Simone Naldi

Vincent Neiger

A Divide-and-conquer Algorithm for Computing Gröbner Bases of Syzygies in Finite Dimension

Keywords: Syzygies, Gröbner basis, Padé approximation, divide and conquer

Let f 1 , . . . , f m be elements in a quotient R n /N which has finite dimension as a K-vector space, where R = K[X 1 , . . . , X r] and N is an R-submodule of R n . We address the problem of computing a Gröbner basis of the module of syzygies of (f

An iterative algorithm for this problem was given by Marinari, Möller, and Mora (1993) using a dual representation of R n /N as the kernel of a collection of linear functionals. Following this viewpoint, we design a divide-and-conquer algorithm, which can be interpreted as a generalization to several variables of Beckermann and Labahn's recursive approach for matrix Padé and rational interpolation problems. To highlight the interest of this method, we focus on the specific case of bivariate Padé approximation and show that it improves upon the best known complexity bounds.

INTRODUCTION

Context. Hereafter, R = K[X 1 , . . . , X r] is the ring of r -variate polynomials over a field K. Given an R-submodule N ⊂ R n such that R n /N has finite dimension D as a K-vector space, as well as a matrix F ∈ R m×n with rows f 1 , . . . , f m ∈ R n , this paper studies the computation of a Gröbner basis of the module of syzygies

Syz N (F) = {p = (p i) 1≤i ≤m ∈ R m | pF = 1≤i ≤m p i f i ∈ N },
where p is seen as a 1 × m row vector. Note that R m /Syz N (F) also has finite dimension, at most D, as a K-vector space.

Following a path of work pioneered by Marinari, Möller and Mora [START_REF] Alonso | The Big Mother of all Dualities: Möller Algorithm[END_REF][START_REF] Marinari | Gröbner bases of ideals defined by functionals with an application to ideals of projective points[END_REF][START_REF] Mora | The FGLM Problem and Möller's Algorithm on Zero-dimensional Ideals[END_REF], we focus on a specific situation where N is described using duality. That is, N is known through D linear functionals φ j : R n → K such that N = ∩ 1≤j ≤D ker(φ j). In this context, it is customary to make an assumption equivalent to the following: N i = ∩ 1≤j ≤i ker(φ i) is an R-module, for 1 ≤ i ≤ D; see e.g. [25, Algo. 2] [16, Eqn. (4.1)] [30, Eqn. [START_REF] Berkesch | Syzygies, finite length modules, and random curves[END_REF]] for such assumptions and related algorithms. Namely, this assumption allows one to design iterative algorithms which compute bases of Syz N i (F) iteratively for increasing i, until reaching i = D and obtaining the sought basis of Syz N (F). An efficient such iterative procedure is given in [START_REF] Marinari | Gröbner bases of ideals defined by functionals with an application to ideals of projective points[END_REF], specifically in Algorithm 2 (variant in Section 9 therein); note that it is written for m = n = 1 and F = [START_REF] Alonso | The Big Mother of all Dualities: Möller Algorithm[END_REF], in which case Syz N i (F) = N i , but directly extends to the case m ≥ 1 and F ∈ R m×n .

Ideal of points and Padé approximation. One particular case of interest is when N is the vanishing ideal of a given set of points: n = 1, and N is the ideal of all polynomials in R which vanish at distinct points α 1 , . . . , α D ∈ K r . Here, one takes the linear functionals for evaluation: φ j : f ∈ R → f (α j) ∈ K. The question is, given the points, m polynomials as F ∈ R m×1 , and a monomial order ≼, to compute a ≼-Gröbner basis of the set of vectors p such that pF vanishes at all the points. When m = 1 and F = [START_REF] Alonso | The Big Mother of all Dualities: Möller Algorithm[END_REF], this means computing a ≼-Gröbner basis of the ideal of the points, as studied in [START_REF] Marinari | Gröbner bases of ideals defined by functionals with an application to ideals of projective points[END_REF][START_REF] Möller | The Construction of Multivariate Polynomials with Preassigned Zeros[END_REF].

Another case is that of (multivariate) Padé approximation and its extensions, as studied in [START_REF] Farr | Computing Gröbner bases for vanishing ideals of finite sets of points[END_REF][START_REF] Fitzpatrick | Solving a Multivariable Congruence by Change of Term Order[END_REF][START_REF] Fitzpatrick | A Gröbner basis technique for Padé approximation[END_REF][START_REF] O'keeffe | Gröbner basis solutions of constrained interpolation problems[END_REF], as well as in [START_REF] Berthomieu | A Polynomial-Division-Based Algorithm for Computing Linear Recurrence Relations[END_REF] in the context of the computation of multidimensional linear recurrence relations. The basic setting is for n = 1, with N an ideal of the form ⟨X d 1 1 , . . . , X d r r ⟩, and F = [f -1] for some given f ∈ R. Then, elements of Syz N (F) are vectors (q, p) ∈ R 2 such that f = p/q mod X d 1 1 , . . . , X d r r . Here, the D = d 1 • • • d r linear functionals correspond to the coefficients of multidegree less than (d 1 , . . . , d r); note that not all orderings of these functionals satisfy the assumption above.

For these two situations, as well as some extensions of them, the fastest known algorithms rely on linear algebra and have a cost bound of O(mD 2 + rD 3) operations in K [START_REF] Fitzpatrick | Solving a Multivariable Congruence by Change of Term Order[END_REF][START_REF] Marinari | Gröbner bases of ideals defined by functionals with an application to ideals of projective points[END_REF]; this was recently improved in [START_REF] Neiger | Bases of relations in one or several variables: fast algorithms and applications[END_REF]Thm. 2.13] and [START_REF] Neiger | Computing syzygies in finite dimension using fast linear algebra[END_REF] to O(mD ω-1 + r D ω log(D)) where ω < 2.38 is the exponent of matrix multiplication [START_REF] Coppersmith | Matrix multiplication via arithmetic progressions[END_REF][START_REF] Gall | Powers of Tensors and Fast Matrix Multiplication[END_REF].

Based on work in [START_REF] Cerlienco | From algebraic sets to monomial linear bases by means of combinatorial algorithms[END_REF][START_REF] Felszeghy | The lex game and some applications[END_REF], in the specific case of an ideal of points N and the lexicographic order, Ceria and Mora gave a combinatorial algorithm to compute the ≼ lex -monomial basis of R/N , the Cerlienco-Mureddu correspondence, and squarefree separators for the points using O(rD 2 log(D)) operations [START_REF] Ceria | Combinatorics of ideals of points: a Cerlienco-Mureddu-like approach for an iterative lex game[END_REF].

