4.2 takes O(Dω log(D)) oper-
ations in K, as stated in Lemma 4.3 which involves parameters that are here σ = βs 6 D and
µ 6 D.

More generally, for r variables and n > 1, one may similarly obtain Mr−1 by computing
such Krylov evaluations, assumingH(〈lt≺(N)〉) (this is a consequence of the more general Lem-
mas 4.4 and 4.6 below). However, when r > 2 this does not extend into an iterative computation
of the multiplication matrices: Mr−2 cannot be obtained simply by Krylov evaluation with the
matrix Mr−1 and the normal forms in nf≺(E ∪ L) and those given by the rows of Mr−1. The
reason is that some of the normal forms which constitute the rows of Mr−2 are actually obtained
by Krylov evaluation with the matrix Mr and the normal forms in nf≺(L).

Thus we change our focus, from the computation of the multiplication matrices to that of
the normal forms which we can obtained by Krylov evaluation with the known multiplication
matrices and known normal forms. Roughly, our algorithm is as follows. The first iteration is
for i = r and considers Sr = E ∪ L, for which we have seen how to efficiently compute nf≺(Sr).
Our structural assumption ensures that these normal forms contain those giving Mr. Then the
iteration i = r − 1 considers the monomials Sr−1 that can be obtained from Sr = E ∪ L by
multiplication by Xr, and their normal forms nf≺(Sr−1) are computed using Krylov evaluation

25

with Mr and the vectors representing nf≺(Sr). Again, our assumption ensures that nf≺(Sr−1)
gives Mr−1, but it also contains other normal forms which correspond to rows of multiplication
matrices M1, . . . , Mr−2, whose computation is not complete yet. Then we continue this process
until i = 1: at this stage, we have covered the whole set of monomials S and we thus have all
the normal forms in nf≺(S), from which we read the rows of the multiplication matrices. The
algorithm is described in detail in Section 4.3.

4.2. Algorithm for Krylov evaluation

Now we give a simple method for the computation of a collection of vector-matrix products
of the form vMe, obtaining efficiency via repeated squaring of the matrix M. This is detailed in
Algorithm 4, in which we use the following conventions. When specified, instead of indexing
the rows of a matrix K ∈ Kσ×D using the integers (1, . . . , σ), we index them by a given totally
ordered set (P,6) of cardinality σ. Explicitly, if P = {e1, . . . , eσ} with e1 6 · · · 6 eσ, then the
ith row of K has index ei. Then, for any subset P′ ⊆ P, we write Rows(K,P′) for the submatrix
of K formed by its rows with indices in P′. An assignment operation such as Rows(K,P′)← A
for some A ∈ KCard(P′)×D does modify the corresponding entries of K.

Algorithm 4 – KrylovEval
Input:

• a matrix M ∈ KD×D for some D ∈ N>0,
• row vectors v1, . . . , vt ∈ K1×D for some t ∈ N>0,
• bounds e1, . . . , et ∈ N>0.

Output: the matrix K ∈ K(e1+···+et)×D whose row e1 + · · · + e j−1 + e is equal to v j Me, for
1 6 e 6 e j and 1 6 j 6 t.
1. /* Initialize set of indices and output matrix */

P ← {(e, j) | 1 6 e 6 e j, 1 6 j 6 t}
K ← 0 ∈ K(e1+···+et)×D with its rows indexed by (P,≺lex)

2. /* Case e = 1: compute v j M for 1 6 j 6 t */

P′ ← {(1, j) | 1 6 j 6 t} // P′ ⊆ P

Rows(K,P′)←
[
vT

1 · · · vT
t

]T
M

3. /* Repeated squaring: handle e ∈ {2i−1 + 1, . . . , 2i} for i > 1 */

N ← M
For i from 1 to dlog2(maxi ei)e:

If i > 1 then N ← N2 // N = M2i−1

P′ ← {(e, j) | 2i−1 < e 6 min(e j, 2i), 1 6 j 6 t} // P′ ⊆ P

P′′ = {(e − 2i−1, j) | (e, j) ∈ P′} // P′′ ⊆ P

Rows(K,P′)← Rows(K,P′′) · N
4. Return K

Lemma 4.3. Given M ∈ KD×D, let v1, . . . , vt ∈ K1×D, and let e1, . . . , et ∈ N>0, Algorithm 4
computes the row vectors {v j Me | 1 6 e 6 e j, 1 6 j 6 t} using

O
(
Dω(1 + log(µ)) + Dω−1σ(1 + log(µt/σ))

)
⊆ O

(
Dω−1(D + σ)(1 + log(µ))

)
26

operations in K, where σ = e1 + · · · + et and µ = max(e1, . . . , et).

Proof. We want to prove that after Step 3, the row e1 + · · ·+ e j−1 + e of K is v j Me, for 1 6 e 6 e j

and 1 6 j 6 t. Indexing the rows of K by (P,≺lex) as in the algorithm, this means that the row
of K at index (e, j) is v j Me, for all (e, j) ∈ P. To prove this, we show that at the end of the ith
iteration of the loop at Step 3, the following assertion holds:

Ai : the row of K at index (e, j) is equal to v j Me,

for all (e, j) ∈ P such that e 6 2i.

