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ABSTRACT
Let f 1, . . . , fm be elements in a quotient Rn/N which has finite
dimension as a K-vector space, where R = K[X1, . . . ,Xr ] and N
is an R-submodule of Rn . We address the problem of computing a
Gröbner basis of the module of syzygies of (f1, . . . , fm ), that is, of
vectors (p1, . . . ,pm ) ∈ Rm such that p1 f1 + · · · + pm fm = 0.

An iterative algorithm for this problem was given by Marinari,
Möller, and Mora (1993) using a dual representation of Rn/N as
the kernel of a collection of linear functionals. Following this view-
point, we design a divide-and-conquer algorithm, which can be
interpreted as a generalization to several variables of Beckermann
and Labahn’s recursive approach for matrix Padé and rational inter-
polation problems in univariate contexts. To highlight the interest
of this method, we focus on the specific case of bivariate Padé
approximation and show that it improves upon the best known
complexity bounds.

KEYWORDS
Syzygies; Gröbner basis; Padé approximation; divide and conquer
algorithm.

1 INTRODUCTION
Context. Inwhat follows, we consider the ringR = K[X1, . . . ,Xr ]

of r -variate polynomials over an abstract base field K and a R-
submodule N ⊂ Rn such that Rn/N has finite dimension D as a
K-vector space. Then, for a given vector (f1, . . . , fm ) ∈ (R

n )m seen
as a matrix F ∈ Rm×n , this paper studies algorithms for computing
a Gröbner basis of the module of syzygies

SyzN(F ) = {p ∈ Rm | pF ∈ N},

where p is seen as a 1 ×m row vector. Note that Rm/SyzN(F ) also
has finite dimension, at most D, as a K-vector space.

Following a path of work pioneered by Marinari, Möller and
Mora [1, 20, 22], we focus on a specific situation where N is de-
scribed using duality. That is,N is known throughD linear function-
als φ j : Rn → K such that N = ∩1≤j≤D ker(φ j ). In this context, it
is customary to make an assumption equivalent to the following:
Ni = ∩1≤j≤i ker(φi ) is a R-module, for 1 ≤ i ≤ D; see for example
[20, Algo. 2] [13, Eqn. (4.1)] [25, Eqn. (5)] for such assumptions and
related algorithms. Namely, this assumption allows one to design
iterative algorithms which compute bases of SyzNi (F ) iteratively
for increasing i , until reaching i = D and obtaining the sought basis
of SyzN(F ). We remark that [20] focuses onm = n = 1 and F = [1],
in which case SyzNi (F ) = Ni , but the algorithms in that reference
directly extend to the casem ≥ 1 and F ∈ Rm×n .

Ideal of points and Padé approximation. One particular case of
interest is when N is the vanishing ideal of a given set of points:

n = 1, and N is the ideal of all polynomials in R which vanish
at distinct points α 1, . . . ,αD ∈ K

r . Here, one takes the linear
functionals for evaluation: φ j : f ∈ R 7→ f (α j ) ∈ K. The question
is, given the points,m polynomials as F ∈ Rm×1, and a monomial
order ≼, to compute a ≼-Gröbner basis of the set of vectors p such
that pF vanishes at all the points. Whenm = 1 and F = [1], this
means computing a ≼-Gröbner basis of the ideal of the points, as
studied in [20, 21].

Another case is that of (multivariate) Padé approximation and
its extensions, as studied in [12–14, 25], as well as in [6] in the
context of the computation of multidimensional linear recurrence
relations. The basic setting is for n = 1, with N an ideal of the
form ⟨Xd1

1 , . . . ,X
dr
r ⟩, and F = [ f

−1 ] for some given f ∈ R. Then,
elements of SyzN(F ) are vectors (q,p) ∈ R2 such that f = p/q mod
Xd1

1 , . . . ,X
dr
r . Here, the D = d1 · · ·dr linear functionals correspond

to the coefficients of multidegree less than (d1, . . . ,dr ); note that
not all orderings of these functionals satisfy the assumption above.

For these two situations, as well as some extensions of them, the
fastest known algorithms rely on linear algebra and have a cost
bound of O(mD2 + rD3) operations in K [13, 20]; this was recently
improved in [23, Thm. 2.13] and [24] to O(mDω−1 + rDω log(D))
where ω < 2.38 is the exponent of matrix multiplication [8, 19].

The univariate case. This problem has received attention in the
case of a single variable (r = 1) notably thanks to the numerous
applications of Hermite-Padé approximation and matrix rational in-
terpolation, which are the two situations described above. Iterative
algorithms were given in [2, 4, 28] and can be seen as univariate
analogues of [20, Algo. 2] and [13, Algo. 4.7].

A breakthrough divide and conquer approach was designed by
Beckermann and Labahn in [3, Algo. SPHPS], allowing one to take
advantage of univariate polynomial matrix multiplication while
previous iterative algorithms only relied on naive linear algebra
operations. This led to a line of work [15–17, 27, 29] which consis-
tently improved the incorporation of fast linear algebra and fast
polynomial multiplication in this divide and conquer framework,
culminating in cost bounds for rational interpolation and Hermite-
Padé approximation which are close asymptotically to the size of
the problem (if ω = 2, these cost bounds are quasi-linear in the
size of the input instance). To the best of our knowledge, no similar
divide and conquer technique has been developed in multivariate
settings.

Contribution. We propose a divide and conquer algorithm for
the problem of computing a ≼-Gröbner basis of SyzN(F ) in the
multivariate case. This is based on the iterative algorithms in [13,
20], observing that each step of the iteration can be interpreted as a
left multiplication by a matrix which has a specific shape, which we
call elementary Gröbner basis (see Section 3). The new algorithm
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reorganizes these matrix products through a divide and conquer
strategy, and thus groups several products by elementary Gröbner
bases into a single multivariate polynomial matrix multiplication.

To illustrate the interest of this new approach, we specialize it
to multivariate matrix Padé approximation and derive complexity
bounds for this case. We obtain the next result, which is a particular
case of Proposition 5.5.

Theorem 1.1. For R = K[X ,Y ], let f1, . . . , fm ∈ R, and let ≼ be
a monomial order on R. Then one can compute a minimal ≼-Gröbner
basis of the module of Hermite-Padé approximants

{(p1, . . . ,pm ) ∈ R
m | p1 f1 + · · · + pm fm = 0 mod ⟨Xd ,Yd ⟩}

using O˜(mωdω+2) operations in K, where O˜(·) means that polylog-
arithmic factors are omitted.

In this case the vector space dimension is D = d2. Thus, as noted
above and to the best of our knowledge, the fastest previously
known algorithm for this task has a cost of O˜(md2(ω−1) + d2ω )
operations in K and does not exploit fast polynomial multiplication.

