Vincent Neiger

Johan Rosenkilde

Grigory Solomatov

Generic Bivariate Multi-point Evaluation, Interpolation and Modular Composition with Precomputation

Keywords: Multi-point evaluation, interpolation, modular composition, bivariate polynomials, precomputation

Suppose K is a large enough field and P ⊂ K 2 is a fixed, generic set of points which is available for precomputation. We introduce a technique called reshaping which allows us to design quasi-linear algorithms for both: computing the evaluations of an input polynomial f ∈ K[x, y] at all points of P; and computing an interpolant f ∈ K[x, y] which takes prescribed values on P and satisfies an input y-degree bound. Our genericity assumption is explicit and we prove that it holds for most point sets over a large enough field. If P violates the assumption, our algorithms still work and the performance degrades smoothly according to a distance from being generic. To show that the reshaping technique may have an impact on other related problems, we apply it to modular composition: suppose generic polynomials M ∈ K[x] and A ∈ K[x] are available for precomputation, then given an input f ∈ K[x, y] we show how to compute f (x, A(x)) rem M(x) in quasi-linear time.

INTRODUCTION

Outline. Let K be an effective field. We consider the three classical problems for bivariate polynomials K[x, y] mentioned in the title. We assume a model where part of the input is given early as preinput which is available for heavier computation, and the primary goal is to keep the complexity of the online phase, once the remaining part of the input is given, to a minimum.

Multi-point evaluation (MPE): with preinput a point set

P = {(α i , β i)} n i=1 ⊆ K 2 and input f ∈ K[x, y], compute f (α i , β i) n i=1
. We give two algorithms: the first requires pairwise distinct α i 's and has online complexity Õ(deg x f deg y f + n) as long as P is balanced, a notion described below; the second accepts repeated xcoordinates with online complexity Õ(deg x f (deg x f +deg y f)+n) as long as a certain "shearing" of P is balanced. "soft-O" ignores logarithmic terms: O(f (n)(log f (n)) c) ⊂ Õ(f (n)) for any c ∈ Z ≥0 .

Interpolation: with preinput a point set P as before, and input values γ ∈ K n , compute f ∈ K[x, y] such that f (α i , β i) n i=1 = γ , satisfying some constraints on the monomial support. We give an algorithm which preinputs a degree bound d and outputs f such that deg y f < d and deg x f ∈ O(n/d). The online complexity is Õ(n) if P and a shearing of P are both balanced; d should exceed the x-valency of P, i.e. the maximal number of y-coordinates for any given x-coordinate.

Modular composition: with preinput M, A ∈ K[x], we input f ∈ K[x, y] and compute f (x, A) rem M. Our algorithm has online complexity Õ(deg x f deg y f + deg A + deg M), as long as the bivariate ideal ⟨M, y -A⟩ is balanced.

We prove that if P ⊆ K 2 is random of fixed cardinality n, and if |K| ≫ n 2 log(n) then P is balanced with high probability. Similarly, if M is square-free and A is uniformly random of degree less than deg M, then ⟨M, y -A⟩ is balanced with high probability. Our proof techniques currently do not extend to proving that sheared point sets are balanced. A few trials we conducted suggest that this may often be the case if the x-valency of P is not too high. The cost of the second MPE algorithm is not symmetric in the xand y-degree, so whenever deg x f < deg y f one should consider transposing the input, i.e. evaluating f (y, x) on {(β i , α i)} n i=1 . In this case, the balancedness assumption is on the transposed point set.

Our algorithms are deterministic, and once the preinput has been processed, the user knows whether it is balanced and hence whether the algorithms will perform well. Further, the performance of our algorithms deteriorates smoothly with how "unbalanced" the preinput is, in the sense of certain polynomials, which depend only on preinput, having sufficiently well behaved degrees. In a toolbox one might therefore apply our algorithms whenever the preinput turns out to be sufficiently balanced and reverting to other algorithms on very unbalanced preinput.

