
HAL Id: hal-02521821
https://unilim.hal.science/hal-02521821v1

Preprint submitted on 27 Mar 2020 (v1), last revised 4 Jun 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generic bivariate multi-point evaluation, interpolation
and modular composition with precomputation

Vincent Neiger, Johan Rosenkilde, Grigory Solomatov

To cite this version:
Vincent Neiger, Johan Rosenkilde, Grigory Solomatov. Generic bivariate multi-point evaluation, in-
terpolation and modular composition with precomputation. 2020. �hal-02521821v1�

https://unilim.hal.science/hal-02521821v1
https://hal.archives-ouvertes.fr

Generic bivariate multi-point evaluation, interpolation and
modular composition with precomputation

Vincent Neiger

Univ. Limoges, CNRS, XLIM, UMR 7252

F-87000 Limoges, France

Johan Rosenkilde

Technical University of Denmark

Lyngby, Denmark

Grigory Solomatov

Technical University of Denmark

Lyngby, Denmark

ABSTRACT
If K is a large enough field and P ⊂ K2 is a fixed, generic set of
points, which is available for precomputation, we show how to

compute all the evaluations of any dense polynomial f on P in

quasi-linear time. Similarly, in quasi-linear time then given inter-

polation constraints on P and a target y-degree, we compute an

f having those evaluations on P and at most that y-degree. Our
genericity assumption is explicit and we prove most point sets

over a large enough field satisfy it. If P violates the assumption

our algorithms still work and the performance degrades smoothly

according to a distance from being generic.

We apply the same technique to modular composition: fix a

square-free G ∈ K[x] and generic R ∈ K[x] both available for pre-

computation, we then input f ∈ K[x ,y] and output f (x ,R(x)) remG ∈
K[x] in quasi-linear time in the size of f ,G,R.

KEYWORDS
Multi-point evaluation, interpolation, modular composition, bivari-

ate polynomials.

1 INTRODUCTION
Let K be an effective field. We consider the three classical problems

for bivariate polynomials K[x ,y]mentioned in the title. We assume

a model where parts of the input are given early as preinput which
is available for heavier computation, and the primary goal is to

keep the complexity of the online phase, once the remaining input

is given, to a minimum.

Multi-point evaluation (MPE): with preinput a point set P =

{(αi , βi)}
n
i=1 ⊆ K

2
and input f ∈ K[x ,y], compute

(
f (αi , βi)

)n
i=1.

We give two algorithms: the first requires that P has distinct x-
coordinates and has online complexity Õ(degx f degy f +n) as long

asP is balanced, a notionwe define in the paper1; the second accepts
repeated x-coordinates with online complexity Õ(degx f (degx f +
degy f) + n) as long as a certain “shearing” of P is balanced.

Interpolation: with preinput a point set P as before, and input

interpolation constraints γ ∈ Kn , compute f ∈ K[x ,y] such that(
f (αi , βi)

)n
i=1 = γ , satisfying some constraints on the monomial

support. We give an algorithm which preinputs a degree bound

dy ∈ Z>0 and such that the output polynomial f is dense with

degy f < dy and degx f ∈ O(n/dy). The online complexity is

Õ(n) assuming that P is balanced. dy should exceed the x-valency
of P, i.e. the maximal number of y-coordinates for any given x-
coordinate.

Modular composition: with preinput G,R ∈ K[x], we input
f ∈ K[x ,y] and compute f (x ,R) remG. Our algorithm has online

1
“soft-O” ignores logarithmic terms:O (f (n)(log f (n))c) ⊂ Õ (f (n)) for any c ∈ Z>0 .

complexity Õ(degx f degy f + degR + degG), as long as the ideal

⟨G,y − R⟩ is balanced.
We prove that if P ⊆ K2 is random of fixed cardinality n, and if

|K| ≫ n2 log(n) thenP is balancedwith high probability
2
. Similarly,

if G is square-free and R is uniformly random, then ⟨G,y − R⟩ is
balanced with high probability. For our second MPE algorithm,

we shear the point set, see below. Since our current genericity

techniques do not extend to this, we do not make claims on it being

generically balanced. Ad-hoc simulations indicate that this is be

the case unless the x-valency of P is very high. The cost of the

second MPE algorithm is not symmetric in the x and y-degree, so
whenever degx f < degy f one should consider transposing the

input, i.e. MPE of f (Y ,X) on P⊤ = {(βi ,αi)}
n
i=1. In this case, the

balanced assumption is on P⊤.

Our algorithms are deterministic, and once the preinput has been

processed, the user knowswhether it is balanced and hence whether

the algorithms will perform well once the input arrives. Further,

the performance of our algorithms deteriorate smoothly with how

“unbalanced” the input is. In a toolbox onemight therefore apply our

algorithms whenever the input turns out to be sufficiently balanced

and reverting to other algorithms on very unbalanced input.

Precomputation can be reasonable if we e.g. compute MPE’s on

the same point set for many different polynomials. This occurs in

coding theory, where MPE of bivariate polynomials corresponds

to “encoding” of certain algebraic codes such as some Reed–Muller

codes [1, Chapter 5] and some algebraic-geometric codes [13]: here

P is fixed and communication commences by a (very long) series of

MPE’s on bivariate polynomials on P. In these applications, P will

often not be random, but chosen carefully, and so our genericity

assumptions might not apply.

Techniques.We introduce a tool we call reshaping of polyno-

mials for achieving the following: given an ideal I ⊆ K[x ,y] and

f ∈ K[x ,y], compute
ˆf ∈ f + I with smaller y-degree. For instance,

in MPE and when P has distinct x-coordinates, we let Γ ⊂ K[x ,y]
be the ideal of polynomials which vanish on all the points P. Then

all elements of f +Γ have the same evaluations onP, so we compute

a
ˆf ∈ f + Γ of y-degree 0, and then apply fast univariate MPE.

An obvious idea to accomplish this is to choose some д ∈ Γ
of lower y-degree and whose leading y-term is monic, and then

compute
˜f = f remд. The problem is to control the x-degree of ˜f ,

which generically grows by (degy f −degy д) degx д. Our idea is to

look for polynomials д that we call reshapers, which have the form

д = y2dy/3 − д̂ ,

where degy д̂ < dy/3, and where dy = degy f + 1 (and divisible by

3 in this example). Writing f = f1y
2dy/3+ f0 with degy f0 < 2dy/3,

2
If K is infinite, we consider P ⊆ T2

for some finite T ⊂ K.

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Vincent Neiger, Johan Rosenkilde, and Grigory Solomatov

we see that

˜f := f remд = f1д̂ + f0 ,

which is easy to compute and has y-degree less than 2dy/3 and

x-degree only degx f + degx д. To reduce the y-degree down to 0,

as in MPE, we repeat the process logarithmically many times.

For efficiency, we therefore need the x-degrees of all these re-
shapers д to be small. For MPE, stating that д ∈ Γ specifies n ho-

mogenoeus linear restrictions on the coefficients of д̂, so generically
we could expect that ≈ n monomials suffice to solve for д; since
degy д̂ < dy/3 we might expect that degx дi ≈ 3n/dy suffice. Infor-

mally, by P being “balanced” we mean that all the д-polynomials

we need for reshaping will satisfy this “expected” degree constraint.

To handle point sets with repeated x-coordinates, we shear the
points by (α , β) 7→ (α + θβ, β), where θ ∈ L \K and L : K is a field

extension of degree 2. The resulting point set now has distinct x-
coordinates. This replaces f (x ,y) with f (x − θy,y), and whenever

degx f < degy f we stay within quasi-linear complexity if the

sheared point set is balanced.

Previous work. Quasi-linear complexity has been achieved for

multivariate MPE and interpolation on special point sets and mono-

mial support: Pan [17] gave an algorithm on grids, and van der

Hoeven and Schost [25] (see also [5, Sec. 2]) generalised this to

certain types of subsets of grids, constraining both the points and

the monomial support. See [25] for earlier work on interpolation,

achieving worse than quasi-linear complexity.

In classical univariate modular composition, we are given f ,G,R
inK[x] and seek f (R) remG . Brent and Kung’s baby-step giant-step

algorithm [3, 18] performs this operation in Õ(n(ω+1)/2), where ω
is the matrix multiplication exponent with best known bound ω <
2.37286 [12]. Nüsken and Ziegler [16] extended this to a bivariate

input f ∈ K[x ,y]: they showed how to compute f (x ,R) remG in

complexity O(degx f (degy f)(ω+1)/2), assuming that both degx R

and degx G are at most degx f degy f . They applied this result to

solve MPE in the same cost; in this paper, we use essentially the

same link between these problems. To the best of our knowledge,

this is currently the best known cost bound for these problems, in

the algebraic complexity model.