Perspectives. The base case of our divide and conquer algorithm
concerns the caseN = ker(φ) of a single linear functional, detailed
in Section 3; we thus work in a vector space Rn/N of dimension 1.
A natural perspective is to improve the efficiency of our algorithm
thanks to a better exploitation of fast linear algebra by grouping
several base cases together; using fast linear algebra to accelerate
the base case was a key strategy in obtaining efficient univariate
algorithms [15, 17]. In the context of Padé approximation, where
one can introduce the variables one after another, one could also
try to incorporate known algorithms for the univariate case

One reason why these improvements are not straightforward to
do in the multivariate case is that there is no direct generalization
of a property at the core of the correctness of univariate algorithms.
This property (see [18, Lem. 2.4]) states that if P1 is a ≼1-Gröbner
basis of N1 ⊃ N and P2 is a ≼2-Gröbner basis of SyzN(P1), then
P2P1 is a ≼1-Gröbner basis ofN , provided that the order ≼2 is well
chosen (a Schreyer order for P1 and ≼1, see Section 2.4). We give
a counterexample to such a property in Example 3.6. It remains
open to find a similar general property that would help to design
algorithms based on matrix multiplication in the multivariate case.

Another difficulty arises in analyzing the complexity of our di-
vide and conquer scheme in contexts where the number of elements
in the sought Gröbner basis is not well controlled, such as rational
interpolation. Indeed, this number corresponds to the size of the
matrices manipulated in the algorithm, and therefore is directly re-
lated to the cost of the matrix multiplication. In fact, the worst-case
number of elements is often very pessimistic compared to what is
observed in a generic situation, and also depends on the monomial
order. Therefore future work involves investigating complexity
bounds for generic input.

2 PRELIMINARIES
2.1 Notation
Here and hereafter, the coordinate vector with 1 at index i is denoted
by ei ; its dimension is inferred from the context. A monomial in
Rm is an element of the form νei for some 1 ≤ i ≤ m and some
monomial ν in R; i is called the support of νei . We denote by

Mon(Rm ) the set of all monomials in Rm . A term is a monomial
multiplied by a nonzero constant from K. The elements of Rm are
K-linear combinations of monomials in Mon(Rm ) and are called
polynomials.

Elements in R are written in regular font (e.g. monomials µ and
ν and polynomials f and p), while elements in Rm are boldfaced
(e.g. monomials µ and ν and polynomials f and p). Vectors or
(ordered) lists of polynomials in Rm are seen as matrices, written
in boldfaced capital letters; precisely, (p1, . . . ,pk ) ∈ (R

m )k is seen
as a matrix P ∈ Rk×m whose ith row is pi . In particular, in what
follows the default orientation is to see an element of Rm as a row
vector in R1×m .

For the sake of completeness, we recall below in Sections 2.2 to 2.4
some classical definitions from commutative algebra concerning
submodules of Rm ; we assume familiarity with the corresponding
notions concerning ideals of R. For a more detailed introduction
the reader may refer to [9–11].

2.2 Monomial orders for modules
A monomial order on Rm is a total order ≼ on Mon(Rm ) such
that, for ν ∈ Mon(R) and µ1, µ2 ∈ Mon(Rm ) with µ1 ≼ µ2, one
has µ1 ≼ νµ1 ≼ νµ2; hereafter µ1 ≺ µ2 means that µ1 ≼ µ2 and
µ1 , µ2. For p ∈ Rm , its ≼-leading monomial is denoted by lm≼(p)
and is the largest of its monomials with respect to the order ≼ (we
take the convention lm≼(0) = 0 for 0 ∈ Rn the zero element). We
extend this notation to collections of polynomials P ⊂ Rm with
lm≼(P) = {lm≼(p) : p ∈ P}, and to matrices P ∈ Rk×m with
lm≼(P) the k ×m matrix whose ith row is the ≼-leading monomial
of the ith row of P .

Example 2.1. The usual lexicographic comparison is a monomial
order on K[X ,Y ]: XaYb ≼lex Xa′Yb

′ if and only if a < a′ or (a =
a′ and b < b ′). It can be used to define a monomial order on
K[X ,Y ]2, called the term-over-position lexicographic order: for
µ,ν in Mon(K[X ,Y ]) and i, j in {1, 2}, µei ≼

top
lex νe j if and only if

µ ≼lex ν or (µ = ν and i < j). □

We refer to [9, Sec. 1.§2 and 5.§2] for other classical monomial or-
ders, such as the degree reverse lexicographical order on R, and the
construction of term-over-position and position-over-term orders
on Rm from orders on R.

A monomial order ≼ on Rm induces a monomial order ≼i on
R for each 1 ≤ i ≤ m, by restricting to the ith coordinate: for
ν1,ν2 ∈ Mon(R), ν1 ≼i ν2 if and only if ν1ei ≼ ν2ei . In particular,
lm≼(qp) is a multiple of lm≼(p) for q ∈ R and p ∈ Rm :

Lemma 2.2. Let ı̄ be the support of lm≼(p). Then lm≼(qp) =
lm≼ı̄ (q)lm≼(p).

Proof. Write q =
∑

ℓ νℓ and p =
∑
i, j µi jei for terms µi j ,νℓ in

R. Then qp =
∑

ℓ,i, j νℓµi jei , i.e. the terms of qp are all those of
the form νℓµi jei . Now let ℓ̄ and ȷ̄ be such that lm≼ı̄ (q) = νℓ̄ and
lm≼(p) = µı̄ ȷ̄eı̄ . Then νℓ ≺ı̄ νℓ̄ for all ℓ , ℓ̄, which implies that
νℓµı̄ ȷ̄ ≺ı̄ νℓ̄µı̄ ȷ̄ and thus, by definition of ≼ı̄ , that νℓµı̄ ȷ̄eı̄ ≺ νℓ̄µı̄ ȷ̄eı̄ .
On the other hand, µi jei ≺ µı̄ ȷ̄eı̄ holds for all (i, j) , (ı̄, ȷ̄), hence
νℓµi jei ≺ νℓµı̄ ȷ̄eı̄ . Therefore we obtain νℓµi jei ≼ νℓ̄µı̄ ȷ̄eı̄ for all
(i, j, ℓ), with equality only if (i, j, ℓ) = (ı̄, ȷ̄, ℓ̄). This proves that
lm≼(qp) = νℓ̄µı̄ ȷ̄eı̄ = lm≼ı̄ (q)lm≼(p). □
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2.3 Gröbner bases
As a consequence of Hilbert’s Basis Theorem, any R-submodule
of Rm is finitely generated [11, Prop. 1.4]. For a (possibly infi-
nite) collection of polynomials P ⊂ Rm , we denote by ⟨P⟩ the
R-submodule of Rm generated by the elements of P. Similarly,
for a matrix P in Rk×m , ⟨P⟩ stands for the R-submodule of Rm
generated by its rows, that is, ⟨P⟩ = {qP | q ∈ Rk }.