This gives the conclusion, since when the algorithm completes the loop, we have i = dlog2(µ)e
and 2i > µ, and all (e, j) ∈ P are such that e 6 µ by definition of µ.

First, (1, j) ∈ P for 1 6 j 6 t, and after Step 2, the row of K at index (1, j) is equal to v j M.
SoA0 holds before the first iteration i = 1. Now, assume thatAi−1 holds before the ith iteration:
we want to prove thatAi holds at the end of this iteration. After the squaring at the beginning of
the iteration, we have N = M2i−1

. By construction, P′ is the set of indices such that we have the
disjoint union

P′ ∪ (P ∩ {(e, j) | 1 6 e 6 2i−1, 1 6 j 6 t}) = P ∩ {(e, j) | 1 6 e 6 2i, 1 6 j 6 t}.

Thus our goal is to show that for each (e, j) ∈ P′, at the end of the iteration the row of K at index
(e, j) is v j Me. By assumption, the row of K at index (e − 2i−1, j) is v j Me−2i−1

. Then the last step
of the iteration ensures that the row of K at index (e, j) is v j Me−2i−1 N = v j Me−2i−1 M2i−1

= v j Me.
Thus,Ai holds, and this concludes the proof of correctness.

At Step 2, we multiply an t × D matrix and a D × D matrix, using O(Dω + Dω−1t) operations
in K; this is within the bound in the lemma since t 6 σ. Over all iterations of the loop at
Step 3, the squarings of N use a total of O(Dω(dlog2(µ)e − 1)) ⊆ O(Dω log2(µ)) operations. The
product Rows(K,P′′) · N is computed using O(Dω + Dω−1Card(P′′)) operations in K since the
matrices have size Card(P′′) × D and D × D, respectively. By definition, Card(P′′) = Card(P′),
and since P′ = P ∩ {(e, j) | 2i−1 < e 6 2i, 1 6 j 6 t}, we obtain Card(P′′) 6 Card(P) = σ
and Card(P′′) 6 2i−1t. Then the total number of operations in K used for the computation of
Rows(K,P′′) · N over all iterations of the loop at Step 3 is

O

dlog2(µ)e∑
i=1

(Dω + Dω−1 min(2i−1t, σ))

 ⊆ O

Dωdlog2(µ)e + Dω−1
dlog2(µ)e∑

i=1

min(2i−1t, σ)

 ,
which is within the cost bound in the lemma. Indeed, dlog2(µ)e 6 1 + log2(µ) and

dlog2(µ)e∑
i=1

min(2i−1t, σ) 6
blog2(σ/t)c∑

i=1

2i−1t +

dlog2(µ)e∑
i=blog2(σ/t)c+1

σ 6 σ(1 + dlog2(µ)e − blog2(σ/t)c)

6 σ(3 + log2(µt/σ)).

4.3. Computing the multiplication matrices
Now, we describe our algorithm for computing the multiplication matrices and give a com-

plexity analysis. We follow on from notation in Section 4.1.
We are going to show how to compute the normal forms of all monomials in

E ∪ B = S ∪ {ci | 1 6 i 6 n such that ci < lt≺(N)};
27

since this set containsS, this directly yields the multiplication matrices. We design an iteration on
the r variables which computes the normal forms of r sets E∪L = Ŝr ⊆ Ŝr−1 ⊆ · · · ⊆ Ŝ1 = E∪B;
at the end, nf≺(Ŝ1) gives the sought normal forms.

Thus, we start with the normal forms of the monomials in Ŝr = E∪L, which are easily found
from G (see Lemma 4.1). Then, for 1 6 i < r, we consider the monomials in E ∪ B which are
obtained from E ∪ L through multiplication by Xi+1, . . . , Xr:

Ŝi = {Xei+1
i+1 · · · X

er
r f | ei+1, . . . , er > 0, f ∈ E ∪ L} ∩ (E ∪ B).

The normal forms nf≺(Ŝi) can be obtained from those in nf≺(E ∪ L) through multiplication by
Mi+1, . . . , Mr, if these matrices are known.

From these sets, we define the sets mentioned at the end of Section 4.1: Sr = Ŝr = E∪L for
i = r, and Si = Ŝi − Ŝi+1 for 1 6 i < r. Therefore Ŝi is the disjoint union Si ∪ · · · ∪ Sr, and Si is
the set of monomials in B − Ŝi+1 which can be obtained from E ∪ L through multiplication by a
monomial in Xi+1, . . . , Xr which does involve the variable Xi+1. That is,

Si = {Xei+1
i+1 · · · X

er
r f | ei+1 > 0, ei+2, . . . , er > 0, f ∈ E ∪ L} ∩ (B − Ŝi+1)

= {Xe
i+1 f | e > 0, f ∈ Ŝi+1} ∩ (B − Ŝi+1).