The univariate case. This problem has received attention in the case of a single variable (r = 1) notably thanks to the numerous applications of matrix rational interpolation and Hermite-Padé approximation, which are the two situations described above. Iterative algorithms were first given for Padé approximation in [START_REF] Geddes | Algorithms for Analytic Approximation (to a Formal Powerseries)[END_REF][START_REF] Wynn | The Rational Approximation of Functions which are Formally Defined by a Power Series Expansion[END_REF] and then for Hermite-Padé approximation in [START_REF] Beckermann | A reliable method for computing M-Padé approximants on arbitrary staircases[END_REF][START_REF] Beckermann | Recursiveness in matrix rational interpolation problems[END_REF][START_REF] Van Barel | A general module theoretic framework for vector M-Padé and matrix rational interpolation[END_REF]; the latter can be seen as univariate analogues of [START_REF] Marinari | Gröbner bases of ideals defined by functionals with an application to ideals of projective points[END_REF]Algo. 2] and [START_REF] Fitzpatrick | Solving a Multivariable Congruence by Change of Term Order[END_REF]Algo. 4.7].

A breakthrough divide and conquer approach was designed by Beckermann and Labahn in [3, Algo. SPHPS], allowing one to take advantage of univariate polynomial matrix multiplication while previous iterative algorithms only relied on naive linear algebra operations. This led to a line of work [START_REF] Giorgi | On the complexity of polynomial matrix computations[END_REF][START_REF] Jeannerod | Fast computation of minimal interpolation bases in Popov form for arbitrary shifts[END_REF][START_REF] Jeannerod | Computing minimal interpolation bases[END_REF][START_REF] Storjohann | Notes on computing minimal approximant bases[END_REF][START_REF] Zhou | Efficient Algorithms for Order Basis Computation[END_REF] which consistently improved the incorporation of fast linear algebra and fast polynomial multiplication in this divide and conquer framework, culminating in cost bounds for rational interpolation and Hermite-Padé approximation which are close asymptotically to the size of the problem (if ω = 2, these cost bounds are quasi-linear in the size of the input). To the best of our knowledge, no similar divide and conquer technique has been developed in multivariate settings prior to this work.

Contribution. We propose a divide and conquer algorithm for the problem of computing a ≼-Gröbner basis of Syz N (F) in the multivariate case. This is based on the iterative algorithm [25, Algo. 2], observing that each step of the iteration can be interpreted as a left multiplication by a matrix which has a specific shape, which we call elementary Gröbner basis (see Section 3). The new algorithm reorganizes these matrix products through a divide and conquer strategy, and thus groups several products by elementary Gröbner bases into a single multivariate polynomial matrix multiplication.

Thus, both the existing iterative and the new divide and conquer approaches compute the same elementary Gröbner bases, but unlike the former, our algorithm does not explicitly compute Gröbner bases for all intermediate syzygy modules Syz N i (F). By computing less, we expect to achieve better computational complexity. To illustrate this, we specialize our approach to multivariate matrix Padé approximation and derive complexity bounds for this case; we obtain the next result, which is a particular case of Proposition 5.5. Theorem 1.1. For R = K[X , Y], let f 1 , . . . , f m ∈ R, and let ≼ be a monomial order on R. Then one can compute a minimal ≼-Gröbner basis of the module of Hermite-Padé approximants

{(p 1 , . . . , p m) ∈ R m | p 1 f 1 + • • • + p m f m = 0 mod ⟨X d , Y d ⟩}
using O˜(m ω d ω+2) operations in K, where O˜(•) means that polylogarithmic factors are omitted.

In this case the vector space dimension is D = d 2 . Thus, as noted above and to the best of our knowledge, the fastest previously known algorithm for this task has a cost of O˜(md 2(ω-1) + d 2ω) operations in K and does not exploit fast polynomial multiplication.

Perspectives. The base case of our divide and conquer algorithm concerns the case N = ker(φ) of a single linear functional, detailed in Section 3; we thus work in a vector space R n /N of dimension 1. A natural perspective is to improve the efficiency of our algorithm thanks to a better exploitation of fast linear algebra by grouping several base cases together; using fast linear algebra to accelerate the base case was a key strategy in obtaining efficient univariate algorithms [START_REF] Giorgi | On the complexity of polynomial matrix computations[END_REF][START_REF] Jeannerod | Computing minimal interpolation bases[END_REF]. In the context of Padé approximation, where one can introduce the variables one after another, one could also try to incorporate known algorithms for the univariate case.

One reason why these improvements are not straightforward to do in the multivariate case is that there is no direct generalization of a property at the core of the correctness of univariate algorithms. This property (see [START_REF] Jeannerod | Fast computation of approximant bases in canonical form[END_REF]Lem. 2.4]) states that if P 1 is a ≼ 1 -Gröbner basis of N 1 ⊃ N and P 2 is a ≼ 2 -Gröbner basis of Syz N (P 1), then P 2 P 1 is a ≼ 1 -Gröbner basis of N , provided that the order ≼ 2 is well chosen (a Schreyer order for P 1 and ≼ 1 , see Section 2.4). We give a counterexample to such a property in Example 3.6. It remains open to find a similar general property that would help to design algorithms based on matrix multiplication in the multivariate case.

Another difficulty arises in analyzing the complexity of our divide and conquer scheme in contexts where the number of elements in the sought Gröbner basis is not well controlled, such as rational interpolation. Indeed, this number corresponds to the size of the matrices used in the algorithm, and therefore is directly related to the cost of the matrix multiplication. In fact, the worst-case number of elements depends on the monomial order and is often pessimistic compared to what is observed in a generic situation. Thus, future work involves investigating complexity bounds for generic input and for interesting particular cases other than Padé approximation.

PRELIMINARIES 2.1 Notation

Here and hereafter, the coordinate vector with 1 at index i is denoted by e i ; its dimension is inferred from the context. A monomial in R m is an element of the form νe i for some 1 ≤ i ≤ m and some monomial ν in R; i is called the support of νe i . We denote by Mon(R m) the set of all monomials in R m . A term is a monomial multiplied by a nonzero constant from K. The elements of R m are K-linear combinations of elements of Mon(R m) and are called polynomials.

Elements in R are written in regular font (e.g. monomials µ and ν and polynomials f and p), while elements in R m are boldfaced (e.g. monomials µ and ν and polynomials f and p). Vectors or (ordered) lists of polynomials in R m are seen as matrices, written in boldfaced capital letters; precisely, (p 1 , . . . , p k) ∈ (R m) k is seen as a matrix P ∈ R k ×m whose ith row is p i . In particular, in what follows the default orientation is to see an element of R m as a row vector in R 1×m .

For the sake of completeness, we recall below in Sections 2.2 to 2.4 some classical definitions from commutative algebra concerning submodules of R m ; we assume familiarity with the corresponding notions concerning ideals of R. For a more detailed introduction the reader may refer to [START_REF] Cox | Using Algebraic Geometry[END_REF][START_REF] Cox | Ideals, Varieties, and Algorithms[END_REF][START_REF] Eisenbud | Commutative Algebra: with a View Toward Algebraic Geometry[END_REF].

Monomial orders for modules

A monomial order on R m is a total order ≼ on Mon(R m) such that, for ν ∈ Mon(R) and

µ 1 , µ 2 ∈ Mon(R m) with µ 1 ≼ µ 2 , one has µ 1 ≼ ν µ 1 ≼ ν µ 2 ; hereafter µ 1 ≺ µ 2 means that µ 1 ≼ µ 2 and µ 1 µ 2 . For p ∈ R m , its ≼-leading monomial is denoted by lm ≼ (p)
and is the largest of its monomials with respect to the order ≼ (we take the convention lm ≼ (0) = 0 for 0 ∈ R m the zero element). We extend this notation to collections of polynomials P ⊂ R m with lm ≼ (P) = {lm ≼ (p) : p ∈ P}, and to matrices P ∈ R k ×m with lm ≼ (P) the k × m matrix whose ith row is the ≼-leading monomial of the ith row of P.