In a breakthough result, Kedlaya and Umans [10] achieved “al-

most linear” time for modular composition and MPE, for specific

types of fields K and in the bit complexity model. For univari-

ate modular composition, the cost is O(n1+ϵ) bit operations for
any ϵ > 0, while for MPE it is O((n + (degx f)2)1+ϵ), assuming

degy f < degx f (the algorithm also supports multivariate MPE).

Unfortunately, these algorithms have so far resisted attempts at a

practical implementation [24].

Our quasi-linear online complexities improve on the above re-

sults (including Kedlaya and Umans’ ones since quasi-linear com-

pares favorably to almost linear). However we stress that none

of the above algorithms have the two constraints of our work: al-

lowing precomputation on P, and genericity of P. For modular

composition, allowing precomputation on G was proposed in [23]

to leverage the factorisation structure of G. Except for slight bene-
fits of precomputation in the context of Brent and Kung’s modular

composition algorithm (used e.g. in the Flint and NTL libraries

[7, 21]), we are unaware of other work focusing on the use of pre-

computation for MPE, Interpolation, and Modular Composition.

Genericity has recently been used for such problems by Villard

[26], who showed how to efficiently compute the resultant of two

generic bivariate polynomials f ,д ∈ K[x ,y]; a particular case is the
computation of the characteristic polynomial of G ∈ K[x] in the

quotientK[x]/⟨G⟩ for givenR andG inK[x], with direct links to the
univariate composition f (R) remG [26, 27]. This led to an ongoing

work on achieving modular composition with exponent (ω + 2)/3
[14], thus improving upon Brent and Kung’s result but not reaching

quasi-linear complexity (even for ω = 2). In that line of work, the

main benefit from genericity is that the ideal ⟨G,y−R⟩ admits bases

formed bym polynomials of y-degree < m and x-degree at most

deg(G)/m, for a given parameter 2 ≤ m ≤ deg(G). Such a basis

is represented as an m ×m matrix over K[x] with all entries of

degree at most deg(G)/m, and one can then rely on fast univariate

polynomial matrix algorithms. One of the main contributions of

[26] is to show how to compute such a basis efficiently.

In this paper, genericity serves a purpose similar to that in [14,

26]: it ensures the existence of such bases for several parameters

m, and also of the reshapers д mentioned above; besides we make

use of these bases to precompute these reshapers. Note that, these

objects being only used in the precomputation stage, the speed

of computing them is not a main concern in this paper. Once the

reshapers are known, our algorithms work without requiring any

other genericity property.

Organisation. After some preliminaries in Section 2, we de-

scribe the reshaping strategy for an arbitrary ideal in Section 3.

Then Sections 4 to 6 give algorithms for each of the three problems.

We discuss precomputation in Section 7 and genericity in Section 8.

2 PRELIMINARIES
For complexity estimates, we use the algebraic RAM model and

count arithmetic operations in K. By M(n) we denote the cost of
multiplying two univariate polynomials over K of degree at most n.
We may take M(n) ∈ O(n logn log logn) ⊂ Õ(n) [4], or the slightly
faster [8]. Univariate division with remainder,qo_rem, has similar

cost O(M(n)), see e.g. [28, Theorem 9.6]. When degrees of a poly-

nomial, say f ∈ K[x], appears in a complexity estimates, we will

abuse notation and denote by degx f the quantity max(degx f , 1).
This shorthand makes e.g. the expression O(degx д degy д) denote

the time for e.g. scanning all coefficients of some д ∈ K[x ,y].
The following two results on univariate polynomials are well-

known, see e.g. [28, Corollaries 10.8 and 10.12]: firstly, given f ∈
K[x] and α1, . . . ,αn ∈ K, we may compute

(
f (αi)

)n
i=1 in time

O(M(degx f +n) logn) ⊆ Õ(degx f +n). Secondly, given α1, . . . ,αn ,
β1, . . . , βn ∈ K, we may compute the unique f ∈ K[x] with
degx f < n and f (αi) = βi for i = 1, . . . ,n in timeO(M(n) logn) ⊆
Õ(n). We will also use the fact that given f ,д ∈ K[x ,y], we may

compute the product f д in time O(M(dxdy)) ⊂ Õ(dxdy), where
dx = max(degx f , degx д) anddy = max(degy f , degy д), see e.g. [28,

Corollary 8.28].

For a bivariate polynomial f =
∑k
i=0 fi (x)y

i ∈ K[x ,y], we define
its y-leading coefficient as LCy (f) = fk ∈ K[x]. We say that f is

“y-monic” if LCy (f) = 1.

For our genericity results, we will invoke the following staple:

Generic bivariate multi-point evaluation, interpolation and modular composition with precomputation ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Lemma 2.1 (DeMillo-Lipton-Schwartz-Zippel [6, 20, 29]). Let
f ∈ K[x1, . . . ,xn] and T ⊆ K Let α1, . . . ,αk ∈ T be chosen in-
dependently and uniformly at random. Then the probability that
f (α1, . . . ,αk) = 0 is at most d/|T |, where d is the total degree of f .

2.1 Vanishing ideals of point sets
For a point set P ⊆ K2, we define its vanishing ideal as follows:

Γ(P) = {д ∈ K[x ,y] | д(P) = 0 for all P ∈ P} ⊆ K[x ,y] .

The x-valency of P, denoted by νx (P), is the maximal number of

y-coordinates for any given x-coordinate, i.e. maxα ∈K |{β ∈ K |
(α , β) ∈ P}|. When νx (P) = 1 then all the x-coordinates of P are

different.

The following is an explicit lex-ordered Gröbner basis for Γ(P):

Proposition 2.2. Let P ⊆ K2 be a point set and νx = νx (P), and
let να = |Yα | ≤ νx for each α ∈ K, where Yα = {β ∈ K | (α , β) ∈
P}. Define for each i = 0, . . . ,νx the set Xi =

{
α ∈ K

�� να > i
}
.

A Gröbner basis of Γ(P) according to the lex-order ≺ with x ≺ y is
given by G = {b0, . . . ,bνx } ⊂ K[x ,y] where

b0 =
∏
α ∈X0

(x − α) ∈ K[x] and bi = (y
i − b ′i)

∏
α ∈Xi

(x − α) ,

for i = 1, . . . ,νx , whereb ′i ∈ K[x ,y] is any polynomial with degy b
′
i <

i satisfying b ′i (α , β) = βi for each α ∈ X0 \ Xi and β ∈ Yα .
Such b ′i always exists. A minimal Gröbner basis G ′ ⊆ G is given
by G ′ = {bj | j ∈ J }, where J = {0} ∪ {1 ≤ j ≤ νx | Xj , Xj−1}.

The proof of Proposition 2.2 is in the appendix , but remark that

we can take b ′i to be

b ′i =
∑

α ∈X0\Xi

bi,α (y)
∏

α ′∈X0\(Xi∪{α })

x − α ′

α − α ′
. (1)

for i = 1, . . . ,νx , where bi,α ∈ K[y] is the interpolation polynomial

satisfying bi,α (β) = β
i
for each β ∈ Yα .

When νx (P) = 1 then Γ(P) = ⟨b0,y − r ⟩, where b0 ∈ K[x] is
as in the proposition and r ∈ K[x] is the interpolation polynomial

satisfying r (α) = β for each (α , β) ∈ P.
The following lemma bounds the cost of computing a reduced

Gröbner basis of Γ(P), which we use only to bound the complexity

of our precomputation; it rests on [2] which is currently in review.

The interpolation algorithm of that paper is a small generalisation

of Pan’s interpolation algorithm on grids [17].

Lemma 2.3. Given a point set P ⊆ K2 of size n, we can compute
a reduced Gröbner basis G ′ ⊂ K[x ,y] for Γ(P) according to the lex-
order ≺ with x ≺ y in Õ(nνx 3) operations in K, where νx = νx (P).