A typical use of precomputation is if we compute e.g. MPEs on the same point set for many different polynomials. This occurs in coding theory, where bivariate MPE corresponds to the encoding stage of certain families of codes such as some Reed-Muller codes [START_REF] Assmus | Designs and Their Codes[END_REF]Chap. 5] and some algebraic-geometric codes [START_REF] Miura | Algebraic geometric codes on certain plane curves[END_REF]: here P is fixed and communication consists of a long series of bivariate MPEs on P. In these applications, P is often not random but chosen carefully, and so our genericity assumptions might not apply.

Techniques. We introduce a tool we call reshaping for achieving the following: given an ideal I ⊆ K[x, y] and f ∈ K[x, y], compute f ∈ f + I with smaller y-degree. For instance in MPE, we let Γ ⊂ K[x, y] be the ideal of polynomials which vanish on all the points P. Then all elements of f + Γ have the same evaluations on P, so we compute a f ∈ f + Γ of y-degree 0 (it exists if P has distinct x-coordinates), and then apply fast univariate MPE.

An obvious idea to accomplish this iteratively is to find some д ∈ Γ of lower y-degree than f and whose leading y-term is 1, and then compute f = f rem д. The problem is that the x-degree of f may now be as large as deg x f + (deg y fdeg y д) deg x д. Our idea is to seek polynomials д that we call reshapers, which have the form д = y 2d /3д , where deg y д < d/3 and d = deg y f +1 (for simplicity, here 3 divides d). Writing f = f 1 y 2d /3 + f 0 with deg y f 0 < 2d/3, then f = f 1 д + f 0 is easy to compute, has y-degree less than 2d/3, and x-degree only deg x f + deg x д. Repeating such a reduction O(log(d)) times with reshapers of progressively smaller y-degree, we eventually reach y-degree 0.

For efficiency, we therefore need the x-degrees of all these reshapers д to be small. For MPE, stating that д ∈ Γ specifies n linear contraints on the coefficients of д, so we look for д with about n monomials. Generically, since deg y д ≈ d/3, one may expect to find д with deg x д ≈ 3n/d. Informally, P is balanced if all the reshapers needed in the above process satisfy this degree constraint.

Above, we assumed the point set has distinct x-coordinates. To handle repetitions, we shear the points by (α, β) → (α + θ β, β), where θ generates an extension field of K of degree 2. The resulting point set has distinct x-coordinates. This replaces f (x, y) with f (xθy, y), and whenever deg x f < deg y f we stay within quasi-linear complexity if the sheared point set is balanced.

Previous work. Quasi-linear complexity has been achieved for multivariate MPE and interpolation on special point sets and monomial support: Pan [START_REF] Pan | Simple Multivariate Polynomial Multiplication[END_REF] gave an algorithm on grids, and van der Hoeven and Schost [START_REF] Van Der Hoeven | Multi-point evaluation in higher dimensions[END_REF] (see also [START_REF] Coxon | Fast systematic encoding of multiplicity codes[END_REF]Sec. 2]) generalised this to certain types of subsets of grids, constraining both the points and the monomial support. See [START_REF] Van Der Hoeven | Multi-point evaluation in higher dimensions[END_REF] for references to earlier work on interpolation, not achieving quasi-linear complexity.

In classical univariate modular composition, we are given f , M, A in K[x] and seek f (A) rem M. Brent and Kung's baby-step giantstep algorithm [START_REF] Brent | Fast Algorithms for Manipulating Formal Power Series[END_REF][START_REF] Paterson | On the number of nonscalar multiplications necessary to evaluate polynomials[END_REF] performs this operation in Õ(n (ω+1)/2), where ω is the matrix multiplication exponent with best known bound ω < 2.373 [START_REF] Gall | Powers of tensors and fast matrix multiplication[END_REF]. Nüsken and Ziegler [START_REF] Nüsken | Fast Multipoint Evaluation of Bivariate Polynomials[END_REF] extended this to a bivariate f , computing f (x, A) rem M in complexity O(deg x f (deg y f) (ω+1)/2), assuming that A and M have degree at most deg x f deg y f . They applied this to solve MPE in the same cost; in this paper, we use essentially the same link between these problems. To the best of our knowledge, this is currently the best known cost bound for these problems, in the algebraic complexity model.