Example 2.1. The usual lexicographic comparison is a monomial order on K[X , Y]: X a Y b ≼ lex X a ′ Y b ′
if and only if a < a ′ or (a = a ′ and b < b ′). It can be used to define a monomial order on K[X , Y] 2 , called the term-over-position lexicographic order: for µ, ν in Mon(K[X , Y]) and i, j in {1, 2}, µe i ≼ top lex νe j if and only if µ ≼ lex ν or (µ = ν and i < j).

We refer to [11, Sec. 1. §2 and 5. §2] for other classical monomial orders, such as the degree reverse lexicographical order on R, and the construction of term-over-position and position-over-term orders on R m from monomial orders on R.

A monomial order ≼ on R m induces a monomial order ≼ i on R for each 1 ≤ i ≤ m, by restricting to the ith coordinate: for

ν 1 , ν 2 ∈ Mon(R), ν 1 ≼ i ν 2 if and only if ν 1 e i ≼ ν 2 e i . In particular, lm ≼ (qp) is a multiple of lm ≼ (p) for q ∈ R and p ∈ R m : Lemma 2.2. Let ī be the support of lm ≼ (p). Then lm ≼ (qp) = lm ≼ ī (q)lm ≼ (p).
Proof. Write q = ℓ ν ℓ and p = i, j µ i j e i for terms µ i j , ν ℓ in R. Then qp = ℓ,i, j ν ℓ µ i j e i , i.e. the terms of qp are all those of the form ν ℓ µ i j e i . Now let l and ȷ be such that lm ≼ ī (q) = ν l and lm ≼ (p) = µ ī ȷ e ī . Then ν ℓ ≺ ī ν l for all ℓ l, which implies that ν ℓ µ ī ȷ ≺ ī ν l µ ī ȷ and thus, by definition of ≼ ī , that ν ℓ µ ī ȷ e ī ≺ ν l µ ī ȷ e ī .

On the other hand, µ i j e i ≺ µ ī ȷ e ī holds for all (i, j) (ī, ȷ), hence ν ℓ µ i j e i ≺ ν ℓ µ ī ȷ e ī . Therefore we obtain ν ℓ µ i j e i ≼ ν l µ ī ȷ e ī for all (i, j, ℓ), with equality only if (i, j, ℓ) = (ī, ȷ, l). This proves that lm ≼ (qp) = ν l µ ī ȷ e ī = lm ≼ ī (q)lm ≼ (p). □

Gröbner bases

As a consequence of Hilbert's Basis Theorem, any R-submodule of R m is finitely generated [START_REF] Eisenbud | Commutative Algebra: with a View Toward Algebraic Geometry[END_REF]Prop. 1.4]. For a (possibly infinite) collection of polynomials P ⊂ R m , we denote by ⟨P⟩ the R-submodule of R m generated by the elements of P. Similarly, for a matrix P in R k ×m , ⟨P⟩ stands for the R-submodule of R m generated by its rows, that is,

⟨P⟩ = {qP | q ∈ R k }.
For a given submodule M ⊂ R m , the ≼-leading module of M is the module ⟨lm ≼ (M)⟩ generated by the leading monomials of the elements of M. Then, a matrix P in R k ×m whose rows are in M is said to be a ≼-Gröbner basis of M if ⟨lm ≼ (M)⟩ = ⟨lm ≼ (P)⟩.

In this case we have ⟨P⟩ = M (see [START_REF] Cox | Using Algebraic Geometry[END_REF]Ch.5,Prop.2.7]), hence we will often omit the reference to the module M and just say that P is a ≼-Gröbner basis.

A ≼-Gröbner basis P, whose rows are (p 1 , . . . , p k), is said to be minimal if lm ≼ (p i) is not divisible by lm ≼ (p j), for any j i.

It is said to be reduced if it is minimal and, for all 1 ≤ i ≤ k, lm ≼ (p i) is monic and none of the terms of p i is divisible by any of {lm ≼ (p j) | j i}. Given a monomial order ≼ and an R-submodule M ⊂ R m , there is a reduced ≼-Gröbner basis of M and it is unique (up to permutation of its elements) [START_REF] Eisenbud | Commutative Algebra: with a View Toward Algebraic Geometry[END_REF]Sec. 15.2].

Example 2.3. The syzygy module

M = {(p 1 , p 2) ∈ K[X , Y] 2 | p 1 -p 2 ∈ ⟨X , Y ⟩} = Syz ⟨X,Y ⟩ ([1 -1])
is generated by (Xe 1 , Ye 1 , e 1 + e 2), that is, by the rows of

P =       X 0 Y 0 1 1       ∈ K[X , Y] 3×2 .
Furthermore, P is the reduced ≼ top lex -Gröbner basis of M.

Schreyer orders

In the context of the computation of bases of syzygies it is generally beneficial to use a specific construction of monomial orders, as first highlighted by Schreyer [START_REF] Janet | Sur les systèmes d'équations aux dérivées partielles[END_REF][START_REF] Schreyer | Die Berechnung von Syzygien mit dem verallgemeinerten Weierstraßschen Divisionssatz[END_REF] (see also [START_REF] Eisenbud | Commutative Algebra: with a View Toward Algebraic Geometry[END_REF]Th. 15.10] and [START_REF] Berkesch | Syzygies, finite length modules, and random curves[END_REF]).

In the univariate case, the notion of shifted degree plays the same role as Schreyer orders and is ubiquitous in the computation of bases of modules of syzygies [START_REF] Giorgi | On the complexity of polynomial matrix computations[END_REF][START_REF] Jeannerod | Fast computation of minimal interpolation bases in Popov form for arbitrary shifts[END_REF][START_REF] Zhou | Efficient Algorithms for Order Basis Computation[END_REF]; an equivalent notion of defects was also used earlier for M-Padé and Hermite-Padé approximation algorithms [START_REF] Beckermann | A reliable method for computing M-Padé approximants on arbitrary staircases[END_REF][START_REF] Beckermann | A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants[END_REF]. Specifically, this provides a monomial order on R k constructed from a monomial order ≼ on R m and from the leading monomials of a ≼-Gröbner basis in R m of cardinality k. Definition 2.4. Let ≼ be a monomial order on R m , and let L = (µ 1 , . . . , µ k) be a list of monomials of R m . A Schreyer order for ≼ and L is any monomial order on R k , denoted by ≼ L , such that for

ν 1 e i , ν 2 e j ∈ Mon(R k), if ν 1 µ i ≺ ν 2 µ j then ν 1 e i ≼ L ν 2 e j .
As noted above, this notion is often used with L = lm ≼ (P) for a list of polynomials P ∈ R k ×m , which is typically a ≼-Gröbner basis.