Proof. Use the notation of Proposition 2.2. For each i = 1, . . . ,νx ,
we need to compute a polynomial b ′i ∈ K[x ,y] such that b ′i (α , β) =

βi for each α ∈ X0 \Xi and β ∈ Yα . For each such α , then |Yα | < i .
Now [2, Theorem IV.5] shows that for any interpolation constraints

on such a point set, we can compute a polynomial with y-degree
less than i and x-degree less than ni := |X0 \ Xi | < n. The com-

plexity of this algorithm is Õ(ni i), so to compute all the b ′i costs

Õ(nνx
2). To obtain a reduced Gröbner basis, we then compute

bi = (. . . ((b
′
i remb ′i−1) remb ′i−2) . . .) remb ′

0
for i = 1, . . . ,νx at a

total cost of Õ(nνx
3). □

We define Γm (P) ⊂ Γ(P) to be the subset of polynomials of

y-degree less thanm. The following shows that Γm (P) is a K[x]-
module of rankm, and we can compute an explicit basis for it using

Lemma 2.3. The lemma follows from Lazard’s structure theorem

on lex-Gröbner bases of bivariate ideals [11], see the appendix .

Corollary 2.4. Let I ⊆ K[x ,y] be an ideal andG = {b0, . . . ,bs } ⊂
K[x ,y] a minimal Gröbner basis according to lex-order ≺ with x ≺ y.
For some m ∈ Z>0 let Im = { f ∈ I | degy f < m}. Let ŝ =
maxi {degy bi < m}, and let di = degy bi for i = 0, . . . , ŝ and
dŝ+1 = m. Then Im is a K[x]-module of rank m − degy b0 with a
basis B = {y jbi }i, j , where i = 0, . . . , ŝ and j = 0, . . . ,di+1 − di − 1.

3 RESHAPE
We first describe our “reshape” algorithm which takes f ∈ K[x ,y]

and an ideal I and finds
ˆf ∈ f + I whose y-degree is below some

target. This will pass through several intermediate elements of f + I
of progressively smaller y-degree. This sequence of y-degrees has
to be of the following form:

Definition 3.1. We say η = (η0)ki=0 ∈ Z
k+1
>0 is a (η0,ηk)-reshaping

sequence if ηi−1 > ηi ≥ ⌊ 2
3
ηi−1⌋ for i = 1, . . . ,k . Let I ⊆ K[x ,y] be

an ideal and η = (ηi)ki=0 a reshaping sequence. The tuple (дi)
k
i=1 ∈

Ik is an η-reshaper for I if for each i = 1, . . . ,k then дi = y
ηi + д̂i

where degy д̂i ≤ 2ηi − ηi−1.

Our algorithms are faster with short reshaping sequences, so we

should choose ηi ≈
2

3
ηi−1, and hence 2ηi − ηi−1 ≈

1

3
ηi . It is easy

to see that for any a,b ∈ Z>0, there is an (a,b)-reshaping sequence
of length at most log

3/2(a) + 1. We return in Section 3.1 to when

η-reshapers exist for vanishing ideals of point sets.

Algorithm 1 Reshape(f ,η,д)

Input: A reshaping sequence η = (ηi)ki=0 ∈ Z
k+1
>0 . η-reshaper

д = (дi)ki=1 ∈ I
k
for some ideal I ⊆ K[x ,y]. f ∈ K[x ,y] with

degy f < η0.

Output: ˆf ∈ f + I satisfying degy
ˆf < ηk and degx

ˆf ≤

degx f +
∑k
i=1 degx дi .

1:
ˆf ← f

2: for i = 1, . . . ,k do
3: Let

ˆf = ˆf1y
ηi + ˆf0, where degy

ˆf0 < ηi

4:
ˆf ← ˆf − ˆf1дi

5: return ˆf

Theorem 3.2. Algorithm 1 is correct and has complexity

Õ(k degy f degx f + k
∑k
i=1 ηi degx дi) .

Proof.
ˆf ∈ f +I since eachдi ∈ I . We turn to the degree bounds.

Let
ˆfi , ˆfi,0, ˆfi,1 be the values of ˆf , ˆf0 resp. ˆf1 at the end of iteration

i . We show the following loop-invariants, which imply the bounds

on the degrees on the output
ˆf :

• degx
ˆfi ≤ degx f +

∑i
j=1 degx дj ; and

• degy
ˆfi < ηi .

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Vincent Neiger, Johan Rosenkilde, and Grigory Solomatov

Both are true for i = 0, (just before the loop). For the x-degree

bound, then clearly degx
ˆfi ≤ degx

ˆfi−1 + degx дi , and the loop

invariant follows. For the y-degree bound, then write дi = y
ηi + д̂i ,

where degy д̂i ≤ 2ηi − ηi−1. We get that

ˆfi = ˆfi−1 − ˆfi,1(y
ηi + д̂i) = ˆfi,0 + ˆfi,1д̂i

Since degy
ˆfi,1 = degy

ˆfi−1 − ηi < ηi−1 − ηi , it follows that

degy (
ˆfi,1д̂i) < ηi , and since also degy

ˆfi,0 < ηi then degy
ˆfi < ηi .

For complexity, work is only done in Line 4. We can assume

η1 ≤ degy f for otherwise the algorithm could be called with the

same input but the first element of both η and д removed. Since

degy
ˆfi,1д̂i < ηi then the multiplication can be done in complexity

O(M(dxηi)), where dx = max(degx fi,1, degx д̂i). The addition in

the same line is only linear in the same amount since similar degree

bounds hold for
ˆfi,0. We get that the i’th iteration has cost

Õ
(
(degx

ˆfi,1 + degx д̂i)ηi
)
⊆ Õ((degx fi +

∑k
j=1 degx д̂j)ηi)

⊆ Õ(degx f degy f + ηi
∑k
j=1 degx д̂j)

Over all iterations, we get Õ(k degx f degy f +
∑k
i=1 ηi

∑k
j=1 degx д̂j).

Transpose the double-sum and use η1 > η2 > . . . > ηk to con-

clude. □

3.1 Reshapers for point sets
Definition 3.3. Let P ⊆ K2 be a point set with n = |P |, and let

η = (ηi)ki=0 be a reshaping sequence. Then P is “η-balanced” if

there exists an η-reshaper д = (дi)ki=1 ∈ K[x ,y] for Γ(P) such that

degx дi ≤
⌊

n
2ηi−ηi−1+1

⌋
+ 1 for i = 1, . . . ,k .

In Section 8 we prove that balancedness captures the expected
x-degree of a reshaping sequence. The following is crucial for our

complexity estimates:

Lemma 3.4. Let P ⊆ K2 be an η-balanced point set with |P | = n
for some reshaping sequence η = (ηi)ki=0, and д = (дi)

k
i=1 a corre-

sponding η-reshaper. Then
∑k
i=1 degx дi ≤

(3n+1)k
ηk

≤ (3n + 1)k .

Proof. Since ηi ≥ ⌊
2

3
ηi−1⌋ then 2ηi −ηi−1+1 ≥ ⌊

ηi−1
3
⌋+1 ≥

ηi
3
.

Then degx дi ≤
⌊

n
2ηi−ηi−1+1

⌋
+ 1 ≤ 3n

ηi + 1 ≤
3n
ηk
+ 1. □

Lemma 3.5. Let P ⊆ K2 be a point set andη = (ηi)ki=0 a reshaping
sequence. As long as δi := 2ηi−ηi−1+1 ≥ νx (P) for each i = 1, . . . ,k ,
there exists an η-reshaper д ∈ K[x ,y]k for Γ(д).

Proof. Let G = (bi)
νx (P)
i=0 be as in Proposition 2.2. Since bνx (P)

is y-monic, degy (y
η
remG) < νx (P) for any η ∈ Z>0, Hence we

may set дi = y
ηi − (yηi remG), and this yields an η-reshaper as

long as νx (P) ≤ δi . □

Corollary 3.6. Let P ⊆ K2 be a point set of cardinality n and
a,b ∈ Z>0 with n > a > b ≥ νx := γ (P). Then there is an (a,b)-
reshaping sequence η which satisfies the conditions of Lemma 3.5 and
has length k ≤ log

3/2(a) + 1 ∈ O(log(a)).

Proof. Let v = νx − 1 and let η′ = (η′
0
, . . . ,η′k) be any (a −

v,b − v)-reshaping sequence with k ≤ log
3/2(a − v) + 1. Now let

η = (η0, . . . ,ηk) be defined by ηi = η
′
i +v for i = 0, . . . ,k . It is not

hard to see that η is an (a,b)-reshaping sequence. Indeed, clearly
the endpoints are correct, and ηi−1 > ηi for i = 1, . . . ,k . Moreover,

ηi = η
′
i +v ≥ ⌊

2

3
η′i−1⌋ +v = ⌊

2

3
(ηi−1 −v)⌋ +v ≥ ⌊

2

3
ηi−1⌋ .