In particular, if Mi+1 and nf≺(Ŝi+1) are known, then nf≺(Si) can be computed via Krylov eval-
uation with the matrix Mi+1 and the vectors representing nf≺(Ŝi+1). Having nf≺(Si) gives us
nf≺(Ŝi) = nf≺(Si) ∪ nf≺(Ŝi+1), and we will prove in Lemma 4.4 that Mi can be read off from
nf≺(Ŝi), under the structural assumption. Thus we can proceed iteratively, since then, from Mi

and nf≺(Ŝi) we can use Krylov evaluation to find nf≺(Si−1), from which we deduce Mi−1, etc. At
the end of this process we have computed nf≺(Ŝ1) ⊇ nf≺(S) and deduced all the multiplication
matrices.

Lemma 4.4. AssumingH(〈lt≺(N)〉), we have

{Xiε j | 1 6 j 6 D} ⊆ Ŝi for all 1 6 i 6 r;

in particular, the multiplication matrices Mi, . . . , Mr can be read off from nf≺(Ŝi).

Proof. Note that for i = r, this result was already proved in Lemma 4.1 (and we will use similar
arguments in the proof below); besides, for i = 1 it is straightforward since Ŝ1 = E ∪ B.

Let i ∈ {1, . . . , r}. First, Mi+1, . . . , Mr can be read off from nf≺(Ŝi) since for k ∈ {i + 1, . . . , r}
we have {Xkε j, 1 6 j 6 D} ⊆ Ŝk−1 ⊆ Ŝi. Concerning Mi, it directly follows from the inclusion
in the lemma.

Now, we want to prove Xiε j ∈ Ŝi for any j ∈ {1, . . . ,D}; for this we will use the structural
assumption. The particular case Xiε j ∈ E ∪ L is obvious since E ∪ L = Sr ⊆ Ŝi. Thus we now
consider Xiε j < E ∪ L. Then Xiε j ∈ lt≺(N) and there exist exponents α1, . . . , αr not all zero and
a monomial f ∈ L such that Xiε j = Xα1

1 · · · X
αr
r f .

Suppose by contradiction that there exists k ∈ {1, . . . , i} such that αk > 0. If k = i, then αi > 0
implies that ε j is a multiple of f , hence ε j ∈ lt≺(N), which is not the case. If 1 6 k < i, αk > 0
implies 1

Xk
Xiε j ∈ lt≺(N), and using the structural assumption we obtain the same contradiction:

Xk
Xi

1
Xk

Xiε j = ε j ∈ lt≺(N). Thus there is no such k, and α1 = · · · = αi = 0. As a result,
Xiε j = Xαi+1

i+1 · · · X
αr
r f , which is in Ŝi.

28

For completeness, in Algorithm 5 we describe a straightforward subroutine for determin-
ing the sets of monomials (Si)16i6r, which is directly based on the description of these sets in
Lemma 4.5. Note that this computation does not involve field operations but only comparisons
of exponents of monomials, so that here the time for finding these sets is not taken into account
in our cost bounds. In an efficient implementation of our algorithm for finding the multiplication
matrices, one would rather compute these sets while building B from G, and we believe that find-
ing these sets should indeed be a negligible part of the running time of such an implementation.

Lemma 4.5. AssumeH(〈lt≺(N)〉) and let 1 6 i < r. Let

{ f1, . . . , ft} = { f ∈ Ŝi+1 ∩ B | Xi+1 f ∈ B − Ŝi+1},

and for 1 6 j 6 t, let e j ∈ N>0 be the largest integer such that Xe j

i+1 f j ∈ B − Ŝi+1. Then

Si = {Xe
i+1 f j | 1 6 e 6 e j, 1 6 j 6 t}.

Proof. First, we prove that Si contains the latter set. Let 1 6 j 6 t and 1 6 e 6 e j. Then f j is
in Ŝi+1 and Xe

i+1 f j is in B. Since e > 0, Xe
i+1 f j is in Ŝi. Furthermore, Xe

i+1 f j is not in Ŝi+1, so that
it is in Ŝi − Ŝi+1 = Si.

Now, let g ∈ Si. By definition, this means that g is in Ŝi ⊆ E∪B, and g is not in Ŝi+1 ⊇ E∪L.
In particular, g is in B− Ŝi+1. Furthermore, we can write g = Xe

i+1 f for some e > 0 and f ∈ Ŝi+1.
Then let e′ be the smallest exponent such that Xe′

i+1 f < Ŝi+1; we have 1 6 e′ 6 e since f ∈ Ŝi+1

and g < Ŝi+1. Let f ′ = Xe′−1
i+1 f ∈ Ŝi+1; thus f ′ is in B: if this was not the case, then f ′ would be

in E and Xi+1 f ′ would be in Ŝi+1 according to Lemma 4.4. Furthermore, it is a property of the
border that, since the multiple g = Xe−e′+1

i+1 f ′ is in B, then Xi+1 f ′ is in E ∪ B; yet Xi+1 f ′ is not in
Ŝi+1 which contains E, hence Xi+1 f ′ ∈ B−Ŝi+1. It follows that f ′ = f j for some 1 6 j 6 t. Thus
we have g = Xe−e′+1

i+1 f j, with e − e′ + 1 6 e j by definition of e j, which concludes the proof.