In a breakthough, Kedlaya and Umans [START_REF] Kedlaya | Fast Polynomial Factorization and Modular Composition[END_REF] achieved "almost linear" time for modular composition and MPE, for specific types of fields K and in the bit complexity model. For modular composition, the cost is O(n 1+ϵ) bit operations for any ϵ > 0, while for MPE it is O((n + (deg x f) 2) 1+ϵ), assuming deg y f < deg x f (the algorithm also supports multivariate MPE). Unfortunately, these algorithms have so far resisted attempts at a practical implementation [START_REF] Van Der Hoeven | Fast multivariate multi-point evaluation revisited[END_REF].

Our quasi-linear complexities improve upon the above results (including Kedlaya and Umans' ones since quasi-linear compares favorably to almost linear); however we stress that none of the latter have the two constraints of our work: allowing precomputation, and genericity assumption. For modular composition, precomputation on M was suggested in [START_REF] Van Der Hoeven | Modular composition via factorization[END_REF] to leverage its factorisation structure. Except for slight benefits of precomputation in Brent and Kung's modular composition (used in the Flint and NTL libraries [START_REF] Hart | FLINT: Fast Library for Number Theory[END_REF][START_REF] Shoup | NTL: A Library for doing Number Theory[END_REF]), we are unaware of previous work focusing on the use of precomputation for MPE, Interpolation, and Modular Composition.

Genericity has recently been used by Villard [START_REF] Villard | On computing the resultant of generic bivariate polynomials[END_REF], who showed how to efficiently compute the resultant of two generic bivariate polynomials; a specific case computes, for given univariate M and A, the characteristic polynomial of A in K[x]/⟨M⟩, with direct links to the modular composition f (A) rem M [START_REF] Villard | On computing the resultant of generic bivariate polynomials[END_REF][START_REF] Villard | On computing the resultant of generic bivariate polynomials[END_REF]. This led to an ongoing work on achieving exponent (ω + 2)/3 for modular composition [START_REF] Neiger | Faster modular composition[END_REF]. In that line, the main benefit from genericity is that ⟨M, y -A⟩ admits bases formed by m polynomials of y-degree < m and xdegree at most deg(M)/m, for a given parameter 2 ≤ m ≤ deg(M). Such a basis is represented as an m × m matrix over K[x] with all entries of degree at most deg(M)/m, and one can then rely on fast univariate polynomial matrix algorithms. In this paper, genericity serves a purpose similar to that in [START_REF] Neiger | Faster modular composition[END_REF][START_REF] Villard | On computing the resultant of generic bivariate polynomials[END_REF]: it ensures the existence of such bases for several parameters m, and also of the reshapers д mentioned above; besides we make use of these bases to precompute these reshapers. Whereas an important contribution of [START_REF] Villard | On computing the resultant of generic bivariate polynomials[END_REF] is the efficient computation of such bases, here they are only used to find reshapers in the precomputation stage and the speed of computing them is not a main concern. Once the reshapers are known, our algorithms work without requiring any other genericity property.

Organisation. After some preliminaries in Section 2, we describe the reshaping strategy for an arbitrary ideal in Section 3. Then Sections 4 to 6 give algorithms for each of the three problems. We discuss precomputation in Section 7 and genericity in Section 8.

PRELIMINARIES

For complexity estimates, we use the algebraic RAM model and count arithmetic operations in K. By M(n) we denote the cost of multiplying two univariate polynomials over K of degree at most n; one may take M(n) ∈ O(n log n log log n) ⊂ Õ(n) [START_REF] Cantor | On fast multiplication of polynomials over arbitrary algebras[END_REF]. Division with remainder in K[x] also costs O(M(n)) [START_REF] Zur Gathen | Modern Computer Algebra[END_REF]Thm. 9.6]. When degrees of a polynomial, say f ∈ K[x, y], appear in complexity estimates, we abuse notation and let deg x f denote max(deg x f , 1).