For a given submoduleM ⊂ Rm , the ≼-leading module ofM is
the module ⟨lm≼(M)⟩ generated by the leading monomials of the
elements ofM. Then, a matrix P in Rk×m whose rows are inM is
said to be a ≼-Gröbner basis ofM if

⟨lm≼(M)⟩ = ⟨lm≼(P)⟩.
In this case we have ⟨P⟩ =M (see [9, Ch.5, Prop.2.7]), hence we
will often omit the reference to the ambient moduleM and just
say that P is a ≼-Gröbner basis.

A ≼-Gröbner basis P , whose rows are (p1, . . . ,pk ), is said to be
minimal if lm≼(pi ) is not divisible by lm≼(p j ), for any j , i . It is said
to be reduced if it is minimal and, for all 1 ≤ i ≤ k , lm≼(pi ) is monic
and none of the terms of pi is divisible by any of {lm≼(p j ) | j , i}.
Given a monomial order ≼ and a R-submoduleM ⊂ Rm , there is a
reduced ≼-Gröbner basis ofM and it is unique (up to permutation
of its elements) [11, Sec. 15.2].

Example 2.3. The syzygy module
M = {(p1,p2) ∈ K[X ,Y ]

2 | p1 − p2 ∈ ⟨X ,Y ⟩} = Syz⟨X ,Y ⟩([
1
−1 ])

is generated by (Xe1,Ye1,e1 + e2), that is, by the rows of

P =


X 0
Y 0
1 1

 ∈ K[X ,Y ]3×2.

Furthermore, P is the reduced ≼top
lex -Gröbner basis ofM.

2.4 Schreyer orders
In the context of the computation of bases of syzygies it is generally
beneficial to use a specific construction of monomial orders, as first
highlighted by Schreyer [26] (see also [11, Th. 15.10] and [5]).

In the univariate case, the notion of shifted degree plays the same
role as Schreyer orders and is ubiquitous in the computation of bases
of modules of syzygies [15, 16, 29]; an equivalent notion of defects
was also used earlier for M-Padé and Hermite-Padé approximation
algorithms [2, 3]. Specifically, this provides a monomial order on
Rk constructed from a monomial order ≼ on Rm and from the
leading monomials of a ≼-Gröbner basis in Rm of cardinality k .

Definition 2.4. Let ≼ be a monomial order on Rm , and let L =
(µ1, . . . , µk ) be a list of monomials of Rm . A Schreyer order for ≼
and L is any monomial order on Rk , denoted by ≼L , such that for
ν1ei ,ν2e j ∈ Mon(Rk ), if ν1µi ≺ ν2µ j then ν1ei ≼L ν2e j .

As noted above, we often have L = lm≼(P) for a list of polynomials
P ∈ Rk×m (which is typically a ≼-Gröbner basis).

Remark that Definition 2.4 uses a strict inequality, and implies
that if ν1ei ≼L ν2e j , then ν1µi ≺ ν2µ j or ν1µi = ν2µ j . In particular,
for ν1 = ν2 = 1 and assuming µi , µ j for all i , j (for instance, if
L = lm≼(P) for a minimal ≼-Gröbner basis P ), then ei ≼L e j if and
only if µi ≺ µ j .

Furthermore, for every ≼ and L, a corresponding Schreyer order
exists and can be constructed explicitly: for example, ν1ei ≼L ν2e j
if and only if

ν1µi ≺ ν2µ j or (ν1µi = ν2µ j and i < j).

This specific Schreyer order is the one used in the algorithms in
this paper, where we write

≼L ← SchreyerOrder(≼,L)
to mean that the algorithm constructs it from ≼ and L.

3 BASE CASE OF THE DIVIDE AND
CONQUER SCHEME

In this section we present the base case of our main algorithm.
It constructs Gröbner bases for syzygies modulo the kernel of a
single linear functional, which we call elementary and describe
in Section 3.1. Further in Section 3.2 we state properties that are
useful to prove the correctness of the base case algorithm given in
Section 3.3. Precisely, this correctness is written having in mind
the design of an algorithm handling several functionals iteratively
by repeating this basic procedure and multiplying the elementary
bases together.

3.1 Elementary Gröbner basis
If I ⊂ R is an ideal such that R/I has dimension 1 as a K-vector
space, then I is maximal: it is of the form ⟨X1 − α1, . . . ,Xr − αr ⟩
for some point (α1, . . . ,αr ) ∈ Kr , which directly yields the reduced
Gröbner basis of I, for any monomial order. In this paper, we
will make use of a similar property for submodules of Rm ; such
submodules have Gröbner bases of the form

E =


Iπ−1 λ1

X − α
λ2 Im−π

 ∈ R(m+r−1)×m , (1)

for the vector of variables X = [X1 · · · Xr ]T and vectors of values
α = [α1 · · · αr ]T ∈ Kr×1, λ1 = [λ1 · · · λπ−1]T ∈ K(π−1)×1, and
λ2 = [λπ+1 · · · λm ]T ∈ K(m−π )×1. In what follows, such matrices
are called elementary Gröbner bases.

Theorem 3.1. LetM be anR-submodule ofRm such thatRm/M
has dimension 1 as a K-vector space, then for any monomial order
≼ on Rm , the reduced ≼-Gröbner basis E ofM is as in Eq. (1) with
λi = 0 if ei ≺ eπ for all i , π . Conversely, any matrix E as in Eq. (1)
defines a submoduleM = ⟨E⟩ such that Rm/M has dimension 1 as a
K-vector space, and E is a reduced ≼-Gröbner basis for any monomial
order ≼ such that λi = 0 if ei ≺ eπ for all i , π .