Algorithm 5 – NextMonomials
Input:

• the border B,
• the set of monomials Ŝi+1 = Si+1 ∪ · · · ∪ Sr for some 1 6 i < r.

Output: the set of monomials Si, in the form Si = {Xe
i+1 f j | 1 6 e 6 e j, 1 6 j 6 t} for some

f1, . . . , ft ∈ Ŝi+1 ∩ B and e1, . . . , et ∈ N>0.
1. Si ← ∅; n← 0
2. For each f ∈ Ŝi+1 ∩ B such that Xi+1 f ∈ B − Ŝi+1:

e← 1; While Xe+1
i+1 f ∈ B − Ŝi+1: e← e + 1

Si ← Si ∪ {Xi+1 f , . . . , Xe
i+1 f }

t ← t + 1; et ← e; ft ← f

3. Return Si = {Xe
i+1 f j | 1 6 e 6 e j, 1 6 j 6 t}

Next, we show how to compute nf≺(Si) from nf≺(Ŝi+1) and Mi+1 using Krylov evaluation.

Lemma 4.6. Let i ∈ {1, . . . , r − 1}. Given (B, Ŝi+1, nf≺(Ŝi+1), Mi+1), one can compute Si and
nf≺(Si) as follows:

29

• Si = {Xe
i+1 f j | 1 6 e 6 e j, 1 6 j 6 ti} ← NextMonomials(B, Ŝi+1), for some f1, . . . , fti ∈

Ŝi+1 ∩ B and e1, . . . , eti ∈ N>0

• {v1, . . . , vti } ⊆ K1×D ← nf≺({ f1, . . . , fti }), retrieved from nf≺(Ŝi+1)
nf≺(Si)← rows of KrylovEval(Mi+1, v1, . . . , vti , e1, . . . , eti)

This uses

O
(
Dω(1 + log(µi)) + Dω−1σi(1 + log(µiti/σi))

)
⊆ O

(
Dω−1(D + σi)(1 + log(µi))

)
operations in K, where σi = e1 + · · · + eti is the cardinality of Si and µi = max(e1, . . . , eti). We
have µi 6 max{e ∈ N | Xe

i+1 f ∈ B for some f ∈ B}.

Proof. In the first step, Si is determined from Ŝi+1 without field operation as shown in Algo-
rithm 5, and it is obtained in the form Si = {Xe

i+1 f j | 1 6 e 6 e j, 1 6 j 6 ti}, where f1, . . . , fti are
elements of Ŝi+1 and e1, . . . , eti are positive integers; in particular, e1 + · · · + eti = Card(Si) = σi.
The upper bound on µi holds since, by construction of Si as in Algorithm 5 (see also Lemma 4.5),
f j ∈ B and Xe j

i+1 f j ∈ B for 1 6 j 6 ti.
Going to the normal forms, we get

nf≺(Si) = {v j Me
i+1 | 1 6 e 6 e j, 1 6 j 6 ti} (2)

where v j = nf≺(f j) ∈ K1×D for 1 6 j 6 ti; these normal forms are already known since they are
in nf≺(Ŝi+1). This shows that the second item correctly computes nf≺(Si). The cost bound is a
consequence of Lemma 4.3.

The correctness of Algorithm 6 follows from the results and discussions in this section. The
next proposition implies the first item of Theorem 1.9, and gives a more precise cost bound. It
uses notation from Lemma 4.6. We remark that one could easily verify that the requirements
of Algorithm 6 hold while building the ≺-monomial basis E at the first step, relying on the
characterization ofH(〈lt≺(N)〉) described in Lemma 2.2.

Proposition 4.7. Let ≺ be a monomial order on K[X]n and let G be a reduced ≺-Gröbner basis
such that K[X]n/N has dimension D, where N = 〈G〉. AssumeH(〈lt≺(N)〉), and using notation
above, let µ = max(µ1, . . . , µr−1). Thus

µ 6 max{e ∈ N | Xe
i f ∈ B for some f ∈ B and some 2 6 i 6 r},

and in particular µ 6 D. Then Algorithm 6 solves Problem 2 using

O
(
Dω (

r − 1 + log(µ1 · · · µr−1)
)

+ Dω−1
(
Card(B − L) +

∑
16i6rσi log(µiti/σi)

))
⊆ O

(
rDω(1 + log(µ))

)
⊆ O

(
rDω log(D))

)
operations in K.