Finally, observe that

2ηi − ηi−1 + 1 = 2(η′i +v) − (η
′
i−1 +v) + 1

= 2η′i − η
′
i−1 +v + 1 > v + 1 = νx ,

which concludes the proof. □

4 MULTI-POINT EVALUATION
In this section we use reshaping for MPE with precomputation; i.e.

given a point set P ⊂ K2 upon which we are allowed to perform

precomputation, and a polynomial f ∈ K[x ,y] which is assumed to

be received at online time, compute f (P) for all P ∈ P. Algorithm 2

deals with the case νx (P) = 1, which we can reduce to an instance

of univariate MPE using Reshape. The cost of the Algorithm 2

follows directly from Theorem 3.2.

Algorithm 2 BivariateMPEd,η,P (f)

Preinput: d ∈ Z>0; a (d, 1)-reshaping sequence η. Point set
P = {(αi , βi)}

n
i=1 ⊂ K

2
with αi pairwise distinct.

Precomputation:
a: д← η-reshapers for Γ(P).
Input: f ∈ K[x ,y] with degy f < d .

Output:
(
f (α1, β1), . . . , f (αn , βn)

)
∈ Kn

1:
ˆf ← Reshape(f ,η,д) ∈ K[x]

2: return
(
ˆf (α1), . . . , ˆf (αn)

)
∈ Kn ▷ computed using univariate MPE

Theorem 4.1. Algorithm 2 is correct. If P is η-balanced and k ∈
O(log(n)), the complexity is Õ(degx f degy f + n).

Algorithm 2 can easily be extended to the case where νx (P) > 1

by partitioning P into νx (P) many subsets, each having x-valency
one. This approach also has quasi-linear complexity in the input

size as long as νx (P) ≪ n, or more precisely if nνx (P) ∈ Õ(n).
When νx (P) is large, this strategy is costly, and we proceed

instead by shearing the point set, as proposed byNüsken and Ziegler

[16], so that the resulting point set has distinct x-coordinates: by
taking θ ∈ L \ K, where L is an extension field of K of degree 2,

we apply the map (α , β) 7→ (α + θβ , β) to each element of P. The

problem then reduces to evaluating
ˆf = f (x − θy,y) at the sheared

points. To compute
ˆf [16] provides an algorithm with complexity

O(M(dx (dx +dy)) log(dx)). Algorithm 3 describes a basic algorithm

for this task which improves the cost on the logarithmic level.

Theorem 4.2. Algorithm 3 is correct and has complexity

O
(
(dx + dy)M(dx) log(dx)

)
⊂ Õ

(
dx (dx + dy)

)
.

Proof. For correctness we write f =
∑dx+dy
t=0

ˆht , where

ˆht =
∑
min(t,dx)
i=max(0,t−dy)

fi,t−ix
iyt−i

Generic bivariate multi-point evaluation, interpolation and modular composition with precomputation ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Algorithm 3 ShearPoly(h,θx ,θy)

Input: f =
∑dx
i=0

∑dy
j=0 fi, jx

iy j ∈ L[x ,y], where dx < |L|.

θx ,θy ∈ L with θx , 0.

Output: ˆf = f (θxx + θyy,y) with degx
ˆf ≤ dx and degy

ˆf ≤

dx + dy .
1: for t = 0, . . . ,dx + dy do
2: ht ←

∑
min(t,dx)
i=max(0,t−dy)

ft−i,iz
i ∈ L[z]

3: st ← ht (θxz + θy) ▷ Taylor shift

4:
ˆf ←

∑dx+dy
t=0 yt st (x/y)

5: return ˆf

are homogeneous polynomials. Since
ˆht (x ,y) = y

tht (x/y), we have

f (θxx + θyy,y) =
∑dx+dy
t=0 ytht

(
θx x+θyy

y

)
=
∑dx+dy
t=0 ytht

(
θx

x
y + θy

)
=
∑dx+dy
t=0 yt st (x/y).

For complexity we observe only computing the Taylor shifts st
costs operations in K. We use univariate MPE and interpolation: ŝt
is given by interpolating ŝt (zi) = st (θxzi + θy) for dx + 1 distinct
zi ∈ L. This costs O(M(dx) log(dx)) for each st . □

Algorithm 4 ValencyMPEd,η,P (f)

Preinput: d ∈ Z>0; a (d, 1)-reshaping sequence η. Point set
P = {(αi , βi)}

n
i=1 ⊂ K

2
with νx (P) > 1.

Precomputation:
a: L← extension field of K with [L : K] = 2

b:
ˆP ← {(αi + θyβi , βi)}

n
i=1 ⊂ L

2
, where θy ∈ L \ K

c: Do the precomputation of BivariateMPEd,η, ˆP
Input: f ∈ K[x ,y] with degy f + degy f < d .

Output:
(
f (α1, β1), . . . , f (αn , βn)

)
∈ Kn

1:
ˆf ← f (x − θyy,y) ▷ as ShearPoly(f , 1, −θy)

2: return BivariateMPEd,η, ˆP (
ˆf)

Theorem 4.3. Algorithm 4 is correct. If ˆP is η-balanced and the
length ofη is inO(log(n)), then it has complexity Õ(degx f (degx f +
degy f) + n).

5 INTERPOLATION
In this section we use reshaping for the interpolation problem in a

very similar setting: we preinput a point set P for precomputation,

and interpolation values at online time. When P are appropriately

balanced, we are able to solve the interpolation problem in quasi-

linear time (see Algorithm 5). The strategy is to first shear the

point set to have unique y-coordinates and then compute u ∈ L[y]
which interpolates the values on the sheared y-coordinates. We

then reshape this into r ∈ L[x ,y] with x- and y-degree roughly
√
n.

Shearing back this polynomial to interpolate the original point set

is now in quasi-linear time. We then use reshaping again to obtain

the target y-degree.

Algorithm 5 InterpolateP,η
1
,η

2
,dy,θx (γ)

Preinput: Point set P = {(αi , βi)}ni=1 ⊆ K
2
and dy ∈ Z>0

with ⌊
√
n⌋ + 1 ≥ dy ≥ νx (P). θx ∈ L a generator of the degree

2-extension L : K. An (n,dy)-reshaping sequence η = (ηi)ki=0
with ηk1 = ⌊

√
n⌋ for some k1 and satisfying the conditions of

Lemma 3.5.

Precomputation:
a: η

1
← (ηi)

k1
i=0 and η2 ← (ηi)

k
i=k1

.

b: д
1
← η

1
-reshapers for

ˆP := {(αi ,θxαi + βi)}
n
i=1.

c: д
2
← η

2
-reshapers for P.

Input: Interpolation values γ = (γi)ni=1 ∈ K
n
.

Output: f ∈ K[x ,y] satisfying: f (αi , βi) = γi for i =
1, . . . ,n, degy f < dy and degx f ≤ ⌊

√
n⌋ +

∑
д∈д

1

degx д +∑
д∈д

2

degx д.

1: u ∈ L[y] with degu < n and u(θxαi + βi) = γi for i = 1, . . . ,n
2: r ← Reshape(u,η

1
,д

1
) ∈ L[x ,y]

3: s ← r (x ,θxx + y) = s
′(y,x) ▷ s′ = ShearPoly(r (y, x), θx , 1)

4: Let s = s1 + θx s2, where s1, s2 ∈ K[x ,y]
5: f ← Reshape(s1,η2,д2) ∈ K[x ,y]
6: return f

Theorem 5.1. Algorithm 5 is correct and has complexity

Õ
(
k2(
√
n +

∑k1
j=1 degx д1, j)

2 +
∑
2

ℓ=1 kl
∑kℓ
j=1 ηℓ,k degx дℓ, j

)
.

If ˆP is η
1
-balanced and P is η

2
-balanced the complexity is Õ(n)

assuming that k1,k2 ∈ O(logn).

Proof. First note that it follows from Lemma 3.5 that д
1
and

д
2
actually exist since dy > νx (P). For correctness, observe that

θxαi + βi are pairwise distinct for i = 1, . . . ,n, so it makes sense

to compute u. Viewing u as an element of L[x ,y] with degx u = 0,

then u(αi ,θxαi + βi) = γi . By Theorem 3.2 then has the same

evaluations and degy r < ⌊
√
n⌋ and degx r ≤

∑k1
j=1 degx д1, j .