Proof. By [11, Thm. 15.3], a basis of Rm/M as aK-vector space
is given by the monomials not in lm≼(M); since the dimension of
Rm/M as a K-vector space is 1, there exists a unique monomial
which is not in lm≼(M). Thus there is a unique π ∈ {1, . . . ,m}
such that

lm≼(E) = (e1, . . . ,eπ−1,X1eπ , . . . ,Xreπ ,eπ+1, . . . ,em ). (2)
By definition of reduced Gröbner bases, the jth polynomial in E is
the sum of the jth element of lm≼(E) and a constant multiple of eπ ;
hence E has the form in Eq. (1). In addition, for i , π , the equality
lm≼(ei + λieπ ) = ei implies that λi = 0 whenever ei ≺ eπ .
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For the converse, let ≼ be such that λi = 0 if ei ≺ eπ for all
i , π (such an order exists since there are orders for which eπ
is the smallest coordinate vector). Then lm≼(E) is as in Eq. (2); in
particular, the monomials in ⟨lm≼(E)⟩ are precisely Mon(Rm ) \
{eπ }. It follows that either eπ ∈ lm≼(M) and ⟨lm≼(M)⟩ = Rm ,
or eπ < lm≼(M) and ⟨lm≼(M)⟩ = ⟨lm≼(E)⟩. In the second case
E is a reduced ≼-Gröbner-basis and Rm/M has dimension 1 by
[11, Thm. 15.3]. To conclude the proof, we show that eπ ∈ lm≼(M)
cannot occur; by contradiction, suppose there exists q ∈ M such
that lm≼(q) = eπ . Since the rows of E generateM, we can write
q = (q1, . . . ,qπ−1,p1, . . . ,pr ,qπ+1, . . . ,qm )E

=
©«q1, . . . ,qπ−1,

∑
i,π

qiλi +
r∑
j=1
(X j − α j )pj ,qπ+1, . . . ,qm

ª®¬ .
For i , π such that eπ ≺ ei , any nonzero term of qiei would
appear in q and be greater than eπ , hence qi = 0. Moreover, for
i , π such that ei ≺ eπ we have λi = 0. Thus, considering the π th
component of q yields the equality

1 =
∑
i,π

qiλi +
r∑
j=1
(X j − α j )pj =

r∑
j=1
(X j − α j )pj

which is a contradiction since 1 < ⟨X1 − α1, . . . ,Xr − αr ⟩. □

Remark that in the module case (m ≥ 2) the reduced ≼-Gröbner
basis depends on the order ≼, more precisely on how the ei ’s are
ordered by ≼. For instance, the matrix in Example 2.3 is a reduced
≼-Gröbner basis for every order such that e1 ≼ e2, whereas for
orders such that e2 ≼ e1 the reduced ≼-Gröbner basis of the same
module is

E =


1 1
0 X
0 Y

 ∈ K[X ,Y ]3×2.

3.2 Multiplication by elementary Gröbner basis
Let ≼ be a monomial order onRm and let P = (p1, . . . ,pk ) ∈ R

k×m

be a ≼-Gröbner basis. In this section, we show conditions on an
elementary Gröbner basis E to ensure that EP is a ≼-Gröbner basis.

We write L = (µ1, . . . , µk ) for lm≼(P), that is, µi = lm≼(pi ) for
1 ≤ i ≤ k . Let ≼L be a Schreyer order for ≼ and P , and consider a
reduced ≼L-Gröbner basis E ∈ R(k+r−1)×k which has the form in
Eq. (1); thus

EP = (p1 + λ1pπ , . . . ,pπ−1 + λπ−1pπ ,

(X1 − α1)pπ , . . . , (Xr − αr )pπ ,

λπ+1pπ + pπ+1, . . . , λkpπ + pk )

which is in R(k+r−1)×m . We will show that, under suitable assump-
tions, EP is a ≼-Gröbner basis; the next lemmas use the above
notation. We start by describing the leading terms of EP .

Lemma 3.2. If µi , µπ for all i , π , then

lm≼(EP) = lm≼L (E)L
= (µ1, . . . , µπ−1,X1µπ , . . . ,Xr µπ , µπ+1, . . . , µk ).

Proof. First, lm≼((X j − α j )pπ ) = X jµπ for 1 ≤ j ≤ r . Next we
claim that lm≼(pi + λipπ ) = µi for all i , π . If λi = 0, the identity
is obvious. If λi , 0, then eπ ≼L ei (see Section 3.1), and from

the definition of a Schreyer order and the assumption µπ , µi , we
deduce µπ ≺ µi and hence lm≼(pi + λipπ ) = µi . □

Next, we characterize the fact that EP generates a submodule
which differs from the one generated by P .

Lemma 3.3. If µi , µπ for all i , π , then

⟨EP⟩ , ⟨P⟩ ⇔ pπ < ⟨EP⟩ ⇔ µπ < ⟨lm≼(⟨EP⟩)⟩.

Proof. First, remark that ⟨EP⟩ = ⟨P⟩ ⇒ pπ ∈ ⟨EP⟩ ⇒ µπ ∈
⟨lm≼(⟨EP⟩)⟩ is obvious; thus, to conclude the proof it remains
to show that ⟨EP⟩ = ⟨P⟩ ⇐ µπ ∈ ⟨lm≼(⟨EP⟩)⟩. Suppose that
µπ ∈ ⟨lm≼(⟨EP⟩)⟩. Then, since µi ∈ ⟨lm≼(⟨EP⟩)⟩ for all i , π
by Lemma 3.2, we have lm≼(P) ⊂ ⟨lm≼(⟨EP⟩)⟩, hence ⟨lm≼(P)⟩ ⊂
⟨lm≼(⟨EP⟩)⟩. Furthermore, recall that ⟨lm≼(P)⟩ = ⟨lm≼(⟨P⟩)⟩ since
P is a ≼-Gröbner basis, and that ⟨lm≼(⟨EP⟩)⟩ ⊂ ⟨lm≼(⟨P⟩)⟩ since
⟨EP⟩ ⊂ ⟨P⟩: we obtain ⟨lm≼(⟨P⟩)⟩ = ⟨lm≼(⟨EP⟩)⟩. Then, [11,
Lemma 15.5] shows that ⟨EP⟩ = ⟨P⟩. □

For example, if P is aminimal ≼-Gröbner basis, then the assump-
tion in the previous lemma is satisfied. Example 3.6 below exhibits
a case where P is a minimal ≼-Gröbner basis and pπ does belong to
⟨EP⟩. In that case, ⟨EP⟩ = ⟨P⟩ and EP is not a Gröbner basis since
µπ is in ⟨lm≼(⟨EP⟩)⟩ but not in ⟨lm≼(EP)⟩.

Lemma 3.4. If µi , µπ for all i , π and ⟨EP⟩ , ⟨P⟩, then EP is
a ≼-Gröbner basis.