Proof. First, Step 2 computes Ŝr = Sr = E∪L and nf≺(Ŝr) from G, using O(rD2) computations
of opposites of field elements (see Lemma 4.1). Then the For loop iteratively applies Lemma 4.6
to obtain the remaining matrices. Using notation from Lemma 4.6, the overall cost bound is

O

 ∑
16i6r−1

Dω(1 + log(µi)) + Dω−1σi(1 + log(µiti/σi))


⊆ O

Dω(r − 1 + log(µ1 · · · µr−1)) + Dω−1

Card(B − L) +
∑

16i6r−1

σi log(µiti/σi)


 .

30

Algorithm 6 – MultiplicationMatrices
Input:

• a monomial order ≺ on K[X]n such that Xr ≺ · · · ≺ X1,
• a reduced ≺-Gröbner basis G ⊆ K[X]n.

Requirements:

• K[X]n/N has finite dimension D as a K-vector space, where N = 〈G〉,
• H(〈lt≺(N)〉) holds.

Output:

• the ≺-monomial basis E of K[X]n/N ,
• the multiplication matrices of X1, . . . , Xr in K[X]n/N with respect to E.

1. /* Build main sets of exponents */

Read L and E = (ε1, . . . , εD) from G, with ε1 ≺ · · · ≺ εD

S ← {Xkε j | 1 6 k 6 r, 1 6 j 6 D} ∪ {ci | 1 6 i 6 n such that ci ∈ L}

B ← S − E

/* Below, normal forms are represented in E, as vectors in K1×D */

2. /* Initialize the iteration: Ŝ = Ŝr = E ∪ L, Q = nf≺(Ŝi+1), find Mr */

Ŝ ← E ∪ L; Q ← nf≺(Ŝ); read Mr from Q
3. For i from r − 1 to 1:

/* Before iteration i: Ŝ = Ŝi+1, Q = nf≺(Ŝi+1), Mi+1, . . . , Mr known */

/* After iteration i: Ŝ = Ŝi, Q = nf≺(Ŝi), Mi, . . . , Mr known */

a. S̃ = {Xe
i+1 f j | 1 6 e 6 e j, 1 6 j 6 t} ← NextMonomials(B, Ŝ), for some

f1, . . . , ft ∈ Ŝ and e1, . . . , et ∈ N>0 // S̃ = Si

b. {v1, . . . , vt} ⊆ K1×D ← nf≺({ f1, . . . , ft}), retrieved from Q = nf≺(Ŝ)
Q̃ ← rows of KrylovEval(Mi+1, v1, . . . , vt, e1, . . . , et) // Q̃ = nf≺(Si)

c. Ŝ ← S̃ ∪ Ŝ; Q ← Q̃ ∪ Q; read Mi from Ŝ
4. Return E, M1, . . . , Mr

31

Indeed, we have σ1 + · · · + σr−1 = Card(B − L), since σi = Card(Si) and S1 ∪ · · · ∪ Sr−1 =

Ŝ1 − Sr = (E ∪ B) − (E ∪ L) = B − L. Using the bounds Card(B − L) 6 rD (see Section 2) as
well as µiti/σi 6 µi 6 µ for all i, we obtain the simplified cost bound O(rDω(1 + log(µ))).

4.4. Change of order

Combining the above algorithms leads to an efficient change of order procedure, detailed in
Algorithm 7.

Algorithm 7 – ChangeOrder
Input:

• a monomial order ≺1 on K[X]n such that Xr ≺1 · · · ≺1 X1,
• a reduced ≺1-Gröbner basis G1 ⊆ K[X]n,
• a monomial order ≺2 on K[X]n.

Requirements:

• K[X]n/N has finite dimension D as a K-vector space, where N = 〈G1〉,
• H(〈lt≺1 (N)〉) holds.

Output:

• the reduced ≺2-Gröbner basis of N .
1. E = (ε1, . . . , εD), M = (M1, . . . , Mr)← MultiplicationMatrices(≺1,G1)
2. /* Build a matrix F such that SyzM(F) = N */

F← matrix in Kn×D

For 1 6 i 6 n:
If ci = ε j for some 1 6 j 6 D:

ith row of F← [0 · · · 0 1 0 · · · 0] ∈ K1×D with 1 at index j
Else: /* in this case ci − nf≺1 (ci) ∈ G1 */

ith row of F← vector in K1×D representing nf≺1 (ci) on the basis E
3. G2 ← SyzygyModuleBasis(≺2, M, F)
4. Return G2

As above concerning the computation of multiplication matrices, one may easily verify from
the input of Algorithm 7 whether the requirements hold. For simplicity, here we only use the
simplified cost bounds of the above results; better bounds may be obtained in particular cases.

Proposition 4.8. Algorithm 7 is correct and uses O(nDω−1 + rDω log(D)) operations in K.