Remark that Definition 2.4 uses a strict inequality, and implies that if ν 1 e i ≼ L ν 2 e j , then ν 1 µ i ≺ ν 2 µ j or ν 1 µ i = ν 2 µ j . In particular, for ν 1 = ν 2 = 1 and assuming µ i µ j for all i j (for instance, if L = lm ≼ (P) for a minimal ≼-Gröbner basis P), then e i ≼ L e j if and

only if µ i ≺ µ j .
Furthermore, for every ≼ and L, a corresponding Schreyer order exists and can be constructed explicitly: for example, ν 1 e i ≼ L ν 2 e j if and only if

ν 1 µ i ≺ ν 2 µ j or (ν 1 µ i = ν 2 µ j and i < j).
This specific Schreyer order is the one used in the algorithms in this paper, where we write

≼ L ← SchreyerOrder(≼, L)
to mean that the algorithm constructs it from ≼ and L.

BASE CASE OF THE DIVIDE AND CONQUER SCHEME

In this section we present the base case of our main algorithm. It constructs Gröbner bases for syzygies modulo the kernel of a single linear functional, which we call elementary Gröbner bases and describe in Section 3.1. Further in Section 3.2 we state properties that are useful to prove the correctness of the base case algorithm given in Section 3.3. Precisely, this correctness is written having in mind the design of an algorithm handling several functionals iteratively by repeating this basic procedure and multiplying the elementary bases together.

Elementary Gröbner basis

If I ⊂ R is an ideal such that R/I has dimension 1 as a K-vector space, then I is maximal: it is of the form ⟨X 1 -α 1 , . . . , X r -α r ⟩ for some point (α 1 , . . . , α r) ∈ K r , which directly yields the reduced Gröbner basis of I, for any monomial order. In this paper, we will make use of a similar property for submodules of R m ; such submodules have Gröbner bases of the form

E =       I π -1 λ 1 X -α λ 2 I m-π       ∈ R (m+r -1)×m , (1)
for the vector of variables

X = [X 1 • • • X r] T and vectors of values α = [α 1 • • • α r] T ∈ K r ×1 , λ 1 = [λ 1 • • • λ π -1] T ∈ K (π -1)×1
, and

λ 2 = [λ π +1 • • • λ m] T ∈ K (m-π)×1
. In what follows, such matrices are called elementary Gröbner bases.

Theorem 3.1. Let M be an R-submodule of R m such that R m /M has dimension 1 as a K-vector space, then for any monomial order ≼ on R m , the reduced ≼-Gröbner basis E of M is as in Eq. (1) with λ i = 0 if e i ≺ e π for all i π . Conversely, any matrix E as in Eq. (1) defines a submodule M = ⟨E⟩ such that R m /M has dimension 1 as a K-vector space, and E is a reduced ≼-Gröbner basis for any monomial order ≼ such that λ i = 0 if e i ≺ e π for all i π .

Proof. By [START_REF] Eisenbud | Commutative Algebra: with a View Toward Algebraic Geometry[END_REF]Thm. 15.3], a basis of R m /M as a K-vector space is given by the monomials not in lm ≼ (M); since the dimension of R m /M as a K-vector space is 1, there exists a unique monomial which is not in lm ≼ (M). Thus there is a unique π ∈ {1, . . . , m} such that lm ≼ (E) = (e 1 , . . . , e π -1 , X 1 e π , . . . , X r e π , e π +1 , . . . , e m). [START_REF] Beckermann | A reliable method for computing M-Padé approximants on arbitrary staircases[END_REF] By definition of reduced Gröbner bases, the jth polynomial in E is the sum of the jth element of lm ≼ (E) and a constant multiple of e π ; hence E has the form in Eq. (1). In addition, for i π , the equality lm ≼ (e i + λ i e π) = e i implies that λ i = 0 whenever e i ≺ e π .

For the converse, let ≼ be such that λ i = 0 if e i ≺ e π for all i π (such an order exists since there are orders for which e π is the smallest coordinate vector). Then lm ≼ (E) is as in Eq. (2); in particular, the monomials in ⟨lm ≼ (E)⟩ are precisely Mon(R m) \ {e π }. It follows that either e π ∈ lm ≼ (M) and ⟨lm ≼ (M)⟩ = R m , or e π lm ≼ (M) and ⟨lm ≼ (M)⟩ = ⟨lm ≼ (E)⟩. In the second case E is a reduced ≼-Gröbner-basis and R m /M has dimension 1 by [START_REF] Eisenbud | Commutative Algebra: with a View Toward Algebraic Geometry[END_REF]Thm. 15.3]. To conclude the proof, we show that e π ∈ lm ≼ (M) cannot occur; by contradiction, suppose there exists q ∈ M such that lm ≼ (q) = e π . Since the rows of E generate M, we can write q = (q 1 , . . . , q π -1 , p 1 , . . . , p r , q π +1 , . . . , q m) E = q 1 , . . . , q π -1 , i π

q i λ i + r j=1
(X j -α j)p j , q π +1 , . . . , q m .

For i π such that e π ≺ e i , any nonzero term of q i e i would appear in q and be greater than e π , hence q i = 0. Moreover, for i π such that e i ≺ e π we have λ i = 0. Thus, considering the π th component of q yields the equality

1 = i π q i λ i + r j=1 (X j -α j)p j = r j=1 (X j -α j)p j which is a contradiction since 1 ⟨X 1 -α 1 , . . . , X r -α r ⟩. □
Remark that in the module case (m ≥ 2) the reduced ≼-Gröbner basis depends on the order ≼, more precisely on how the e i 's are ordered by ≼. For instance, the matrix in Example 2.3 is a reduced ≼-Gröbner basis for every order such that e 1 ≼ e 2 , whereas for orders such that e 2 ≼ e 1 the reduced ≼-Gröbner basis of the same module is

E =       1 1 0 X 0 Y       ∈ K[X , Y] 3×2 .

Multiplying by elementary Gröbner bases

Let ≼ be a monomial order on R m and let P = (p 1 , . . . , p k) ∈ R k ×m be a ≼-Gröbner basis. In this section, we show conditions on an elementary Gröbner basis E to ensure that EP is a ≼-Gröbner basis.

We write L = (µ 1 , . . . , µ k) for lm ≼ (P), that is, µ i = lm ≼ (p i) for 1 ≤ i ≤ k. Let ≼ L be a Schreyer order for ≼ and P, and consider a reduced ≼ L -Gröbner basis E ∈ R (k +r -1)×k which has the form in Eq. (1); thus

EP = (p 1 + λ 1 p π , . . . , p π -1 + λ π -1 p π , (X 1 -α 1)p π , . . . , (X r -α r)p π , λ π +1 p π + p π +1 , . . . , λ k p π + p k)
which is in R (k +r -1)×m . We will show that, under suitable assumptions, EP is a ≼-Gröbner basis; the next lemmas use the above notation. We start by describing the leading terms of EP.