It is well-known that univariate interpolation and multi-point evaluation can be done in quasi-linear time [START_REF] Zur Gathen | Modern Computer Algebra[END_REF]Cor. 10.8 and 10.12]:

given f ∈ K[x] and α 1 , . . . , α n ∈ K, we may compute f (α i) n i=1 in time O(M(deg x f + n) log n) ⊆ Õ(deg x f + n); given α 1 , . . . ,

For a bivariate polynomial

f = k i=0 f i (x)y i ∈ K[x, y] such that f k 0, we define its y-leading coefficient as LC y (f) = f k ∈ K[x].
For our genericity results, we will invoke the following staple: Lemma 2.1 (DeMillo-Lipton-Schwartz-Zippel [START_REF] Demillo | A Probabilistic Remark on Algebraic Program Testing[END_REF][START_REF] Schwartz | Fast Probabilistic Algorithms for Verification of Polynomial Identities[END_REF][START_REF] Zippel | Probabilistic algorithms for sparse polynomials[END_REF]). Let f ∈ K[x 1 , . . . , x n] be non-zero of total degree d, and T ⊆ K be finite. For α 1 , . . . , α k ∈ T chosen independently and uniformly at random, the probability that

f (α 1 , . . . , α k) = 0 is at most d/|T |.
For a point set P ⊆ K 2 , the x-valency of P, denoted by ν x (P), is the largest number of y-coordinates for any given x-coordinate, i.e.

ν x (P) = max α ∈K |{β ∈ K | (α, β) ∈ P}| .
When ν x (P) = 1, the x-coordinates of P are pairwise distinct.

The vanishing ideal of P is the bivariate ideal

Γ(P) = { f ∈ K[x, y] | f (α, β) = 0 for all (α, β) ∈ P} ,
Hereafter, ≺ lex stands for the lexicographic order on K[x, y] with x ≺ lex y, and

LT lex (f) is the ≺ lex -leading term of f ∈ K[x, y].
The following is folklore and follows e.g. from [START_REF] Lazard | Ideal bases and primary decomposition: case of two variables[END_REF] and [START_REF] Dahan | Size of Coefficients of Lexicographical Gröbner Bases: The Zero-Dimensional, Radical and Bivariate Case[END_REF]Thm. 3].

Lemma 2.2. Let P ⊂ K 2 be a point set of cardinality n and let G = {д 1 , . . . , д s } be the reduced ≺ lex -Gröbner basis of Γ(P), ordered by ≺ lex . Then д 1 ∈ K[x], and д s is y-monic with deg y д s = ν x (P).

RESHAPE

We first describe our algorithm Reshape which takes f ∈ K[x, y] and an ideal I and finds f ∈ f + I whose y-degree is below some target. This will pass through several intermediate elements of f +I of progressively smaller y-degree. This sequence of y-degrees has the following form:

Definition 3.1. We say η = (η i) k i=0 ∈ Z k +1 >0 is a (η 0 , η k)-reshaping sequence if η i-1 > η i ≥ ⌊ 2 3 η i-1 ⌋ for i = 1, . . . , k. For I ⊆ K[x, y] an ideal and η = (η i) k i=0 a reshaping sequence, we say д = (д i) k i=1 ∈ I k is an η-reshaper for I if д i = y η i + дi where deg y дi ≤ 2η i -η i-1 , for each i = 1, . . . , k.
Our algorithms are faster with short reshaping sequences, so we should choose η i ≈ 2 3 η i-1 , and hence 2η i -η i-1 ≈ 1 3 η i . It is easy to see that for any a, b ∈ Z >0 , there is an (a, b)-reshaping sequence of length less than log 3/2 (a) + 2. Observe that for any (a, b)-reshaping sequence we have η i ≥ 2 3 (η i-1 -1) for i = 1, . . . , k and therefore

2η i -η i-1 ≥ η i -1 -4 3 ≥ η i 3 -1 . (1)
By considering the cases η i ≥ 3 and η i = 1, 2, we get 2η i -η i-1 ≥ 0.