Proof. Suppose by contradiction that EP is not a ≼-Gröbner
basis. Then there exists a nonzero h ∈ ⟨EP⟩ such that lm≼(h) <
⟨lm≼(EP)⟩, that is, by Lemma 3.2, lm≼(h) is not divisible by any of
the elements µi for i , π and X jµπ for 1 ≤ j ≤ r . On the other
hand, lm≼(h) is in ⟨lm≼(⟨EP⟩)⟩ and therefore in ⟨lm≼(P)⟩, hence
lm≼(h) is divisible by at least one µi , 1 ≤ i ≤ k . These divisibility
constraints lead to lm≼(h) = µπ , which implies µπ ∈ ⟨lm≼(⟨EP⟩)⟩.
From Lemma 3.3 one deduces ⟨EP⟩ = ⟨P⟩, which is absurd. □

Corollary 3.5. Assume that ⟨EP⟩ , ⟨P⟩ and that P is a minimal
≼-Gröbner basis. Let j1 < · · · < jℓ be the indices j ∈ {1, . . . , r } such
that X jµπ < ⟨µi , i , π ⟩. Then, the submatrix

Q =



Iπ−1 λ1
X j1 − α j1
...

X jℓ − α jℓ
λ2 Im−π


∈ R(k+ℓ−1)×k (3)

of E is such thatQP is a minimal ≼-Gröbner basis of ⟨EP⟩.

Proof. SinceP is minimal, µi , µπ for all i , π . Then, Lemma 3.4
ensures that EP is a ≼-Gröbner basis and Lemma 3.2 gives

lm≼(QP) = (µ1, . . . , µπ−1,X j1µπ , . . . ,X jℓµπ , µπ+1, . . . , µk ).

By construction of j1, . . . , jℓ , one has ⟨lm≼(QP)⟩ = ⟨lm≼(EP)⟩,
which implies
⟨lm≼(⟨EP⟩)⟩ = ⟨lm≼(EP)⟩ = ⟨lm≼(QP)⟩

⊂ ⟨lm≼(⟨QP⟩)⟩ ⊂ ⟨lm≼(⟨EP⟩)⟩.
Hence ⟨lm≼(QP)⟩ = ⟨lm≼(⟨QP⟩)⟩, andQP is a minimal ≼-Gröbner
basis. Moreover, by [11, Lem. 15.5], ⟨QP⟩ ⊂ ⟨EP⟩ and ⟨lm≼(⟨QP⟩)⟩ =
⟨lm≼(⟨EP⟩)⟩ imply that ⟨QP⟩ = ⟨EP⟩. □
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Example 3.6. Consider the case R = K[X ,Y ] and m = 1. Let
P = [ X

Y+1 ] ∈ R
2×1, which is the reduced ≼1-Gröbner basis of

⟨X ,Y +1⟩ for anymonomial order ≼1 on Mon(R). Let also E ∈ R3×2

whose rows are (Xe1,Ye1,e2); according to Theorem 3.1, E is a
reduced ≼2-Gröbner basis for any monomial order ≼2 on Mon(R2).
Now, the product EP ∈ R3×1 has entries X 2, XY , and Y + 1. Thus,
⟨lm≼3 (EP)⟩ = ⟨X

2,XY ,Y ⟩ = ⟨X 2,Y ⟩ for any monomial order ≼3
on Mon(R). On the other hand, ⟨EP⟩ contains X = X (Y + 1) − XY ,
hence ⟨lm≼3 (EP)⟩ , ⟨lm≼3 (⟨EP⟩)⟩, which means that EP is not a
≼3-Gröbner basis.

3.3 Algorithm
We now describe Algorithm Syzygy_BaseCase, which will serve
as the base case of the divide and conquer scheme.

Algorithm 1 Syzygy_BaseCase(φ,G, ≼,L)
Input:

• a linear functional φ : Rn → K,
• a matrixG in Rk×n with rows д1, . . . ,дk ∈ R

n ,
• a monomial order ≼ on Rm ,
• a list K = (µ1, . . . , µk ) of monomials in Mon(Rm ).

Output:
• a matrixQ in R(k+ℓ−1)×k for some ℓ ∈ {0, . . . , r },
• a list L of k + ℓ − 1 monomials in Mon(Rk ).

1: (υ1, . . . ,υk ) ← (φ(д1), . . . ,φ(дk )) ∈ K
k

2: if (υ1, . . . ,υk ) = (0, . . . , 0) then return (Ik ,K)
3: ≼K ← SchreyerOrder(≼,K)
4: π ← arg min≼K {ei | 1 ≤ i ≤ k,υi , 0} ▷ the index i such that

υi , 0 which minimizes e i with respect to ≼K
5: {j1 < · · · < jℓ} ← {j ∈ {1, . . . , r } | X jµπ < ⟨µi , i , π ⟩}
6: α js ← φ(X jsдπ )/υπ for 1 ≤ s ≤ ℓ
7: λi ← −υi/υπ for 1 ≤ i < π and π < i ≤ k
8: Q ← matrix in R(k+ℓ−1)×k as in Eq. (3)
9: L← (µ1, . . . , µπ−1,X j1µπ , . . . ,X jℓµπ , µπ+1, . . . , µk )
10: return (Q,L)

Theorem 3.7. Let N ⊂ Rn be an R-submodule, let F ∈ Rm×n ,
and let P ∈ Rk×m be a minimal ≼-Gröbner basis of SyzN(F ) for some
monomial order ≼ on Rm . Assume that the input of Algorithm 1
is such that ker(φ) ∩ N is an R-module, G = PF , and lm≼(P) =
(µ1, . . . , µk ). Then Algorithm 1 returns (Q,L) such that QP is a
minimal ≼-Gröbner basis of Syzker(φ)∩N(F ) and L = lm≼(QP).

Proof. If (φ(д1), . . . ,φ(дk )) = (0, . . . , 0), thenAlgorithm 1 stops
at Line 2 and returnsQ = Ik andK . ThusQP = P , hence by assump-
tion L = K = lm≼(P) = lm≼(QP), andQP is a minimal ≼-Gröbner
basis of SyzN(F ); besides, the identity SyzN(F ) = Syzker(φ)∩N(F )
is easily deduced from (φ(д1), . . . ,φ(дk )) = (0, . . . , 0).

In the rest of the proof, assume (φ(д1), . . . ,φ(дk )) , (0, . . . , 0).
Define E ∈ R(k+r−1)×k as in Eq. (1) with π and λi as in Algorithm 1
and α j = φ(X jдπ )/υπ for 1 ≤ j ≤ r ; in particular, Q computed at
Line 8 is formed by a subset of the rows of E.

First, E is a ≼K -Gröbner basis according to Theorem 3.1, since
by definition of π and λi one gets the implications ei ≼K eπ ⇒
υi = 0⇒ λi = 0, for i , π .