By Theorem 4.2, then s(x ,y) = r (x ,θxx+y), and hence s(αi , βi) =
s1(αi , βi) + θx s2(αi , βi) = γi for i = 1, . . . ,n. Since s1, s2 ∈ K[x ,y]
and all entries in γ are in K, we must have that s2(αi , βi) = 0 for

i = 1, . . . ,n, which implies that s1(αi , βi) = γi . We also then have

that degy s1 ≤ degy s < ⌊
√
n⌋ and

degx s1 ≤ degx s ≤ degy r + degx r ≤ ⌊
√
n⌋ +

∑k1
j=1 degx д1, j .

Finally, f (αi , βi) = γi for i = 1, . . . ,n, and degy f < dy , and

degx f ≤ ⌊
√
n⌋ +

∑k1
j=1 degx д1, j +

∑k2
j=1 degx д2, j .

The complexity estimate simply gathers the calls to Algorithm 1

and Algorithm 3. The relaxed cost under the balance assumptions

is due to Lemma 3.4. □

6 MODULAR COMPOSITION
We now turn to the following generalisation of the univariate mod-

ular composition problem: given G,R ∈ K[x] with n := degx G >
degx R as well as f ∈ K[x ,y], compute

f (x ,R(x)) remG(x) ∈ K[x] . (2)

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Vincent Neiger, Johan Rosenkilde, and Grigory Solomatov

We will consider the variant of the problem where G and R are

available for precomputation. Consider the ideal I = ⟨G,y − R⟩ ⊆
K[x ,y]. Computing (2) is tantamount to computing the unique

element of (f + I) ∩ K[x] of degree less than n. We can therefore

consider this a reshaping task: given f of some y-degree, reshape
it to one of y-degree 0 while keeping it fixed modulo I : this is
formalised as Algorithm 6.

Similar to the terminology for point sets, if η = (ηi)ki=0 is a

reshaping sequence, we say that I = ⟨G,y − R⟩ is η-balanced if

there exists an η-reshaper д = (дi)i=1, ...,k ∈ K[x ,y] for I such that

degx дi ≤
⌊

n
2ηi−ηi−1

⌋
+ 1.

Algorithm 6ModCompG,R,dy,η (f)

Preinput: G,R ∈ K[x] with n := degx G > degx R. A degree

bound dy ∈ Z>0 with dy ≤ n. A (dy , 1)-reshaping sequence η.
Precomputation:
a: д← η-reshapers for I .
Input: f ∈ K[x ,y] with degy f < dy .

Output: f (x ,R) remG ∈ K[x]

1:
ˆf ← Reshape(f ,η,д) ∈ K[x].

2: return ˆf remG.

Theorem 6.1. Algorithm 6 is correct. If ⟨G,y − R⟩ is balanced it
costs Õ(degx f degy f + n) whenever the length of η is in O(log(n)).

7 PRECOMPUTING RESHAPERS
We now describe algorithms for the precomputation of reshapers.

We use a canonical normal form of univariate polynomial matrices

called Popov form [19]. They exist for singular and rectangular

matrices, but we will only need the full-rank square case.

Definition 7.1. For any row vectorv ∈ K[x]1×δ its the row degree
denoted degv is the maximal degree among its entries. The pivot of
v is the rightmost entry ofv with degree equal to degv . A matrix

P = [pi j] ∈ K[x]
δ×δ

having full rank is in Popov form if pii is the
pivot of the i’th row, is monic and degpii > degpji for any j , i .

For a full-rank K[x]-moduleM ∈ K[x]δ×δ , there is a unique

P ∈ K[x]δ×δ in Popov form with RowSpK[x](P) = M. We say

that P is the Popov basis ofM. P has minimal row degrees in the

following sense: If N ∈ K[x]δ×δ is another basis of M, there

is a bijection ψ from the rows of P to the rows of N such that

degp ≤ degψ (p) for any row p ∈ K[x]1×δ of P . Any basis ofM

has the same determinant up to scalar multiplication, so we denote

by degdet(M) the degree of any of these. For the Popov basis P
then | cdeg P | = degdet P = degdet(M).

For any t = (ti)δi=1 ∈ Z≥0 let |t | =
∑δ
i=1 ti , and for any matrix

M ∈ K[x]δ×δ let cdeg(M) = (di)
δ
i=1 ∈ Z

δ
≥0
, where di denotes the

maximal degree in the i’th column ofM (and 0 if the column is 0),

for i = 1, . . . ,δ . The following result allows us to compute Popov

forms efficiently.

Proposition 7.2 ([15]). There is an algorithm which inputs a
nonsingular matrix M ∈ K[x]δ×δ and outputs the Popov basis of
RowSpK[x](M) using Õ(δ

ω−1 | cdeg(M)|) operations in K.

Popov forms are special cases of “row reduced forms” which en-

joy the Predictable Degree Property [9, Thm. 6.3-13], which implies

the following: if P ∈ K[x]δ×δ is the Popov basis ofM, then any row

vectorv ∈ K[x]1×δ can be written uniquely asv = v ′ +uP , where
cdeg(v ′) < degdet(P) entrywise. Furthermore,v ′ has minimal row

degree among all vectors of the cosetv +M. We will denotev ′ by

v rem P .

Proposition 7.3 ([15]). There is an algorithm which given P ∈

K[x]δ×δ in Popov form, andv ∈ K[x]1×δ with cdeg(v) < cdeg(P)+
| cdeg(P)| entrywise, computesv rem P using Õ(δω−1 | cdeg(P)|) op-
erations in K assuming that δ ∈ O(| cdeg(P)|).

In the following, we will convert between bivariate polynomials

and K[x]-matrices using the following map: for any δ ∈ Z>0 and

f =
∑δ−1
j=0 fj (x)y

j ∈ K[x ,y], we let

ϕδ (f) := [f0, . . . , fδ−1] ∈ K[x]
1×δ .

Note that ϕδ is a K[x]-module isomorphism which for every f ∈
K[x ,y] with degy f < δ satisfies degϕδ (f) = degx (f).

Algorithm 7 can be used to compute reshapers for any ideal I ⊆
K[x ,y] given a lex-ordered reduced Gröbner basis G = [b0, . . . ,bs]
of I . For simplicity, we consider only the case where I ∩ K[x] , ∅.

Algorithm 7 ComputeReshaper(G,η,δ)

Input: A reduced Gröbner basisG = {b1, . . . ,bs } with respect

to the lex-order ≺ with x ≺ y, for an ideal I ⊆ K[x ,y], such
that 0 = degy b1 < · · · < degy bs . η,δ ∈ Z>0 with δ < η.

Output: If it exists, д = yη − д̂ ∈ I with degy д̂ < δ and degx д̂

minimal. Otherwise “Fail”.

1: R ← yη remG
2: if degy R ≥ δ then return “Fail”

3: Bδ ← basis of Iδ = { f ∈ I | degy f < δ } by Corollary 2.4.

4: M ∈ K[x]δ×δ ← row-wise applying ϕδ to elements of Bδ .
5: P ← Popov basis of Iδ from the basisM
6: д̂← −ϕ−1δ (ϕδ (R) rem P) ∈ K[x ,y]

7: д← yη − д̂ ∈ K[x ,y]
8: return д

Theorem 7.4. Algorithm 7 is correct. It costs Õ(δω−1 degdet(ϕδ (Iδ))+
ηs degx b0), assuming η ∈ O(degdet(ϕδ (Iδ))).

Proof. If a satisfactoryд = yη−д̃ ∈ I exists, then degy (y
η
remG) ≤

degy (д̃) since G is a lex-ordered Gröbner basis with x ≺ y. Hence

the algorithm does not fail in Line 2.

For correctness of the output, observe that yη − R ∈ I so satis-

factory д = yη − д̃ all have д̃ ∈ R + Iδ . Now, д̂ of Line 6 is clearly

in R + Iδ since P is the Popov basis of Iδ , but also д̂ has minimal

x-degree in the coset R + Iδ . Hence among all д of the correct form,

the algorithm returns that of minimal x-degree.
For complexity, work is done in Lines 1, 5 and 6. Note that since

G is reduced then degx b0 > degx b1 > . . . > degx bs . This implies

that the diagonal elements inM are dominant in their columns and

hence | cdegM | = degdet(M) = degdet(P) = degdet(Iδ).