Theorem 3.2. Algorithm 1 is correct and has complexity

Õ(k i=i 0 η i (deg x f + i j=i 0 deg x д j)) ⊆ Õ(k deg y f deg x f + k k i=i 0 η i deg x д i) ,
for the smallest i 0 such that η i 0 ≤ deg y f .

Proof. Let fi , fi,0 , fi,1 be the values of f , f0 , f1 at the end of iteration i. First, the iterations for i < i 0 perform no operation and keep fi = f , since η i > deg y fi-1 implies fi,1 = 0 and fi = fi-1 . In particular, if η i > deg y f for all i then the algorithm is correct and returns f without using any arithmetic operation. Now for i ≥ i 0 , observe that fi = fi,1 дi + fi,0 = fi-1 -fi,1 д i ; thus in the end f ∈ f + I since each д i belongs to I . We show the following loop invariants, which imply the degree bounds on the output:

deg x fi ≤ deg x f + i j=i 0 deg x д j , and deg y fi < η i . Both are true for i = i 0 -1 (just before the loop, if i 0 = 1). For the x-degree, fi = fi-1 -fi,1 д i yields deg x fi ≤ deg x fi-1 + deg x д i ,
and the loop invariant follows. For the y-degree, by construction Algorithm 1 Reshape(f , η, д)

Input: A bivariate polynomial f ∈ K[x, y]; a reshaping se- quence η = (η i) k i=0 ∈ Z k +1 >0 with deg y f < η 0 ; an η-reshaper д = (д i) k i=1 ∈ I k for some ideal I ⊆ K[x, y]. Output: a polynomial f ∈ f + I such that deg y f < η k and deg x f ≤ deg x f + k i=1 deg x д i . 1: f ← f 2: for i = 1, . . . , k do 3: Write д i = y η i + дi where deg y дi ≤ 2η i -η i-1 4: Write f = f1 y η i + f0 where deg y f0 < η i 5: f ← f1 дi + f0 ▷ equivalent to f ← f -f1 д i 6: return f deg y fi,0 < η i and deg y fi,1 ≤ deg y fi-1 -η i hold; the assumption deg y fi-1 < η i-1 then gives deg y fi,1 дi < η i , hence deg y fi < η i .
For complexity, the only costly step is at Line 5 and for iterations i ≥ i 0 . From the above bound deg y fi,1 дi < η i , multiplying fi,1 and дi costs O(M((deg x fi,1 + deg x дi)η i)). Since deg x дi = deg x д i , since both fi,0 and fi,1 have x-degree at most deg x fi-1 , and since deg y fi,0 < η i , the total cost of the ith iteration is in

Õ((deg x fi-1 + deg x дi)η i) ⊆ Õ((deg x f + i j=i 0 deg x д j)η i).
Summing over all iterations, we get the first complexity bound in the theorem; the second one follows from it, using the fact that deg

y f ≥ η i 0 > η i 0 +1 > . . . > η k and i 0 ≥ 1. □
We now define the balancedness of a point set. In Section 8 we prove that this notion captures the expected x-degree of reshapers. Definition 3.3. Let P ⊆ K 2 be a point set of cardinality n, and let η = (η i) k i=0 be a reshaping sequence. Then P is η-balanced if there exists an η-reshaper д

= (д i) k i=1 ∈ K[x, y] k for Γ(P) such that deg x д i ≤ ⌊ n 2η i -η i -1 +1 ⌋ + 1 for i = 1, . . . , k.
The next bound is often used below for deriving complexity estimates; it follows directly from Eq. (1). Lemma 3.4. Let η = (η i) k i=0 be a reshaping sequence, P ⊆ K 2 be an η-balanced point set of cardinality n, and д = (д i) k i=1 be an ηreshaper for Γ(P).