Lemma 3.2. If µ i µ π for all i π , then

lm ≼ (EP) = lm ≼ L (E) L = (µ 1 , . . . , µ π -1 , X 1 µ π , . . . , X r µ π , µ π +1 , . . . , µ k).
Proof. First, lm ≼ ((X j -α j)p π) = X j µ π for 1 ≤ j ≤ r . Next we claim that lm ≼ (p i + λ i p π) = µ i for all i π . If λ i = 0, the identity is obvious. If λ i 0, then e π ≼ L e i (see Section 3.1), and from the definition of a Schreyer order and the assumption µ π µ i , we deduce µ π ≺ µ i and hence lm ≼ (p i + λ i p π) = µ i . □

Next, we characterize the fact that EP generates a submodule which differs from the one generated by P. Lemma 3.3. If µ i µ π for all i π , then ⟨EP⟩ ⟨P⟩ ⇔ p π ⟨EP⟩ ⇔ µ π ⟨lm ≼ (⟨EP⟩)⟩.

Proof. First, remark that ⟨EP⟩ = ⟨P⟩ ⇒ p π ∈ ⟨EP⟩ ⇒ µ π ∈ ⟨lm ≼ (⟨EP⟩)⟩ is obvious; thus, to conclude the proof it remains to show that ⟨EP⟩ = ⟨P⟩ ⇐ µ π ∈ ⟨lm ≼ (⟨EP⟩)⟩. Suppose that µ π ∈ ⟨lm ≼ (⟨EP⟩)⟩. Then, since µ i ∈ ⟨lm ≼ (⟨EP⟩)⟩ for all i π by Lemma 3.2, we have lm ≼ (P) ⊂ ⟨lm ≼ (⟨EP⟩)⟩, hence ⟨lm ≼ (P)⟩ ⊂ ⟨lm ≼ (⟨EP⟩)⟩. Furthermore, recall that ⟨lm ≼ (P)⟩ = ⟨lm ≼ (⟨P⟩)⟩ since P is a ≼-Gröbner basis, and that ⟨lm ≼ (⟨EP⟩)⟩ ⊂ ⟨lm ≼ (⟨P⟩)⟩ since ⟨EP⟩ ⊂ ⟨P⟩: we obtain ⟨lm ≼ (⟨P⟩)⟩ = ⟨lm ≼ (⟨EP⟩)⟩. Then, [START_REF] Eisenbud | Commutative Algebra: with a View Toward Algebraic Geometry[END_REF]Lemma 15.5] shows that ⟨EP⟩ = ⟨P⟩. □

For example, if P is a minimal ≼-Gröbner basis, then the assumption in the previous lemma is satisfied. Example 3.6 below exhibits a case where P is a minimal ≼-Gröbner basis and p π does belong to ⟨EP⟩. In that case, ⟨EP⟩ = ⟨P⟩ and EP is not a Gröbner basis since µ π is in ⟨lm ≼ (⟨EP⟩)⟩ but not in ⟨lm ≼ (EP)⟩. Lemma 3.4. If µ i µ π for all i π and ⟨EP⟩ ⟨P⟩, then EP is a ≼-Gröbner basis.

Proof. Suppose by contradiction that EP is not a ≼-Gröbner basis. Then there exists a nonzero h ∈ ⟨EP⟩ such that lm ≼ (h) ⟨lm ≼ (EP)⟩, that is, by Lemma 3.2, lm ≼ (h) is not divisible by any of the elements µ i for i π and X j µ π for 1 ≤ j ≤ r . On the other hand, lm ≼ (h) is in ⟨lm ≼ (⟨EP⟩)⟩ and therefore in ⟨lm ≼ (P)⟩, hence lm ≼ (h) is divisible by at least one µ i , 1 ≤ i ≤ k. These divisibility constraints lead to lm ≼ (h) = µ π , which implies µ π ∈ ⟨lm ≼ (⟨EP⟩)⟩. From Lemma 3.3 one deduces ⟨EP⟩ = ⟨P⟩, which is absurd. □ Corollary 3.5. Assume that ⟨EP⟩ ⟨P⟩ and that P is a minimal ≼-Gröbner basis. Let j 1 < • • • < j ℓ be the indices j ∈ {1, . . . , r } such that X j µ π ⟨µ i , i π ⟩. Then, the submatrix

Q =            I π -1 λ 1 X j 1 -α j 1 . . . X j ℓ -α j ℓ λ 2 I m-π            ∈ R (k +ℓ-1)×k (3
)
of E is such that QP is a minimal ≼-Gröbner basis of ⟨EP⟩.

Proof. Since P is minimal, µ i µ π for all i π ; then Lemma 3.4 ensures that EP is a ≼-Gröbner basis and Lemma 3.2 gives lm ≼ (QP) = (µ 1 , . . . , µ π -1 , X j 1 µ π , . . . , X j ℓ µ π , µ π +1 , . . . , µ k).

By construction of j 1 , . . . , j ℓ , one has ⟨lm

≼ (QP)⟩ = ⟨lm ≼ (EP)⟩, which implies ⟨lm ≼ (⟨EP⟩)⟩ = ⟨lm ≼ (EP)⟩ = ⟨lm ≼ (QP)⟩ ⊂ ⟨lm ≼ (⟨QP⟩)⟩ ⊂ ⟨lm ≼ (⟨EP⟩)⟩.
Hence ⟨lm ≼ (QP)⟩ = ⟨lm ≼ (⟨QP⟩)⟩, and QP is a minimal ≼-Gröbner basis. We conclude using [START_REF] Eisenbud | Commutative Algebra: with a View Toward Algebraic Geometry[END_REF]Lem. 15.5], which shows that ⟨QP⟩ ⊂ ⟨EP⟩ and ⟨lm ≼ (⟨QP⟩

)⟩ = ⟨lm ≼ (⟨EP⟩)⟩ imply ⟨QP⟩ = ⟨EP⟩. □ Example 3.6. Consider the case R = K[X , Y] and m = 1. Let P = [X Y +1] ∈ R 2×1
, which is the reduced ≼ 1 -Gröbner basis of ⟨X , Y +1⟩ for any monomial order ≼ 1 on Mon(R). Let also E ∈ R 3×2 whose rows are (Xe 1 , Ye 1 , e 2); according to Theorem 3.1, E is a reduced ≼ 2 -Gröbner basis for any monomial order ≼ 2 on Mon(R 2). Now, the product EP ∈ R 3×1 has entries X 2 , XY , and Y + 1. Thus, ⟨lm ≼ 3 (EP)⟩ = ⟨X 2 , XY , Y ⟩ = ⟨X 2 , Y ⟩ for any monomial order ≼ 3 on Mon(R). On the other hand, ⟨EP⟩ contains X = X (Y + 1) -XY , hence ⟨lm ≼ 3 (EP)⟩ ⟨lm ≼ 3 (⟨EP⟩)⟩, which means that EP is not a ≼ 3 -Gröbner basis.