Generic bivariate multi-point evaluation, interpolation and modular composition with precomputation ISSAC ’20, July 20–23, 2020, Kalamata, Greece

For Line 1 we use van der Hoeven [22]: the multivariate division

algorithm computes q0, . . . ,qs ,R ∈ K[x ,y] such that yη = q0b0 +
. . . + qsbs + R, and the cost of the algorithm can be bounded as∑s

i=0 deg
◦
x (qibi) deg

◦
y (qibi) + deg

◦
x (r) deg

◦
y (r) ,

where deg
◦
x · denotes an a priori upper bound on the x-degree,

and similarly for deg
◦
y ·. Firstly since G is a lex-ordered Gröbner

basis, then deg
◦
y (qibi) ≤ degy (y

η) = η and deg
◦
y (r) ≤ η. For

the x-degrees, note that in an iteration of the division algorithm

where bi , i > 0 is used, then degx r < degx b0, where r is the

current remainder, since otherwise we would have used b0 as

degy b0 = 0. Hence degx (qi) ≤ degx (qiLM≺(bi)) < degx b0 and

so deg
◦
x (qibi) ≤ 2 degx b0. Similarly, deg

◦
x (r) < degx b0. Left is

only deg
◦
x (q0b0): since q0b0 = yη − q1b1 − . . . − qsbs − R, then

degx (q0b0) ≤ maxi
(
degx (qibi), degx (r)

)
≤ 2 degx b0. In total,

the cost of Line 1 becomes Õ(ηs degx b0).

Line 5 costs Õ(δω−1 | cdegM |) by Proposition 7.2 and Line 6 costs
Õ(δω−1 degdet(P)) since degx R < degx b0 < | cdeg P |. □

Corollary 7.5. Given a point set P ⊆ K2 of cardinality n and
a reshaping sequence η = (ηi)ki=0 with n ≥ ηk and satisfying the
conditions of Lemma 3.5, then we can determine if P is η-balanced
and compute an η-reshaper д = (дi)ki=1 for P where each element
has minimal possible x-degree in complexity Õ(kηω−1

0
n + η0νxnk).

Proof. Computing a reduced lex-ordered Gröbner basis G =
(bi)

νx
i=0 of Γ(P) first costs Õ(nνx

3) by Lemma 2.3. We then run

Algorithm 7 on input η = ηi and δi = 2ηi − ηi−1 + 1 > νx for

i = 1, . . . ,k .
We claim that for any δ > νx then degdet(ϕδ (Γδ (P))) = n: we

use the notation Xi from Proposition 2.2 and the basis B = [ˆbi]
δ−1
i=0

of Γδ (P) given by Corollary 2.4, and letM ∈ K[x]δ×δ be the matrix

whose rows are given by ϕ(B). Then degdet(Γδ (P)) = degdet(M)
since M is a basis for Γδ (P), and M is lower-triangular since the

degy
ˆbi = i , and so det(M) is the product of the LCy (ˆbi). For each

α ∈ K then x − α is going to divide LCy (ˆbi) for each i < να ,
i.e. (x − α) divides det(M) exactly να times. det(M) has no other

factors, so this gives in total n linear factors and so degdet(M) =
degdet(Γδi (P)) = n.

Thus the cost of each call to Algorithm 7 becomes Õ(ηω−1
0

n +
η0νxn). □

Corollary 7.6. Given G,R ∈ K[x] with n := degG > degR

and a reshaping sequence η = (ηi)ki=0 with n ≥ ηk , then we can
determine if I := ⟨G,y − R⟩ is η-balanced and compute a η-reshaper
д = (дi)ki=1 for P where each element has minimal possible x-degree
in complexity Õ(kηω−1

0
n).

Proof. For any δ , and using the notation of Algorithm 7, then

the basisM of Iδ is lower triangular with 1’s on the diagonal except

on the first rowwhere it hasG . Hence degdet(M) = degdet(ϕ(Iδ)) =
n. Using s = 1 and degx b0 = degx G = n, the cost follows from
Theorem 7.4. □

8 GENERICITY
In this section we prove that on random input, our algorithms will

usually display quasi-linear complexity, i.e. that random point sets

are usually balanced and that for random R,G then ⟨G,y − R⟩ is
balanced.

Lemma 8.1. Let α = [α1, . . . ,αn] ∈ Kn with αi , α j when i , j,
and let x ,y,y1, . . . ,yn be n+2 distinct variables (transcendental over
K). Consider for s ∈ Z>0 the following matrix As :

As =
[
Vs | DVs | . . . | D

m−1Vs
]
∈ K[y1, . . . ,yn]

n×ms , (3)

where D is the diagonal matrix with entries (y1, . . . ,yn), and Vs =
[α

j−1
i]i, j ∈ K

n×s . Then As has full rank min(n,ms).

Proof. if we specialise yi to α
s
i for i = 1, . . . ,n, we obtain a

matrix âs = [α
j−1
i]i, j ∈ K

n×ms
which is the n ×ms Vandermonde

matrix overα . Since the αi are distinct, this has full rankmin(n,ms).
Hence As must also be full rank over L. □

The columns ofAs correspond to monomials x iy j for a bivariate
polynomial p ∈ K[x ,y] with x-degree less than s and y-degree less
thanm. If p ∈ Γ(P) is a bivariate polynomial which vanishes on

all points in some point set P ⊂ K2 having distinct x-coordinates,
then we can consider Âs = (As) |yi→βi ∈ K

n×ms
to be the speciali-

sation of the yi variables to the values βi . Then the coefficients of

p, properly organised as a vector, will be in the right kernel of Âs .
We now determine the exact row degrees of the Popov basis Pm

of ϕm (Γm (P)) for a “random” point set. Note that Γm has rankm,

and so Pm is a full-rankm ×m matrix. The affine transformation λ
will be used for modular composition but will be just the identity

function for MPE and interpolation.

Lemma 8.2. Let α1, . . . ,αn ∈ K be distinct, let T ⊆ K a fi-
nite subset, and let λ : Kn → Kn be an affine transformation.
Let γ1, . . . ,γn ⊆ T be chosen independently and uniformly at ran-
dom, set (β1, . . . , βn) = λ(γ1, . . . ,γn), and set P = {(αi , βi)}ni=1. Let
m ∈ Z>0 with νx (P) < m ≤ n and let (d, t) =qo_rem(n,m). Let
Pm ∈ K[x]

m×m be the Popov basis of ϕm (Γm (P)). With probability
at least 1 − 2nm/|T | then Pm has exactlym − t rows of degree d and
t rows of degree d + 1. In particular degx Pm ≤ d + 1 with probability
at least 1 − 2nm/|T |.

Proof. Let p1, . . . ,pm ∈ K[x ,y] be the non-zero bivariate poly-

nomials corresponding to the rows of Pm . As in the proof of Corol-

lary 7.5, then degdet Pm = n and in particular

∑m
i=1 degx pi = n.

Let As ∈ K[y1, . . . ,yn]
n×ms

be as in Lemma 8.1, and let Âs =
(As) |yi→βi ∈ K

n×ms
. We know rank(As) = min(n,ms) for any

s ∈ Z>0. Consider first s = d : if degx pi < d for some row i , then
the coefficients of pi properly organised as a vector is in the right

kernel of Âd , and so rank(Âd) < rank(Ad) = md . In particular,

if we let the M ∈ K[y1, . . . ,yn] be one of the non-zeromd ×md
minors of Ad then M(β1, . . . , βn) = M(λ(γ1, . . . ,γn)) = 0. M has

degree at mostm − 1 in each variable, so the total degree of M is

less thannm. We can write λ(z1, . . . , zn) = (λ1, . . . , λn), where each
λi ∈ K[z1, . . . , zn] has total degree 1, and so the compositionM◦λ ∈
K[z1, . . . , zn] also has total degree less than nm. By Lemma 2.1 then

the probability that M(λ(γ1, . . . ,γn)) = 0 for independently and

uniformly randomly chosen γj ∈ T is at most nm/|T |.
Assume therefore that we are in a case where there are no

rows of Pm with degree less than d . If degx pi = d for some

ISSAC ’20, July 20–23, 2020, Kalamata, Greece Vincent Neiger, Johan Rosenkilde, and Grigory Solomatov

row i , then the coefficients of pi as a vector is in the right ker-

nel of Âd+1 ∈ K
n×m(d+1)

. By Lemma 8.1 then Ad+1 has a right-

kernel of dimension exactly m(d + 1) − n = m − t . Since the

rows of Pm are linearly independent over K[x], and therefore also

over K, this gives at most m − t rows of Pm with x-degree ex-

actly d whenever rank(Âd+1) = rank(Ad+1). We therefore consider

N ∈ K[y1, . . . ,yn] a non-zero n×n minor ofAd+1. Again N has to-

tal degree less than nm, and so the probability that N (β1, . . . , βn) =
N (λ(γ1, . . . ,γn)) = 0 for independently and uniformly randomly

chosen γj ∈ T is at most nm/|T |, and this then bounds the proba-

bility that rank(Âd+1) < rank(Ad+1).
Hence, with probability at least 1−2nd/|T | then Pm has no rows

of degree less than d and at mostm − t rows of degree exactly d .
The remaining t rows each have degree at least d + 1, while their
degrees must sum to

n − (m − t)d = (md + t) − (m − t)d = t(d + 1) .