Then k i=i 0 η i deg x д i ≤ (3n+η i 0)k for 1 ≤ i 0 ≤ k.
We conclude this section with two results about the existence of η-reshapers for vanishing ideals of point sets. Lemma 3.5. Let P ⊆ K 2 be a point set and η = (η i) k i=0 a reshaping sequence. If ν x (P) ≤ min 1≤i ≤k (2η i -η i-1 + 1), then there exists an η-reshaper д ∈ K[x, y] k for Γ(P).

Proof. By Lemma 2.2, the reduced ≺ lex -Gröbner basis G of Γ(P) contains a polynomial with ≺ lex -leading term y ν x (P) . Thus deg y y η rem G < ν x (P) for any η, and setting д i = y η i -(y η i rem G) yields an η-reshaper as long as ν x (P) ≤ 2η i -η i-1 + 1 for all i. □ Corollary 3.6. Let P ⊆ K 2 be a point set of cardinality n and a, b ∈ Z >0 with n > a > b ≥ ν x (P). Then there is an (a, b)-reshaping sequence η which satisfies the condition of Lemma 3.5 and has length

k ≤ log 3/2 (a) + 1 ∈ O(log(a)). Proof. Let v = ν x (P) -1 and let η ′ = (η ′ 0 , . . . , η ′ k) be any (a -v, b -v)-reshaping sequence with k ≤ log 3/2 (a -v) + 1. Now let η = (η 0 , . . . , η k) be defined by η i = η ′ i +v for i = 0, . . . , k.
Then, η is an (a, b)-reshaping sequence. Indeed, clearly the endpoints are correct and η i-1 > η i for i = 1, . . . , k; moreover,

η i = η ′ i + v ≥ ⌊ 2 3 η ′ i-1 ⌋ + v = ⌊ 2 3 η i-1 + 1 3 v⌋ ≥ ⌊ 2 3 η i-1 ⌋ . To conclude, we use 2η ′ i -η ′ i-1 ≥ 0 as mentioned above to observe that 2η i -η i-1 + 1 = 2η ′ i -η ′ i-1 + v + 1 ≥ v + 1 = ν x (P). □

MULTI-POINT EVALUATION

In this section we use reshaping for MPE with precomputation; i.e. given a point set P ⊂ K 2 upon which we are allowed to perform precomputation, and a polynomial f ∈ K[x, y] which is assumed to be received at online time, compute f (P) for all P ∈ P. Algorithm 2 deals with the case ν x (P) = 1, which we reduce to an instance of univariate MPE using Reshape. The cost of Algorithm 2 follows directly from Theorem 3.2 and Lemma 3.4.

Algorithm 2 MPE-DistinctX d,η, P (f)

Preinput: d ∈ Z >0 ; a (d, 1)-reshaping sequence η; a point set P = {(α i , β i)} n i=1 ⊂ K 2 with the α i 's pairwise distinct. Precomputation: a: д ← η-reshaper for Γ(P) Input: f ∈ K[x, y] with deg y f < d. Output: f (α 1 , β 1), . . . , f (α n , β n) ∈ K n . 1: f ← Reshape(f , η, д) ∈ K[x] 2: return f (α 1), . . . , f (α n) ∈ K n ▷ univariate MPE Theorem 4.1. Algorithm 2 is correct. If P is η-balanced and η has length in O(log(n)), the complexity is Õ(deg x f deg y f + n).
Algorithm 2 can easily be extended to the case where ν x (P) > 1 by partitioning P into ν x (P) many subsets, each having x-valency one. This approach also has quasi-linear complexity in the input size as long as ν x (P) ≪ n, or more precisely if nν x (P) ∈ Õ(n).