Next, we claim that ⟨E⟩ = Syzker(φ)∩N(G). Indeed, the rows of
PF are in N , and thus so are those of EG = EPF . Moreover, by
choice of π and λi the rows of EG are in ker(φ), since for i , π
one has φ((pi + λipπ )F ) = φ(дi + λiдπ ) = υi + λiυπ = 0 and
for 1 ≤ j ≤ r one has φ((X j − α j )pπ F ) = φ((X j − α j )дπ ) =
φ(X jpπ ) − α jυπ = 0. Therefore the rows of EG are in ker(φ) ∩ N ,
that is, ⟨E⟩ ⊂ Syzker(φ)∩N(G). To prove the reverse inclusion, re-
call from Theorem 3.1 that ⟨E⟩ has codimension 1 in Rk and hence
Syzker(φ)∩N(G) is either ⟨E⟩ or Rk . Since

0 , υπ = φ(дπ ) = φ(pπ F ) = φ(eπ PF ) = φ(eπG)

one has that eπ < Syzker(φ)∩N(G), hence Syzker(φ)∩N(G) = ⟨E⟩.
It follows that ⟨EP⟩ = Syzker(φ)∩N(F ). Indeed, the rows of EPF

are in ker(φ) ∩N as noted above, and thus ⟨EP⟩ ⊂ Syzker(φ)∩N(F ).
Now let p ∈ Syzker(φ)∩N(F ); thus in particular p ∈ SyzN(F ), and
p = qP for some q ∈ Rk . Then pF = qPF = qG ∈ ker(φ) ∩ N ,
hence q ∈ Syzker(φ)∩N(G) = ⟨E⟩, and therefore p ∈ ⟨EP⟩.

Now, φ(pπ F ) , 0 implies pπ < Syzker(φ)∩N(F ) = ⟨EP⟩. Thus
Lemma 3.3 ensures ⟨EP⟩ , ⟨P⟩, and finally Corollary 3.5 states
that QP is a minimal ≼-Gröbner basis of ⟨EP⟩ = Syzker(φ)∩N(F ).
Besides Lemma 3.2 yields lm≼(QP) = lm≼K (Q)K = L. □

4 DIVIDE AND CONQUER ALGORITHM
Repeating the basic procedure described in Section 3.3 iteratively,
we obtain an algorithm for syzygy basis computation when N
is an intersection of kernels of linear functionals with a specific
property (see Eq. (4)). This algorithm is similar to [20, Algo. 2] and
[25, Algo. 3.2], apart from differences in the input description. Here,
the input consists of linear functionals φ1, . . . ,φD : Rn → K, with
the assumption that

Ni = ∩1≤j≤i ker(φ j ) is an R-module for 1 ≤ i ≤ D. (4)

Then we consider the R-module N = ND = ∩1≤j≤D ker(φ j ),
which is such that Rn/N has dimension at most D as a K-vector
space. For F in Rm×n , the following algorithm computes a minimal
≼-Gröbner basis of the syzygy module SyzN(F ). Note that we do
not specify the representation of F since it may depend on the spe-
cific functionals φi ; typically, one considers F to be known modulo
N , via the images of its rows by the functionals φi .

Algorithm 2 Syzygy_Iter(φ1, . . . ,φD , F , ≼)

Input:
• linear functionals φ1, . . . ,φD : Rn → K such that Eq. (4),
• a matrix F in Rm×n ,
• a monomial order ≼ on Rm .

Output:
• a minimal ≼-Gröbner basis P ∈ Rk×m of SyzN(F ).

1: P ← Im ∈ Rm×m ;G ← F ; L← (e1, . . . ,em ) = lm≼(P)
2: for i = 1, . . . ,D do
3: (Q,L) ← Syzygy_BaseCase(φi ,G, ≼,L)
4: P ← QP ;G ← QG

5: return P



, , Simone Naldi and Vincent Neiger

Corollary 4.1. At the end of the ith iteration of Algorithm 2, P
is a minimal ≼-Gröbner basis of SyzNi (F ), and one hasG = PF as
well as L = lm≼(P). In particular, Algorithm 2 is correct.

Proof. Note that at Line 1 of Algorithm 2, P = Im is the reduced
≼-Gröbner basis of Rm = SyzN0 (F ) with N0 = Rn , and both
G = PF = F and L = (e1, . . . ,em ) = lm≼(P) hold. We conclude
that if D = 0, Algorithm 2 is correct.

The rest of the proof is by induction on D. We claim that the
properties in the statement are preserved across the D iterations.
Precisely, we assume that at the beginning of the ith iteration, P is
a minimal ≼-Gröbner basis of SyzNi (F ),G = PF , and L = lm≼(P).

Since Ni+1 = ker(φi+1) ∩ Ni is an R-module, applying Theo-
rem 3.7 shows that (Q,L) computed during the iteration are such
that L = lm≼(QP) and that QP is a minimal ≼-Gröbner basis of
SyzNi+1 (F ). □

This allows us to deduce bounds on the size of a minimal ≼-
Gröbner basis of SyzN(F ).

Lemma 4.2. Let P ∈ Rk×m be the output of Algorithm 2. Then,
m ≤ k ≤ m + (r − 1)D, and thus the same holds for any minimal
≼-Gröbner basis of SyzN(F ). Furthermore, at the end of the iteration
i of Algorithm 2, the basisQ has at most k + D − i elements.

Proof. Remark that all minimal ≼-Gröbner bases of the same
module have the same number of rows. Before the first iteration,
the basis is Im which has m rows, and each iteration of the for
loop adds ℓ − 1 rows to the basis for some ℓ in {0, . . . , r }. Therefore
k ≤ m + (r − 1)D, and the last claim follows from ℓ − 1 ≥ −1. The
lower bound m ≤ k comes from the fact that Rm/SyzN(F ) has
finite dimension as a K-vector space. □

This iterative algorithm can be turned into a divide and conquer
one (Algorithm 3), by reorganizing how the products are performed.
It computes a minimal ≼-Gröbner basis of SyzN(F ), if one takes as
inputG = F and K = (e1, . . . ,em ).

Algorithm 3 Syzygy_DaC(φ1, . . . ,φD ,G, ≼,K)

Input:
• linear functionals φ1, . . . ,φD : Rn → K,
• a matrixG in Rk×n ,
• a monomial order ≼ on Rm ,
• a list K = (µ1, . . . , µk ) of monomials in Mon(Rm ).

Output:
• a matrixQ in Rℓ×m for some ℓ ≥ 0,
• a list L of ℓ monomials in Mon(Rm ).