Algorithm

We now describe Algorithm Syzygy_BaseCase, which will serve as the base case of the divide and conquer scheme. Theorem 3.7. Let N ⊂ R n be an R-submodule, let F ∈ R m×n , and let P ∈ R k×m be a minimal ≼-Gröbner basis of Syz N (F) for some monomial order ≼ on R m . Assume that the input of Algorithm 1 is such that ker(φ) ∩ N is an R-module, G = PF , and lm ≼ (P) = (µ 1 , . . . , µ k). Then Algorithm 1 returns (Q, L) such that QP is a minimal ≼-Gröbner basis of Syz ker(φ)∩N (F) and L = lm ≼ (QP).

Proof. If (φ(д 1), . . . , φ(д k)) = (0, . . . , 0), then Algorithm 1 stops at Line 2 and returns Q = I k and K. Thus QP = P, hence by assumption L = K = lm ≼ (P) = lm ≼ (QP), and QP is a minimal ≼-Gröbner basis of Syz N (F); besides, the identity Syz N (F) = Syz ker(φ)∩N (F) is easily deduced from (φ(д 1), . . . , φ(д k)) = (0, . . . , 0).

In the rest of the proof, assume (φ(д 1), . . . , φ(д k)) (0, . . . , 0). Define E ∈ R (k +r -1)×k as in Eq. (1) with π and λ i as in Algorithm 1 and α j = φ(X j д π)/υ π for 1 ≤ j ≤ r ; in particular, Q computed at Line 8 is formed by a subset of the rows of E.

First, E is a ≼ K -Gröbner basis according to Theorem 3.1, since by definition of π and λ i one gets the implications e i ≼ K e π ⇒ υ i = 0 ⇒ λ i = 0, for i π .

Algorithm 1 Syzygy_BaseCase(φ, G, ≼, L)

Input:

• a linear functional φ : R n → K,

• a matrix G in R k×n with rows д 1 , . . . , д k ∈ R n ,

• a monomial order ≼ on R m , • a list K = (µ 1 , . . . , µ k) of elements of Mon(R m). Output:

• a matrix Q in R (k +ℓ-1)×k for some ℓ ∈ {0, . . . , r },

• a list L of k + ℓ -1 elements of Mon(R k). 1: (υ 1 , . . . , υ k) ← (φ(д 1), . . . , φ(д k)) ∈ K k 2: if (υ 1 , . . . , υ k) = (0, . . . , 0) then return (I k , K) 3: ≼ K ← SchreyerOrder(≼, K) 4: π ← arg min ≼ K {e i | 1 ≤ i ≤ k, υ i 0} ▷ the index i such that υ i 0 which minimizes e i with respect to ≼ K 5: {j 1 < • • • < j ℓ } ← {j ∈ {1, . . . , r } | X j µ π ⟨µ i , i π ⟩} 6: α j s ← φ(X j s д π)/υ π for 1 ≤ s ≤ ℓ 7: λ i ← -υ i /υ π for 1 ≤ i < π and π < i ≤ k 8: Q ← matrix in R (k +ℓ-1)×k as in Eq. (3) 9: L ← (µ 1 , . . . , µ π -1 , X j 1 µ π , . . . , X j ℓ µ π , µ π +1 , . . . , µ k) 10: return (Q, L)
Next, we claim that ⟨E⟩ = Syz ker(φ)∩N (G). Indeed, the rows of PF are in N , and thus so are those of EG = EPF . Moreover, by choice of π and λ i the rows of EG are in ker(φ), since for i π one has φ((

p i + λ i p π)F) = φ(д i + λ i д π) = υ i + λ i υ π = 0 and for 1 ≤ j ≤ r one has φ((X j -α j)p π F) = φ((X j -α j)д π) = φ(X j д π) -α j υ π = 0. Therefore the rows of EG are in ker(φ) ∩ N ,
that is, ⟨E⟩ ⊂ Syz ker(φ)∩N (G). To prove the reverse inclusion, recall from Theorem 3.1 that ⟨E⟩ has codimension 1 in R k and hence Syz ker(φ)∩N (G) is either ⟨E⟩ or R k . Since

0 υ π = φ(д π) = φ(p π F) = φ(e π PF) = φ(e π G)
one has that e π Syz ker(φ)∩N (G), hence Syz ker(φ)∩N (G) = ⟨E⟩.

It follows that ⟨EP⟩ = Syz ker(φ)∩N (F). Indeed, the rows of EPF are in ker(φ) ∩ N as noted above, and thus ⟨EP⟩ ⊂ Syz ker(φ)∩N (F). Now let p ∈ Syz ker(φ)∩N (F); thus in particular p ∈ Syz N (F), and p = qP for some q ∈ R k . Then pF = qPF = qG ∈ ker(φ) ∩ N , hence q ∈ Syz ker(φ)∩N (G) = ⟨E⟩, and therefore p ∈ ⟨EP⟩. Now, φ(p π F) 0 implies p π Syz ker(φ)∩N (F) = ⟨EP⟩. Thus Lemma 3.3 ensures ⟨EP⟩ ⟨P⟩, and finally Corollary 3.5 states that QP is a minimal ≼-Gröbner basis of ⟨EP⟩ = Syz ker(φ)∩N (F).

Besides Lemma 3.2 yields lm ≼ (QP) = lm ≼ K (Q)K = L. □

DIVIDE AND CONQUER ALGORITHM

Repeating the basic procedure described in Section 3.3 iteratively, we obtain an algorithm for syzygy basis computation when N is an intersection of kernels of linear functionals with a specific property (see Eq. (4)). This algorithm is similar to [25, Algo. 2] and [30, Algo. 3.2], apart from differences in the input description. Here, the input consists of linear functionals φ 1 , . . . , φ D : R n → K, with the assumption that

N i = ∩ 1≤j ≤i ker(φ j) is an R-module for 1 ≤ i ≤ D. (4)
Then we consider the R-module N = N D = ∩ 1≤j ≤D ker(φ j), which is such that R n /N has dimension at most D as a K-vector space. For F in R m×n , the following algorithm computes a minimal ≼-Gröbner basis of the syzygy module Syz N (F). Note that we do not specify the representation of F since it may depend on the specific functionals φ i ; typically, one considers F to be known modulo N , via the images of its rows by the functionals φ i .

Algorithm 2 Syzygy_Iter(φ 1 , . . . , φ D , F , ≼)

Input:

• linear functionals φ 1 , . . . , φ D : R n → K such that Eq. (4),

• a matrix F in R m×n ,

• a monomial order ≼ on R m . Output:

• a minimal ≼-Gröbner basis P ∈ R k ×m of Syz N (F).

1: P ← I m ∈ R m×m ; G ← F ; L ← (e 1 , . . . , e m) = lm ≼ (P) 2: for i = 1, . . . , D do 3: (Q, L) ← Syzygy_BaseCase(φ i , G, ≼, L) 4: P ← QP; G ← QG 5: return P Corollary 4.1.
At the end of the ith iteration of Algorithm 2, P is a minimal ≼-Gröbner basis of Syz N i (F), and one has G = PF as well as L = lm ≼ (P). In particular, Algorithm 2 is correct.

Proof. Note that at Line 1 of Algorithm 2, P = I m is the reduced ≼-Gröbner basis of R m = Syz N 0 (F) with N 0 = R n , and both G = PF = F and L = (e 1 , . . . , e m) = lm ≼ (P) hold. We conclude that if D = 0, Algorithm 2 is correct.