Proof. According to Proposition 4.7, Step 1 uses O(rDω log(D)) operations in K and returns the
≺-monomial basis E of K[X]n/N and the multiplication matrices M with respect to E. To build
the matrix F ∈ Kn×D, Step 2 uses O(nD) operations; precisely, each normal form of a coordinate
vector in the Else statement costs at most D computations of the opposite of an element in K.
By Proposition 3.13, Step 3 uses O(nDω−1 + rDω log(D)) operations to compute the reduced ≺2-
Gröbner basis G2 of SyzM(F). Hence the overall cost bound. Proving correctness amounts to
showing that SyzM(F) = N , which directly follows from the construction of F and the fact that

32

ci − nf≺1 (ci) is in N :

(p1, . . . , pn) ∈ SyzM(F) ⇔
∑

16i6n
ci∈E

pici +
∑

16i6n
ci<E

pinf≺1 (ci) ∈ N

⇔
∑

16i6n

pici = (p1, . . . , pn) ∈ N .

References

[1] Alonso, M.E., Marinari, M.G., Mora, T., 2003. The Big Mother of all Dualities: Möller Algorithm. Communica-
tions in Algebra 31, 783–818. doi:10.1081/AGB-120017343.

[2] Auzinger, W., Stetter, H.J., 1988. An elimination algorithm for the computation of all zeros of a system of multi-
variate polynomial equations, in: Proceedings Numerical Mathematics 1988, Birkhäuser Basel, Basel. pp. 11–30.
doi:10.1007/978-3-0348-6303-2_2.

[3] Bayer, D., Stillman, M., 1987. A theorem on refining division orders by the reverse lexicographic order. Duke
Mathematical Journal 55, 321–328. doi:10.1215/S0012-7094-87-05517-7.

[4] Beckermann, B., 1992. A reliable method for computing M-Padé approximants on arbitrary staircases. J. Comput.
Appl. Math. 40, 19–42. doi:10.1016/0377-0427(92)90039-Z.

[5] Beckermann, B., Labahn, G., 1994. A uniform approach for the fast computation of matrix-type Padé approximants.
SIAM J. Matrix Anal. Appl. 15, 804–823. doi:10.1137/S0895479892230031.

[6] Beckermann, B., Labahn, G., 1997. Recursiveness in matrix rational interpolation problems. J. Comput. Appl.
Math. 77, 5–34. doi:10.1016/S0377-0427(96)00120-3.

[7] Beckermann, B., Labahn, G., 2000. Fraction-free computation of matrix rational interpolants and matrix gcds.
SIAM J. Matrix Anal. Appl. 22, 114–144. doi:10.1137/S0895479897326912.

[8] Berthomieu, J., Boyer, B., Faugère, J.C., 2015. Linear algebra for computing gröbner bases of linear recursive
multidimensional sequences, in: ISSAC’15, ACM, New York, NY, USA. pp. 61–68. doi:10.1145/2755996.
2756673.

[9] Berthomieu, J., Boyer, B., Faugère, J.C., 2017. Linear Algebra for Computing Gröbner Bases of Linear Recursive
Multidimensional Sequences. J. Symbolic Comput. 83, 36–67. doi:10.1016/j.jsc.2016.11.005.

[10] Berthomieu, J., Faugère, J.C., 2016. Guessing linear recurrence relations of sequence tuples and p-recursive se-
quences with linear algebra, in: ISSAC’16, ACM, New York, NY, USA. pp. 95–102. doi:10.1145/2930889.
2930926.

[11] Berthomieu, J., Faugère, J.C., 2018. A polynomial-division-based algorithm for computing linear recurrence rela-
tions, ACM, New York, NY, USA. pp. 79–86. doi:10.1145/3208976.3209017.

[12] Coppersmith, D., Winograd, S., 1990. Matrix multiplication via arithmetic progressions. J. Symbolic Comput. 9,
251–280. doi:10.1016/S0747-7171(08)80013-2.

[13] Eisenbud, D., 1995. Commutative Algebra: with a View Toward Algebraic Geometry. Graduate Texts in Mathe-
matics, Springer, New York, Berlin, Heildelberg. doi:10.1007/978-1-4612-5350-1.

[14] Faugère, J., Gaudry, P., Huot, L., Renault, G., 2013. Polynomial systems solving by fast linear algebra. CoRR
abs/1304.6039. URL: http://arxiv.org/abs/1304.6039.

[15] Faugère, J.C., Gaudry, P., Huot, L., Renault, G., 2014. Sub-cubic change of ordering for Gröbner basis: a proba-
bilistic approach, in: ISSAC’14, ACM, New York, NY, USA. pp. 170–177. doi:10.1145/2608628.2608669.

[16] Faugère, J.C., Gianni, P., Lazard, D., Mora, T., 1993. Efficient computation of zero-dimensional Gröbner bases by
change of ordering. Journal of Symbolic Computation 16, 329–344. doi:10.1006/jsco.1993.1051.

[17] Faugère, J.C., Mou, C., 2011. Fast algorithm for change of ordering of zero-dimensional gröbner bases with
sparse multiplication matrices, in: ISSAC’11, ACM, New York, NY, USA. pp. 115–122. doi:10.1145/1993886.
1993908.

[18] Faugère, J.C., Mou, C., 2017. Sparse FGLM algorithms. J. Symbolic Comput. 80, Part 3, 538–569. doi:10.1016/
j.jsc.2016.07.025.