Hence they each have degree exactly d + 1. □

Algorithm 7 for computing reshapers output a д = yη − д̂ with
degy д̂ < δ satisfying degx д̂ ≤ degx Pδ , where Pδ is the Popov

basis of Γδ (P). Lemma 8.2 states that generically we can expect

degx Pδ = ⌊
n
δ ⌋ + 1, and so when δ = 2ηi − ηi−1 + 1 in a reshaping

sequence, this exactly matches the definition of η-balanced.

Proposition 8.3. Let α1, . . . ,αn ∈ K be distinct, let T ⊆ K a
finite subset, and let λ : Kn → Kn be an affine transformation. Let
γ1, . . . ,γn ⊆ T be chosen independently and uniformly at random,
set (β1, . . . , βn) = λ(γ1, . . . ,γn), and set P = {(αi , βi)}ni=1. Let η =
(ηi)

k
i=0 be a reshaping sequence with η0 ≤ n and satisfying the

constraints of Lemma 3.5. With probability at least 1 − n2k
|T |

, then P
is η-balanced.

The above proposition directly applies to both ourMPE and inter-

polation algorithm on random point sets with unique x-coordinates.
There are many formulations depending on the type of randomness

one needs over the point sets; the following is a simple example of

such over finite fields:

Corollary 8.4. Let dy ,n ∈ Z>0 with dy ≤ n and Fq be a finite
field with q elements, and let P = {(αi , βi)}ni=1 ⊆ F

2

q be chosen
uniformly at random among point sets with cardinality n.

With probability at least
(
1 − n2

q
) (
1 −

3n2(log
3/2(n)+1)
q

)
over the

choice of P, there exists two deterministic algorithms with complexity
Õ(n) with the following behaviour:

(1) Input polynomial f ∈ Fq [x ,y] with degy f < dy , and output
(f (αi , βi))

n
i=1 ∈ F

n
q .

(2) Input interpolation values γ = (γi)ni=1 ∈ F
n
q , and output f ∈

Fq [x ,y] satisfying f (αi , βi) = γi for i = 1, . . . ,n, as well as
degy f < dy and degx f ≤ cn for some constant c which
depends only on n and dy .

Proof sketch. The probability simply bounds the probability

that P has unique x-coordinates and that it is balanced in all the

necessary ways. Corollary 3.6 there is an appropriate reshaping

sequence of length log
3/2(n) + 1 or less. □

We do not make a claim about the genericity of Algorithm 4:

indeed, due to the shearing in that algorithm, the arguments of this

section do not immediately apply. Lastly, we turn to the genericity

of modular composition:

Theorem 8.5. Let G ∈ K[x] be square-free with degree n, let
dy ∈ Z>0 with dy ≤ n and let η be a (dy , 1)-reshaping sequence of
length k . Let T ⊆ K be a finite subset, and let R ∈ K[x] be chosen
uniformly at random of degree less than n with coefficients from T .
Then I = ⟨G,y − R⟩ is η-balanced with probability at least 1 − n2k

|T |
.

Proof. Let L : K be the splitting field of G, so there exists

α1, . . . ,αn ∈ L such that G =
∏n

i=1(x − αi), where n = degx G.

SinceG is square-free then theαi are distinct.WriteR =
∑n−1
i=0 rix

i−1
,

where the ri ∈ T are chosen independently and uniformly at ran-

dom, and define the dependent stochastic variables βi = R(αi) for
i = 1, . . . ,n. Then the map λ(r0, . . . , rn−1) = (β1, . . . , βn) is an L-
linear transformation. Consider the point set P = {(αi , βi)}

n
i=1 ⊆

L2. Proposition 8.3 implies that P is η-balanced with probabil-

ity at least 1 − n2k
|T |

. In such a case, for each i there is a poly-

nomial дi = yηi + д̂i ∈ IL where, degy д̂i < 2ηi − ηi−1 and

degx д̂i ≤ ⌊
n

2ηi−ηi−1 ⌋ + 1, and where IL = ⟨G,y − R⟩L[x,y] is the

closure of I over L[x ,y]. Write дi over a power basis of L : K, say
{1, ζ , . . . , ζ s−1} ⊂ L, i.e. дi = дi,0 + ζдi,1 + . . . + ζ

s−1дi,s−1, with
дi, j ∈ K[x ,y]. Since IL is the closure of I over K[x ,y], then дi ∈ IL
implies that дi,0 ∈ I , and by the shape of дi then дi,0 = y

ηi + ˆдi,0
where the x- and y-degree of дi,0 satisfy the same bounds as д̂i .

Then the tuple д
0
= (д1,0, . . . , ˆдk,0) ∈ K[x ,y]

k
forms a balanced

η-reshaper for I . □

REFERENCES
[1] E. F. Assmus and J. D. Key. 1992. Designs and Their Codes. Cambridge University

Press.

[2] Peter Beelen, Johan Rosenkilde, and Grigory Solomatov. [n.d.]. Fast Encoding of

AG Codes over Cab Curves. http://jsrn.dk/publications.html#2020-ieee-cab-enc

Submitted to IEEE Trans. of Information Theory.

[3] R. P. Brent and H. T. Kung. 1978. Fast Algorithms for Manipulating Formal Power

Series. J. ACM 25, 4 (Oct. 1978), 581–595. https://doi.org/10.1145/322092.322099

[4] David G. Cantor and Erich Kaltofen. 1991. On fast multiplication of polynomials

over arbitrary algebras. Acta Informatica 28, 7 (July 1991), 693–701. https:

//doi.org/10.1007/BF01178683

[5] Nicholas Coxon. 2018. Fast systematic encoding of multiplicity codes. Journal of
Symbolic Computation (Aug. 2018). https://doi.org/10.1016/j.jsc.2018.08.005

[6] R. A. DeMillo and R. J. Lipton. 1978. A Probabilistic Remark on Algebraic Program

Testing. 7, 4 (1978), 193–195. https://doi.org/10.1016/0020-0190(78)90067-4

[7] W. Hart, F. Johansson, and S. Pancratz. 2015. FLINT: Fast Library for Number

Theory. Version 2.5.2, http://flintlib.org.

[8] David Harvey, Joris Van Der Hoeven, and Grégoire Lecerf. 2017. Faster polyno-

mial multiplication over finite fields. J. ACM 63, 6 (Feb. 2017). https://hal.archives-

ouvertes.fr/hal-01022757/document

[9] T Kailath. 1980. Linear Systems. Prentice-Hall.
[10] K. Kedlaya and C. Umans. 2011. Fast Polynomial Factorization and Modular

Composition. SIAM J. Comput. 40, 6 (Jan. 2011), 1767–1802. https://doi.org/10.

1137/08073408X

[11] Daniel Lazard. 1985. Ideal bases and primary decomposition: case of two variables.

Journal of Symbolic Computation 1, 3 (1985), 261–270.

[12] François Le Gall. 2014. Powers of tensors and fast matrix multiplication. In

Proceedings of the 39th int. symp. on symbolic and algebraic comp. ACM, 296–303.

[13] Shinji Miura. 1993. Algebraic geometric codes on certain plane curves. Electronics
and Communications in Japan (Part III: Fundamental Electronic Science) 76, 12
(Jan. 1993), 1–13. https://doi.org/10.1002/ecjc.4430761201

[14] Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard. 2020. Faster modular

composition (work in progress).