The rest of the proof is by induction on D. We claim that the properties in the statement are preserved across the D iterations. Precisely, we assume that at the beginning of the ith iteration, P is a minimal ≼-Gröbner basis of Syz N i (F), G = PF , and L = lm ≼ (P).

Since N i+1 = ker(φ i+1) ∩ N i is an R-module, applying Theorem 3.7 shows that (Q, L) computed during the iteration are such that L = lm ≼ (QP) and that QP is a minimal ≼-Gröbner basis of Syz N i +1 (F). □ This allows us to deduce bounds on the size of a minimal ≼-Gröbner basis of Syz N (F). Lemma 4.2. Let P ∈ R k ×m be the output of Algorithm 2. Then, m ≤ k ≤ m + (r -1)D, and thus the same holds for any minimal ≼-Gröbner basis of Syz N (F). Furthermore, at the end of the iteration i of Algorithm 2, the basis Q has at most k + Di elements.

Proof. Remark that all minimal ≼-Gröbner bases of the same module have the same number of rows. Before the first iteration, the basis is I m which has m rows, and each iteration of the for loop adds ℓ -1 rows to the basis for some ℓ in {0, . . . , r }. Therefore k ≤ m + (r -1)D, and the last claim follows from ℓ -1 ≥ -1. The lower bound m ≤ k comes from the fact that R m /Syz N (F) has finite dimension as a K-vector space. □

This iterative algorithm can be turned into a divide and conquer one (Algorithm 3), by reorganizing how the products are performed. It computes a minimal ≼-Gröbner basis of Syz N (F), if one takes as input G = F and K = (e 1 , . . . , e m).

Algorithm 3 Syzygy_DaC(φ 1 , . . . , φ D , G, ≼, K) Input:

• linear functionals φ 1 , . . . , φ D : R n → K,

• a matrix G in R k×n ,

• a monomial order ≼ on R m , • a list K = (µ 1 , . . . , µ k) of elements of Mon(R m). Output:

• a matrix Q in R ℓ×m for some ℓ ≥ 0,

• a list L of ℓ elements of Mon(R m).

1: if D = 1 then return Syzygy_BaseCase(φ i , G, ≼, K) 2: (Q 1 , L 1) ← Syzygy_DaC(φ 1 , . . . , φ ⌊D/2⌋ , G, ≼, K) 3: (Q 2 , L 2) ← Syzygy_DaC(φ ⌊D/2⌋+1 , . . . , φ D , Q 1 G, ≼, L 1) 4: return (Q 2 Q 1 , L 2)
Theorem 4.3. Let N ⊂ R n be an R-submodule, let F ∈ R m×n , and let P ∈ R k×m be a minimal ≼-Gröbner basis of Syz N (F) for some monomial order ≼ on R m . Assume that the input of Algorithm 3 is such that G = PF , and lm ≼ (P) = (µ 1 , . . . , µ k), and

N i ∩ N is an R-module for 1 ≤ i ≤ D, (5)
where N i = ∩ 1≤j ≤i ker(φ j). Then Algorithm 3 outputs (Q, L) such that QP is a minimal ≼-Gröbner basis of Syz N D ∩N (F) and L = lm ≼ (QP).

Proof. If D = 1 the output returned by Algorithm 1 is correct, since by Theorem 3.7, QP is a minimal ≼-Gröbner basis of Syz ker(φ 1)∩N (F) and L = lm ≼ (QP). We assume by induction hypothesis that Algorithm 3 returns the output foreseen by Theorem 4.3 when the number of input linear functionals is < D, and when the assumptions of the theorem are satisfied.

By such a hypothesis, since G = PF and K = lm ≼ (P), one deduces that (Q 1 , L 1) are such that Q 1 P is a ≼-Gröbner basis of Syz M (F), with M = N ⌊D/2⌋ ∩ N , and L 1 = lm ≼ (Q 1 P).

Let K i = ∩ ⌊D/2⌋+1≤j ≤i ker(φ j), for each i = ⌊D/2⌋ + 1, . . . , D.

By hypothesis

K i ∩ M = N i ∩ N is a module, for i = ⌊D/2⌋ + 1, . . . , i = D. Since Q 1 G = Q 1 PF
and Q 1 P is a ≼-Gröbner basis of Syz M (F), and L 1 = lm ≼ (Q 1 P), we can apply again the induction hypothesis, and conclude that

(Q 2 , L 2) is such that Q 2 Q 1 P is a minimal ≼-Gröbner basis of Syz K D ∩M (F) = Syz N D ∩N (F), and L 2 = lm ≼ (Q 2 Q 1 P). We conclude that the global output (Q 2 Q 1 , L 2)
satisfies the claimed properties. □

MULTIVARIATE PADÉ APPROXIMATION

The algorithm in the previous section gives a general framework, which can be refined when applied to a particular context. Here, we consider the context of multivariate Padé approximation, where

N = ⟨X d 1 1 , . . . , X d r r ⟩ × • • • × ⟨X d 1 1 , . . . , X d r r ⟩ ⊆ R n , (6)
for some d 1 , . . . , d r ∈ Z >0 . We begin with some remarks on the degrees and sizes of Gröbner bases of syzygy modules Syz N (F).

To express this context in the framework of Section 4, we take for the D linear functionals φ i the dual basis of the canonical monomial basis of R n /N . Precisely, the linear functionals are φ µ, j : R n → K for 1 ≤ j ≤ n and all monomials µ ∈ Mon(R) with deg X i (µ) < d i for 1 ≤ i ≤ r , defined as follows: for f = (f 1 , . . . , f n) ∈ R n , φ µ, j (f) is the coefficient of the monomial µ in f j . These linear functionals can be ordered in several ways to ensure that Eq. (4) is satisfied.

Here we design our algorithm by ordering the functionals φ µ, j according to the term-over-position lexicographic order on the monomials µe j ∈ Mon(R n).

φ 1,1 , φ 1,2 , φ Y,1 , φ Y ,2 , φ Y 2 ,1 , φ Y 2 ,2 , φ Y 3 ,1 , φ Y 3 ,2 , φ X,1 , φ X,2 , φ X Y,1 , φ X Y ,2 , φ X Y 2 ,1 , φ X Y 2 ,2 , φ X Y 3 ,1 , φ X Y 3 ,2 ,
in this specific order. Lemma 5.2. Let N be as in Eq. (6), let F ∈ R m×n , and let ≼ be a monomial order on R m . Then, for 1 ≤ i ≤ r , each polynomial in the reduced ≼-Gröbner basis of Syz N (F) either has degree in X i less than d i or has the form X d i i e j for some 1 ≤ j ≤ m.