[19] Fitzpatrick, P., 1997. Solving a Multivariable Congruence by Change of Term Order. J. Symbolic Comput. 24,
575–589. doi:10.1006/jsco.1997.0153.

[20] Galligo, A., 1974. A propos du théorème de préparation de Weierstrass, in: Fonctions de Plusieurs Variables
Complexes, Springer. pp. 543–579. doi:10.1007/BFb0068121.

[21] Giorgi, P., Jeannerod, C.P., Villard, G., 2003. On the complexity of polynomial matrix computations, in: ISSAC’03,
ACM. pp. 135–142. doi:10.1145/860854.860889.

33

http://dx.doi.org/10.1081/AGB-120017343
http://dx.doi.org/10.1007/978-3-0348-6303-2_2
http://dx.doi.org/10.1215/S0012-7094-87-05517-7
http://dx.doi.org/10.1016/0377-0427(92)90039-Z
http://dx.doi.org/10.1137/S0895479892230031
http://dx.doi.org/10.1016/S0377-0427(96)00120-3
http://dx.doi.org/10.1137/S0895479897326912
http://dx.doi.org/10.1145/2755996.2756673
http://dx.doi.org/10.1145/2755996.2756673
http://dx.doi.org/10.1016/j.jsc.2016.11.005
http://dx.doi.org/10.1145/2930889.2930926
http://dx.doi.org/10.1145/2930889.2930926
http://dx.doi.org/10.1145/3208976.3209017
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1007/978-1-4612-5350-1
http://arxiv.org/abs/1304.6039
http://dx.doi.org/10.1145/2608628.2608669
http://dx.doi.org/10.1006/jsco.1993.1051
http://dx.doi.org/10.1145/1993886.1993908
http://dx.doi.org/10.1145/1993886.1993908
http://dx.doi.org/10.1016/j.jsc.2016.07.025
http://dx.doi.org/10.1016/j.jsc.2016.07.025
http://dx.doi.org/10.1006/jsco.1997.0153
http://dx.doi.org/10.1007/BFb0068121
http://dx.doi.org/10.1145/860854.860889

[22] Hermite, C., 1893. Sur la généralisation des fractions continues algébriques. Annali di Matematica Pura ed
Applicata (1867-1897) 21, 289–308. doi:10.1007/BF02420446.

[23] Jeannerod, C.P., Neiger, V., Schost, E., Villard, G., 2016. Fast computation of minimal interpolation bases in Popov
form for arbitrary shifts, in: ISSAC’16, ACM. pp. 295–302. doi:10.1145/2930889.2930928.

[24] Jeannerod, C.P., Neiger, V., Schost, E., Villard, G., 2017. Computing minimal interpolation bases. J. Symbolic
Comput. 83, 272–314. doi:10.1016/j.jsc.2016.11.015.

[25] Jeannerod, C.P., Neiger, V., Villard, G., 2019. Fast computation of approximant bases in canonical form. J.
Symbolic Comput. In press. doi:10.1016/j.jsc.2019.07.011.

[26] Kailath, T., 1980. Linear Systems. Prentice-Hall.
[27] Kehrein, A., Kreuzer, M., Robbiano, L., 2005. An algebraist’s view on border bases, in: and Dickenstein, A.,

Emiris, I.Z. (Eds.), Solving Polynomial Equations: Foundations, Algorithms, and Applications. Springer, pp. 169–
202. doi:10.1007/b138957.

[28] Keller-Gehrig, W., 1985. Fast algorithms for the characteristic polynomial. Theoretical Computer Science 36,
309–317. doi:10.1016/0304-3975(85)90049-0.

[29] Kojima, C., Rapisarda, P., Takaba, K., 2007. Canonical forms for polynomial and quadratic differential operators.
Systems and Control Letters 56, 678–684. doi:10.1016/j.sysconle.2007.06.004.

[30] Le Gall, F., 2014. Powers of tensors and fast matrix multiplication, in: ISSAC’14, ACM. pp. 296–303. doi:10.
1145/2608628.2608664.

[31] Macaulay, F.S., 1902. Some formulae in elimination. Proceedings of the London Mathematical Society s1-35,
3–27. doi:10.1112/plms/s1-35.1.3.

[32] Macaulay, F.S., 1916. The Algebraic Theory of Modular Systems. Cambridge Tracts in Mathematics and Mathe-
matical Physics, Cambridge University Press.

[33] Mahler, K., 1968. Perfect systems. Composit. Math. 19, 95–166.
[34] Marinari, M.G., Möller, H.M., Mora, T., 1991. Gröbner bases of ideals given by dual bases, in: ISSAC’91, ACM,

New York, NY, USA. pp. 55–63. doi:10.1145/120694.120702.
[35] Marinari, M.G., Möller, H.M., Mora, T., 1993. Gröbner bases of ideals defined by functionals with an application

to ideals of projective points. Appl. Algebra Engrg. Comm. Comput. 4, 103–145. doi:10.1007/BF01386834.
[36] Möller, H.M., Buchberger, B., 1982. The construction of multivariate polynomials with preassigned zeros, in:

EUROCAM’82, Springer. pp. 24–31. doi:10.1007/3-540-11607-9_3.
[37] Mourrain, B., 1999. A new criterion for normal form algorithms, in: Applied Algebra, Algebraic Algo-

rithms and Error-Correcting Codes, Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 430–442. doi:10.1007/
3-540-46796-3_41.