[15] Vincent Neiger and Thi Xuan Vu. 2017. Computing Canonical Bases of Modules

of Univariate Relations. In International Symposium on Symbolic and Algebraic
Computation. 8. https://hal.inria.fr/hal-01457979/document

http://jsrn.dk/publications.html#2020-ieee-cab-enc
https://doi.org/10.1145/322092.322099
https://doi.org/10.1007/BF01178683
https://doi.org/10.1007/BF01178683
https://doi.org/10.1016/j.jsc.2018.08.005
https://doi.org/10.1016/0020-0190(78)90067-4
http://flintlib.org
https://hal.archives-ouvertes.fr/hal-01022757/document
https://hal.archives-ouvertes.fr/hal-01022757/document
https://doi.org/10.1137/08073408X
https://doi.org/10.1137/08073408X
https://doi.org/10.1002/ecjc.4430761201
https://hal.inria.fr/hal-01457979/document

Generic bivariate multi-point evaluation, interpolation and modular composition with precomputation ISSAC ’20, July 20–23, 2020, Kalamata, Greece

[16] Michael Nüsken and Martin Ziegler. 2004. Fast Multipoint Evaluation of Bivariate

Polynomials. In Algorithms – ESA 2004, Susanne Albers and Tomasz Radzik (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 544–555.

[17] Victor Y. Pan. 1994. Simple Multivariate Polynomial Multiplication. Journal of
Sym. Comp. 18, 3 (Sept. 1994), 183–186. https://doi.org/10.1006/jsco.1994.1042

[18] Michael S Paterson and Larry J Stockmeyer. 1973. On the number of nonscalar

multiplications necessary to evaluate polynomials. SIAM J. Comput. 2, 1 (1973),
60–66.

[19] V Popov. 1970. Some properties of the control systems with irreducible matrix-

transfer functions. In Seminar on Diff. Eq. and Dyn. Sys., II. 169–180.
[20] J. T. Schwartz. 1980. Fast Probabilistic Algorithms for Verification of Polynomial

Identities. 27, 4 (1980), 701–717. https://doi.org/10.1145/322217.322225

[21] V. Shoup. 2020. NTL: A Library for doing Number Theory, version 11.4.3.

http://www.shoup.net.
[22] Joris Van Der Hoeven. 2015. On the complexity of multivariate polynomial

division. In Special Sessions in App. of Computer Algebra. Springer, 447–458.
[23] Joris van der Hoeven and Grégoire Lecerf. 2018. Modular composition via

factorization. Journal of Complexity 48 (Oct. 2018), 36–68. https://doi.org/10.

1016/j.jco.2018.05.002

[24] Joris van der Hoeven and Grégoire Lecerf. 2019. Fast multivariate multi-point

evaluation revisited. Journal of Complexity (April 2019). https://doi.org/10.1016/

j.jco.2019.04.001

[25] Joris Van Der Hoeven and Éric Schost. 2013. Multi-point evaluation in higher

dimensions. Applicable Algebra in Engineering, Communication and Computing
24, 1 (2013), 37–52.

[26] Gilles Villard. 2018. On computing the resultant of generic bivariate polynomials.

In Proc. of the 2018 ACM Int. Symp. on Symbolic and Algebraic Comp. 391–398.
[27] Gilles Villard. 2018. On computing the resultant of generic bivariate polynomials.

Presentation at ISSAC 2018. http://www.issac-conference.org/2018/slides/villard-

computingresultant.pdf

[28] J. von zur Gathen and J. Gerhard. 2012. Modern Computer Algebra (3rd ed.).

Cambridge University Press.

[29] R. Zippel. 1979. Probabilistic algorithms for sparse polynomials. In EUROSAM’79
(LNCS), Vol. 72. Springer, 216–226. https://doi.org/10.1007/3-540-09519-5_73

A PROOFS
Proof of Proposition 2.2. Note first that X0 is the set of all

x-coordinates in P, and X0 ⊇ X1 ⊇ . . . ⊇ Xνx−1 ⊋ Xνx = ∅.
We may choose b ′i as in (1): For each i and α there are να interpo-

lation constraints on bi,α , and since α < Xi then να < i . Hence we
can satisfy the interpolation constraints while degy bi,α < i . There-

fore degy bi = i for all i = 0, . . . , s , and LCy (bi) =
∏

α ∈Xi (x − α).

We claim bi ∈ Γ(P): indeed, the partial application bi (α ,y) = 0

for each α ∈ Xi , and bi (α , β) = 0 for each α ∈ X0 \Xi and β ∈ {β ∈
K | (α , β) ∈ P}. This shows the claim.

Now we should prove that Γ(P) is generated by G. We proceed

by induction on the i ∈ Z≥0 where f ∈ Γ(P) has y-degree i . We

first take i < νx . Consider the partial application f (α ,y) ∈ K[y]
for some α ∈ Xi . This has y-degree at most i but needs to have at

least i + 1 roots {β ∈ K | (α , β) ∈ P}. Hence f (α ,y) = 0 for each

α ∈ Xi and so

∏
α ∈Xi (x − α) | f . Therefore there is a q ∈ K[x]

such that degy (f − qbi) < i . If i = 0 then we must have f = qb0,

i.e. f ∈ Γ(P), and so by induction when 0 < i < νx , we also get

f ∈ Γ(P). For i ≥ νx , observe that bνx is y-monic and hence there

is q ∈ K[x ,y] such that degy (f − qbνx) < νx . Hence ⟨G⟩ = Γ(P).

In fact, this shows that any element of ⟨G⟩ reduces to zero when

divided by G with the bivariate division algorithm according to ≺,

and hence G is a Gröbner basis.

Consider nowG ′. For each bi for i < J then LCy (bi) = LC(bi−1),
and hence removing bi fromG does not change the ideal generated.

Hence ⟨G ′⟩ = ⟨G⟩ = Γ(P), and G ′ is also a Gröbner basis. Observe

that for j ∈ J then LT≺(bj) is not divisible by any LT≺(bi) for
i ∈ J \ {j}, since degy bj < degy bi for j < i and degx (LCy (bj)) >
degx (LCy (bi)) for i < j since Xi ⊊ Xj . Also LC≺(bj) = 1 for all

j = 0, . . . ,νx and hence G ′ is a minimal Gröbner basis. □

The following is a simplification of Lazard’s structure theorem

of ideals of bivariate polynomials [11], which we use for the proof

of Corollary 2.4:

PropositionA.1. Let I ⊆ K[x ,y] be an ideal andG = {b1, . . . ,bs } ⊂
K[x ,y] a minimal Gröbner basis according to the lex-order ≺ with
x ≺ y with G ordered by increasing ≺-order. Then

(1) degy b1 < degy b2 < . . . < degy bs ; and
(2) LCy (bi+1) | LCy (bi) for i = 1, . . . , s − 1.

Proof of Corollary 2.4. ThatM is an K[x]-module follows

simply from I being an ideal of K[x ,y], and in particular closed

under addition and multiplication byK[x]-elements, which is there-

fore inherited byM. Clearly B ⊆ M, and the elements of B all

have different y-degree and so are K[x]-linearly independent. Also

|B | =m − degy b1, so if B generatesM then it is a basis and hence

the rank ofM ism − degy b1. Left is only show that B generates

M, so take some f ∈ M. Since f ∈ I the multivariate division al-

gorithm usingG and the lex-order ≺ results in q1, . . . ,qs ∈ K[x ,y]
so f = q1b1 + . . . + qsbs with degy qi ≤ degy f − degy bi . Since

degy f < m this means qŝ+1 = . . . = qs = 0. Say that in each itera-

tion of the division algorithm, we use the greatest index i for which
LT≺(bi) divides the leading term of the current remainder. This

means that no term of qibi is divisible by LM≺(bi+1) for any i < s .
But by Proposition A.1 then LCy (bi+1) divides LCy (bi), and so if

degy (qibi) ≥ degy bi+1 then LM(bi+1) | LM(qibi). Consequently
degy qi < degy bi+1 − degy bi , and hence f is in the K[x]-span of

B. □

https://doi.org/10.1006/jsco.1994.1042
https://doi.org/10.1145/322217.322225
https://doi.org/10.1016/j.jco.2018.05.002
https://doi.org/10.1016/j.jco.2018.05.002
https://doi.org/10.1016/j.jco.2019.04.001
https://doi.org/10.1016/j.jco.2019.04.001
http://www.issac-conference.org/2018/slides/villard-computingresultant.pdf
http://www.issac-conference.org/2018/slides/villard-computingresultant.pdf
https://doi.org/10.1007/3-540-09519-5_73

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Vanishing ideals of point sets

	3 Reshape
	3.1 Reshapers for point sets

	4 Multi-Point Evaluation
	5 Interpolation
	6 Modular Composition
	7 Precomputing Reshapers
	8 Genericity
	References
	A Proofs