Proof. Let P be the reduced ≼-Gröbner basis of Syz N (F) and let i ∈ {1, . . . , r }. Since R m /Syz N (F) has finite dimension as a K-vector space, for each j ∈ {1, . . . , n} there is a polynomial in P whose ≼-leading monomial has the form X d i e j for some d ≥ 0. Since P is reduced, any other (p 1 , . . . , p m) in P whose ≼-leading monomial has support j is such that deg X i (p j) < d ≤ d i ; the last inequality follows from the fact that the monomial X d i i e j is in Syz N (F) and thus is a multiple of X d i e j . It follows that all polynomials in P whose ≼-leading monomial is not among {X d i i e j , 1 ≤ j ≤ n} must have degree in X i less than d i . On the other hand, any polynomial in P whose ≼-leading monomial is X d i i e j for some j must be equal to this monomial, since it belongs to Syz N (F) and P is reduced. □

In the context of Algorithm 3, Lemma 5.2 allows us to truncate the product Q 2 Q 1 while preserving a ≼-Gröbner basis. Corollary 5.3. Let N be as in Eq. (6), let F ∈ R m×n , let ≼ be a monomial order on R m , and let P ∈ R k×m be a minimal ≼-Gröbner basis of Syz N (F). If P is modified by truncating each of its polynomials modulo ⟨X d 1 +1 1 , . . . , X d r +1 r ⟩, then P is still a minimal ≼-Gröbner basis of Syz N (F).

Proof. On the first hand, this modification of P does not affect the ≼-leading terms since they all have X i -degree less than d i + 1 according to Lemma 5.2, hence after modification we still have ⟨lm ≼ (P)⟩ = ⟨lm ≼ (Syz N (F))⟩. On the other hand, after this modification we also have ⟨P⟩ ⊆ Syz N (F) since we started from a basis of Syz N (F) and added to each of its elements some multiples of ⟨X (Q i , L) ← Syzygy_BaseCase(φ, H , ≼, L) This justifies the division by X ⌊d j /2⌋ j at Line 11 and the fact that the second call is done with ⌈d j /2⌉ instead of d j at Line 12.

6: Q ← Q i Q mod X
Q ← Q 2 Q 1 mod X d 1 +1 1 , . . . , X d r +1
For the complexity analysis, we use Lemma 5.2 to give a bound on the size of the computed Gröbner bases, which differs from the general bound in Lemma 4.2. Corollary 5.4 (of Lemma 5.2). Let N be as in Eq. (6), let F ∈ R m×n , let ≼ be a monomial order on R m , and let P ∈ R k ×m be a minimal ≼-Gröbner basis of Syz N (F). Then,

k ≤ md 1 • • • d r /(max 1≤i ≤r d i).
Proof. Let L = lm ≼ (P) ∈ R k ×m and let ī be such that d ī = max 1≤i ≤r d i . It is enough to prove that L has at most d 1 • • • d r /d ī rows of the form µe j for each j ∈ {1, . . . , m}; by Lemma 5.2, the monomial µ ∈ Mon(R) has X i -degree at most d i for 1 ≤ i ≤ r . Now, for each monomial ν = X e 1 1 • • • X e ī-1 ī-1 X e ī+1 ī+1 • • • X e r r with e i ≤ d i for all i ī, there is at most one row µe j in L such that µ = νX e ī for some e ≥ 0: otherwise, one of two such rows would divide the other, which would contradict the minimality of P. The number of such monomials ν is precisely

Example 5 . 1 .

 51 Consider the case of r = 2 variables X , Y with d 1 = 2, d 2 = 4, and n = 2. Then the functionals are

d 1 +1 1 ,Algorithm 4 3 :

 143 . . . , X d r +1 r ⟩, which are contained in Syz N (F). Then[START_REF] Eisenbud | Commutative Algebra: with a View Toward Algebraic Geometry[END_REF] Lem. 15.5] yields ⟨P⟩ = Syz N (F), hence the conclusion. □Then, the divide and conquer approach can be refined as described in Algorithm 4. The correctness of this algorithm can be shown by following the proof of Theorem 4.3 and with the following considerations. By induction hypothesis,Q 1 is such that each component of the rows of Q 1 G is an element of ⟨X d 1 1 , . . . , X d j-1 j-1 , X ⌊d j /2⌋ j , X j+1 , . . . , X r ⟩,hence its truncation modulo⟨X d 1 1 , . . . , X d j j , X j+1 , . . . , X r ⟩ Padé(d 1 , . . . , d r , G, ≼, K) Input: • integers d 1 , . . . , d r ∈ Z >0 , • a matrix G in R k×n , • a monomial order ≼ on R m , • a list K = (µ 1 , . . . , µ k) of elements of Mon(R m). Output: • a matrix Q in R ℓ×m for some ℓ ≥ 0, • a list L of ℓ elements of Mon(R m). 1: if d 1 = • • • = d r = 1 then 2: Q ∈ R k ×k ← I k ; H ← G mod X 1 , . . . , X r ; L ← K for i = 1, . . . , n do 4:φ ← linear functional R n → K defined by φ(f) = f i (0) 5:

r 14 :- 1 j- 1 , X d j j pG 2 Q 1 G

 141121 return (Q, L 2) is an R-multiple of X ⌊d j /2⌋ j. It follows that on Line 11, G 2 is well defined. Moreover, for p ∈ R m the next equations are equivalent:pQ 1 G = 0 mod X d 1 1 , . . . , X d j= pX -⌊d j /2⌋ j = 0 mod X d 1 1 , . . . , X d j-1 j-1 , X ⌈d j /2⌉ j

 d 1 • • • d r /d ī . □ Here we have D = nd 1 • • • d r , hence the above bound on the cardinality of minimal ≼-Gröbner bases refines the bound in Lemma 4.2 as soon as m ≤ n(r -1)(max 1≤i ≤r d i).

 2 1 , . . . , X 2H ← Q i H mod X 1 , . . . , X r : j ← max{i ∈ {1, . . . , r } | d i > 1} 10: (Q 1 , L 1) ← Padé(d 1 , . . . , d j-1 , ⌊d j /2⌋, 1, . . . , 1, G, ≼, K) 11: G 2 ← X -⌊d j /2⌋ j (Q 1 G mod X d 1 1 , . . . , X d j j , X j+1 , . . . , X r) 12: (Q 2 , L 2) ← Padé(d 1 , . . . , d j-1 , ⌈d j /2⌉, 1, . . . , 1, G 2 , ≼, L 1) 13:

		r
	7:	
	8:	return (Q, L)

9

ACKNOWLEDGMENTS

Acknowledgements. The first author acknowledges support from the Fondation Mathématique Jacques Hadamard through the Programme PGMO, project number 2018-0061H.

Finally, for d = e = 1, we show that C(M, n, 1, 1) ∈ O(M(M +n)n). In this case, there are n iterations of the loop. Each of them makes one call to Syzygy_BaseCase, which uses O(M) field operations for computing the λ i 's at Line 7; note that the α j 's are zero in the present context where the linear functional φ corresponds to the constant coefficient. The computed basis Q i has a single nontrivial column (it has the form in Eq. (3)), so that computing Q i Q mod ⟨X 2 1 , . . . , X 2 r ⟩ (resp. Q i H mod ⟨X 1 , . . . , X r ⟩) can be done naively at a cost of O(M 2) (resp. O(M(M + n))) operations in K.

Based on the previous inequalities, unrolling the recursion by following the divide-and-conquer scheme leads to the announced complexity bound. □