[38] Neiger, V., 2016. Bases of relations in one or several variables: fast algorithms and applications. Ph.D. thesis.
École Normale Supérieure de Lyon. URL: https://tel.archives-ouvertes.fr/tel-01431413/.

[39] O’Keeffe, H., Fitzpatrick, P., 2002. Gröbner basis solutions of constrained interpolation problems. Linear Algebra
Appl. 351, 533–551. doi:10.1016/S0024-3795(01)00509-2.

[40] Padé, H., 1894. Sur la généralisation des fractions continues algébriques. Journal de Mathématiques Pures et
Appliquées , 291–330.

[41] Pardue, K., 1994. Nonstandard Borel-Fixed Ideals. Ph.D. thesis. Brandeis University.
[42] Paszkowski, S., 1987. Recurrence relations in Padé-Hermite approximation. J. Comput. Appl. Math. 19, 99–107.

doi:10.1016/0377-0427(87)90177-4.
[43] Popov, V.M., 1972. Invariant description of linear, time-invariant controllable systems. SIAM Journal on Control

10, 252–264. doi:10.1137/0310020.
[44] Sakata, S., 1990. Extension of the berlekamp-massey algorithm to n dimensions. Inform. and Comput. 84, 207–

239. doi:10.1016/0890-5401(90)90039-K.
[45] Sergeyev, A.V., 1987. A recursive algorithm for Padé-Hermite approximations. USSR Comput. Math. Math. Phys.

26, 17–22. doi:10.1016/0041-5553(86)90003-0.
[46] Storjohann, A., 2000. Algorithms for Matrix Canonical Forms. Ph.D. thesis. Swiss Federal Institute of Technology

– ETH. URL: https://cs.uwaterloo.ca/~astorjoh/diss2up.pdf.
[47] Sylvester, J.J., 1853. On a Theory of the Syzygetic Relations of Two Rational Integral Functions, Comprising an

Application to the Theory of Sturm’s Functions, and That of the Greatest Algebraical Common Measure. Philo-
sophical Transactions of the Royal Society of London 143, 407–548. doi:10.1098/rstl.1853.0018.

[48] Van Barel, M., Bultheel, A., 1991. The computation of non-perfect Padé-Hermite approximants. Numer. Algo-
rithms 1, 285–304. doi:10.1007/BF02142327.

[49] Van Barel, M., Bultheel, A., 1992. A general module theoretic framework for vector M-Padé and matrix rational
interpolation. Numer. Algorithms 3, 451–462. doi:10.1007/BF02141952.

34

http://dx.doi.org/10.1007/BF02420446
http://dx.doi.org/10.1145/2930889.2930928
http://dx.doi.org/10.1016/j.jsc.2016.11.015
http://dx.doi.org/10.1016/j.jsc.2019.07.011
http://dx.doi.org/10.1007/b138957
http://dx.doi.org/10.1016/0304-3975(85)90049-0
http://dx.doi.org/10.1016/j.sysconle.2007.06.004
http://dx.doi.org/10.1145/2608628.2608664
http://dx.doi.org/10.1145/2608628.2608664
http://dx.doi.org/10.1112/plms/s1-35.1.3
http://dx.doi.org/10.1145/120694.120702
http://dx.doi.org/10.1007/BF01386834
http://dx.doi.org/10.1007/3-540-11607-9_3
http://dx.doi.org/10.1007/3-540-46796-3_41
http://dx.doi.org/10.1007/3-540-46796-3_41
https://tel.archives-ouvertes.fr/tel-01431413/
http://dx.doi.org/10.1016/S0024-3795(01)00509-2
http://dx.doi.org/10.1016/0377-0427(87)90177-4
http://dx.doi.org/10.1137/0310020
http://dx.doi.org/10.1016/0890-5401(90)90039-K
http://dx.doi.org/10.1016/0041-5553(86)90003-0
https://cs.uwaterloo.ca/~astorjoh/diss2up.pdf
http://dx.doi.org/10.1098/rstl.1853.0018
http://dx.doi.org/10.1007/BF02142327
http://dx.doi.org/10.1007/BF02141952

	Introduction
	Notations and definitions
	Computing bases of syzygies via linear algebra
	Monomial basis as the rank profile of a multi-Krylov matrix
	Computing the monomial basis
	Fast computation of the basis of syzygies
	Simultaneous computation of normal forms of monomials
	Computing reduced Gröbner bases of syzygies

	Computing multiplication matrices from the Gröbner basis
	Overview of the algorithm
	Algorithm for Krylov evaluation
	Computing the multiplication matrices
	Change of order