1: if D = 1 then return Syzygy_BaseCase(φi ,G, ≼,K )
2: (Q1,L1) ← Syzygy_DaC(φ1, . . . ,φ ⌊D/2⌋ ,G, ≼,K)
3: (Q2,L2) ← Syzygy_DaC(φ ⌊D/2⌋+1, . . . ,φD ,Q1G, ≼,L1)
4: return (Q2Q1,L2)

Theorem 4.3. Let N ⊂ Rn be an R-submodule, let F ∈ Rm×n ,
and let P ∈ Rk×m be a minimal ≼-Gröbner basis of SyzN(F ) for some
monomial order ≼ on Rm . Assume that the input of Algorithm 3 is
such thatG = PF , and lm≼(P) = (µ1, . . . , µk ), and

Ni ∩ N is an R-module for 1 ≤ i ≤ D, (5)

where Ni = ∩1≤j≤i ker(φ j ). Then Algorithm 3 outputs (Q,L) such
that QP is a minimal ≼-Gröbner basis of SyzND∩N(F ) and L =
lm≼(QP).

Proof. If D = 1 the output returned by Algorithm 1 is cor-
rect, since by Theorem 3.7, QP is a minimal ≼-Gröbner basis of
Syzker(φ1)∩N(F ) and L = lm≼(QP). We assume by induction hy-
pothesis that Algorithm 3 returns the output foreseen by Theo-
rem 4.3 when the number of input linear functionals is < D, and
when the assumptions of the theorem are satisfied.

By such a hypothesis, since G = PF and K = lm≼(P), one
deduces that (Q1,L1) are such that Q1P is a ≼-Gröbner basis of
SyzM (F ), withM = N⌊D/2⌋ ∩ N , and L1 = lm≼(Q1P).

Let Ki = ∩ ⌊D/2⌋+1≤j≤i ker(φ j ), for each i = ⌊D/2⌋ + 1, . . . ,D.
By hypothesisKi ∩M = Ni ∩N is a module, for each i = ⌊D/2⌋ +
1, . . . ,D. Since Q1G = Q1PF and Q1P is a ≼-Gröbner basis of
SyzM (F ), and L1 = lm≼(Q1P), we can apply again the induction
hypothesis, and conclude that (Q2,L2) is such that Q2Q1P is a
minimal ≼-Gröbner basis of SyzKD∩M (F ) = SyzND∩N(F ), and
L2 = lm≼(Q2Q1P). We conclude that the global output (Q2Q1,L2)
satisfies the claimed properties. □

5 MULTIVARIATE PADÉ APPROXIMATION
The algorithm in the previous section gives a general framework,
which can be refined when applied to a particular context. Here,
we consider the context of multivariate Padé approximation, where

N = ⟨Xd1
1 , . . . ,X

dr
r ⟩ × · · · × ⟨X

d1
1 , . . . ,X

dr
r ⟩ ⊆ R

n , (6)

for some d1, . . . ,dr ∈ Z>0. We begin with some remarks on the
degrees and sizes of Gröbner bases of syzygy modules SyzN(F ).

To express this context in the framework of Section 4, we take for
theD linear functionals φi the dual basis of the canonical monomial
basis of Rn/N . Precisely, the linear functionals are φµ, j : Rn → K
for 1 ≤ j ≤ n and all monomials µ ∈ Mon(R) with degXi

(µ) < di
for 1 ≤ i ≤ r , defined as follows: for f = (f1, . . . , fn ) ∈ Rn , φµ, j (f )
is the coefficient of the monomial µ in fj . These linear functionals
can be ordered in several ways to ensure that Eq. (4) is satisfied.
Here we design our algorithm by ordering the functionals φµ, j
according to the term-over-position lexicographic order on the
monomials µe j ∈ Mon(Rn ).

Example 5.1. Consider the case of r = 2 variables X ,Y with
d1 = 2, d2 = 4, and n = 2. Then the functionals are

φ1,1, φ1,2, φY ,1, φY ,2, φY 2,1, φY 2,2, φY 3,1, φY 3,2,
φX ,1, φX ,2, φXY ,1, φXY ,2, φXY 2,1, φXY 2,2, φXY 3,1, φXY 3,2,

in that specific order. □

Lemma 5.2. Let N be as in Eq. (6), let F ∈ Rm×n , and let ≼ be a
monomial order on Rm . Then, for 1 ≤ i ≤ r , each polynomial in the
reduced ≼-Gröbner basis of SyzN(F ) either has degree in Xi less than
di or has the form Xdi

i e j for some 1 ≤ j ≤ m.

Proof. Let P be the reduced ≼-Gröbner basis of SyzN(F ) and
let i ∈ {1, . . . , r }. Since Rm/SyzN(F ) has finite dimension as a
K-vector space, for each j ∈ {1, . . . ,n} there is a polynomial in P
whose ≼-leadingmonomial has the formXd

i e j for somed ≥ 0. Since
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P is reduced, any other (p1, . . . ,pm ) in P whose ≼-leading mono-
mial has support j is such that degXi

(pj ) < d ≤ di ; the last inequal-
ity follows from the fact that the monomial Xdi

i e j is in SyzN(F )
and thus is a multiple of Xd

i e j . It follows that all polynomials in P

whose ≼-leading monomial is not among {Xdi
i e j , 1 ≤ j ≤ n} must

have degree in Xi less than di . On the other hand, any polynomial
in P whose ≼-leading monomial is Xdi

i e j for some j must be equal
to this monomial, since it belongs to SyzN(F ) and P is reduced. □

In the context of Algorithm 3, Lemma 5.2 allows us to truncate
the productQ2Q1 while preserving a ≼-Gröbner basis.

Corollary 5.3. Let N be as in Eq. (6), let F ∈ Rm×n , let ≼
be a monomial order on Rm , and let P ∈ Rk×m be a minimal ≼-
Gröbner basis of SyzN(F ). If P is modified by truncating each of its
polynomials modulo ⟨Xd1+1

1 , . . . ,Xdr+1
r ⟩, then P is still a minimal

≼-Gröbner basis of SyzN(F ).

Proof. On the first hand, this modification of P does not af-
fect the ≼-leading terms since they all have Xi -degree less than
di + 1 according to Lemma 5.2, hence after modification we still
have ⟨lm≼(P)⟩ = ⟨lm≼(SyzN(F ))⟩. On the other hand, after this
modification we also have ⟨P⟩ ⊆ SyzN(F ) since we started from a
basis of SyzN(F ) and added to each of its elements some elements
of ⟨Xd1+1

1 , . . . ,Xdr+1
r ⟩, which is contained in SyzN(F ). Then [11,

Lem. 15.5] yields ⟨P⟩ = SyzN(F ), hence the conclusion. □

The divide and conquer algorithm can then be refined as follows.

Algorithm 4 Padé(d1, . . . ,dr ,G, ≼,K)

Input:
• integers d1, . . . ,dr ∈ Z>0,
• a matrixG in Rk×n ,
• a monomial order ≼ on Rm ,
• a list K = (µ1, . . . , µk ) of monomials in Mon(Rm ).

Output:
• a matrixQ in Rℓ×m for some ℓ ≥ 0,
• a list L of ℓ monomials in Mon(Rm ).

1: if d1 = · · · = dr = 1 then
2: Q ∈ Rk×k ← Ik ; H ← G mod X1, . . . ,Xr ; L← K
3: for i = 1, . . . ,n do
4: φ ← linear functional Rn → K defined by φ(f ) = fi (0)
5: (Qi ,L) ← Syzygy_BaseCase(φ,H , ≼,L)
6: Q ← QiQ mod X 2

1 , . . . ,X
2
r

7: H ← QiH mod X1, . . . ,Xr
8: return (Q,L)
9: j ← max{i ∈ {1, . . . , r } | di > 1}
10: (Q1,L1) ← Padé(d1, . . . ,dj−1, ⌊dj/2⌋, 1, . . . , 1,G, ≼,K)
11: G2 ← X

−⌊dj /2⌋
j (Q1G mod Xd1

1 , . . . ,X
dj
j ,X j+1, . . . ,Xr )

12: (Q2,L2) ← Padé(d1, . . . ,dj−1, ⌈dj/2⌉, 1, . . . , 1,G2, ≼,L1)

13: Q ← Q2Q1 mod Xd1+1
1 , . . . ,Xdr+1

r
14: return (Q,L2)

The correctness of the algorithm can be shown by following the
proof of Theorem 4.3 and with the following considerations. By

induction hypothesis,Q1 is such that each component of the rows
ofQ1G is an element of

⟨Xd1
1 , . . . ,X

dj−1
j−1 ,X

⌊dj /2⌋
j ,X j+1, . . . ,Xr ⟩,

hence its truncation modulo

⟨Xd1
1 , . . . ,X

dj
j ,X j+1, . . . ,Xr ⟩

is an R-multiple of X ⌊dj /2⌋j . It follows that on Line 11, G2 is well
defined. Moreover, for p ∈ Rm the following equations are equiva-
lent:

pQ1G = 0 mod Xd1
1 , . . . ,X

dj−1
j−1 ,X

dj
j

pG2 = pX
−⌊dj /2⌋
j Q1G = 0 mod Xd1

1 , . . . ,X
dj−1
j−1 ,X

⌈dj /2⌉
j

This justifies the division by X−⌊dj /2⌋j at Line 11 and the fact that
the second call is done with ⌈dj/2⌉ instead of dj at Line 12.

For the complexity analysis, we use Lemma 5.2 to give a bound
on the size of the computed Gröbner bases which differs from the
general bound in Lemma 4.2.

Corollary 5.4 (of Lemma 5.2). Let N be as in Eq. (6), let F ∈
Rm×n , let ≼ be a monomial order on Rm , and let P ∈ Rk×m be a
minimal ≼-Gröbner basis of SyzN(F ). Then,

k ≤ md1 · · ·dr /(max1≤i≤r di ).

Proof. Let L = lm≼(P) ∈ Rk×m and let ı̄ be such that dı̄ =
max1≤i≤r di . It is enough to prove that L has at most d1 · · ·dr /dı̄
rows of the form µe j for each j ∈ {1, . . . ,m}; by Lemma 5.2, the
monomial µ ∈ Mon(R) hasXi -degree at most di for 1 ≤ i ≤ r . Now,
for each monomial ν = X e1

1 · · ·X
eı̄−1
ı̄−1 X

eı̄+1
ı̄+1 · · ·X

er
r with ei ≤ di for

all i , ı̄, there is at most one row µe j in L such that µ = νX e
ı̄ for

some e ≥ 0: otherwise, one of two such rows would divide the
other, which would contradict the minimality of P . The number of
such monomials ν is precisely d1 · · ·dr /dı̄ . □

Herewe haveD = nd1 · · ·dr , hence the above bound on the cardi-
nality of minimal ≼-Gröbner bases refines the bound in Lemma 4.2
as soon asm ≤ n(r − 1)(max1≤i≤r di ).

Proposition 5.5. For R = K[X ,Y ], let

N = ⟨Xd ,Y e ⟩ × · · · × ⟨Xd ,Y e ⟩ ⊂ Rn ,

let F ∈ Rm×n with degX (F ) < d and degY (F ) < e , and let ≼ be a
monomial order on Rm . Algorithm 4 computes a minimal ≼-Gröbner
basis of SyzN(F ) usingO˜((Mω−1 +Mn)(M + n)de) operations in K,
whereM =m min(d, e).

Proof. According to Corollary 5.4, the number of rows of the
matricesQ computed in Algorithm 4 is at mostM =m min(d, e). It
follows that all matricesQi ,Q1,Q2,Q in the algorithm have at most
M rows and at mostM columns, and that the matricesG,H ,G1,G2
have at mostM rows and exactly n columns. Besides, by Kronecker
substitution [7, Chap. 1 Sec. 8], multiplying two bivariate matrices
of dimensionsM ×M (resp.M ×n) and bidegree at most (d, e) costs
O˜(Mωde) (resp. O˜(Mω (1 + n/M)de)) operations in K.

Let C(m,n,d, e) denote the number of field operations used by
Algorithm 4; we have C(m,n,d, e) ≤ C(M,n,d, e). First, for e > 1,
C(M,n,d, e) is bounded by C(M,n,d, ⌊e/2⌋) + C(M,n,d, ⌈e/2⌉) +
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O˜(Mω (1 + n/M)de). Indeed, there are two recursive calls with
parameters (d, ⌊e/2⌋) and (d, ⌈e/2⌉), and two matrix productsQ1G
and Q2Q1 to perform; as noted above, the latter products cost
O˜(Mω (1 + n/M)de) operations in K. The same analysis for d > 1
and e = 1 shows that C(M,n,d, 1) is bounded by C(M,n, ⌊d/2⌋, 1)+
C(M,n, ⌈d/2⌉, 1) +O˜(Mω (1 + n/M)d).

Finally, ford = e = 1, we show that C(M,n, 1, 1) ∈ O(M(M+n)n).
In this case, there are n iterations of the loop. Each of them makes
one call to Syzygy_BaseCase, which uses O(M) field operations
for computing the λi ’s at Line 7; note that the α j ’s are zero in the
present context where the linear functional φ corresponds to the
constant coefficient. The computed basisQi has a single nontrivial
column (it has the form in Eq. (3)), so that computing QiQ mod
⟨X 2

1 , . . . ,X
2
r ⟩ (resp.QiH mod ⟨X1, . . . ,Xr ⟩) can be done naively at

a cost of O(M2) (resp. O(M(M + n))) operations in K.
Based on the previous inequalities, unrolling the recursion by

following the divide-and-conquer scheme leads to the announced
complexity bound. □
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