When ν x (P) is large, this strategy is costly, and we proceed instead by shearing the point set, as proposed by Nüsken and Ziegler [START_REF] Nüsken | Fast Multipoint Evaluation of Bivariate Polynomials[END_REF], so that the resulting point set has distinct x-coordinates: by taking θ ∈ L \ K, where L is an extension field of K of degree 2, we apply the map (α, β) → (α + θ β, β) to each element of P. The problem then reduces to evaluating f = f (x -θy, y) at the sheared points. To compute f , [START_REF] Nüsken | Fast Multipoint Evaluation of Bivariate Polynomials[END_REF] provides an algorithm with complexity O(M(d x (d x +d y)) log(d x)) using a univariate Taylor shift of f seen as a polynomial in x over the ring L[y]. Algorithm 3 describes an algorithm for this task which improves the cost on the logarithmic level, by using Taylor shifts of the homogeneous components of f . Algorithm 3 ShearPoly(f , a, b)

Input: f = d x i=0 d y j=0 f i, j x i y j ∈ L[x, y]; a ∈ L and b ∈ L. Output: f (ax + by, y). 1: for t = 0, . . . , d x + d y do 2: h t ← min(t,d x) i=max(0,t -d y) f i,t -i z i ∈ L[z]
P = {(α i , β i)} n i=1 ⊂ K 2 . Precomputation: a: (L, θ) ← degree 2 extension of K, element θ ∈ L \ K b: P ← {(α i + θ β i , β i)} n i=1 ⊂ L 2 c: Do the precomputation of MPE-DistinctX d,η, P Input: f ∈ K[x, y] with deg x f + deg y f < d. Output: f (α 1 , β 1), . . . , f (α n , β n) ∈ K n . 1: f ← ShearPoly(f , 1, -θ) ▷ f = f (x -θ y, y) 2: return MPE-DistinctX d,η, P (f)

INTERPOLATION

In this section we use reshaping for the interpolation problem in a similar setting: we input a point set P for precomputation, and input interpolation values at online time. When P is appropriately balanced, we solve the interpolation problem in quasi-linear time (see Algorithm 5). The strategy is to first shear the point set to have unique y-coordinates and compute u ∈ L[y] which interpolates the values on the sheared y-coordinates. Then we reshape this into r ∈ L[x, y] with xand y-degrees roughly √ n. Shearing back this polynomial to interpolate the original point set is now in quasilinear time; a last reshaping allows us to meet the target y-degree.

Theorem 5.1. Algorithm 5 is correct and has complexity

Õ k 1 n + k 2 √ n + k 1 j=1 deg x д 1, j 2 + 2 ℓ=1 k ℓ k ℓ j=1 η ℓ,k deg x д ℓ, j .
If P is η 1 -balanced and P is η 2 -balanced, and both η 1 and η 2 have length in O(log n), then the complexity is Õ(n).

Proof. First note that a reshaping sequence of length O(log n) and satisfying the preinput constraints exists, due to Corollary 3.6 and the assumption d ≥ ν x (P). For correctness, observe that all points in P have pairwise distinct y-coordinates, so computing u makes sense. Viewing u as an element of L[x, y] with deg x u = 0, we Algorithm 5 Interpolate d,η, P (γ)

Preinput: an integer d ∈ Z >0 ; an (n, d)-reshaping sequence η = (η i) k i=0 such that η k 1 = ⌊ √ n⌋ for some k 1 ; a point set P = {(α i , β i)} n i=1 ⊆ K 2 such that ν x (P) ≤ d ≤ ⌊ √ n⌋ + 1 and ν x (P) ≤ min 1≤i ≤k (2η i -η i-1 + 1). Precomputation: a: η 1 ← (η i) k 1 i=0 and η 2 ← (η i) k i=k 1 b: (L, θ) ← (K, 0) if ν y (P) = 1 degree 2 extension of K, θ ∈ L \ K otherwise c: P ← {(α i , βi)} n i=1 , where βi = θα i + β i d: д 1 ← η 1 -reshaper for P e: д 2 ← η 2 -reshaper for P Input: Interpolation values γ = (γ i) n i=1 ∈ K n . Output: f ∈ K[x, y] satisfying f (α i , β i) = γ i for i = 1, . . . , n, deg y f < d and deg x f ≤ ⌊ √ n⌋ + д ∈д 1 ∪д 2 deg x д. 1: u ∈ L[y] with deg u < n and u(βi) = γ i for i = 1, . . . , n 2: r ← Reshape(u, η 1 , д 1) ∈ L[x, y] 3: s ← r (x, θx + y) ▷ using ShearPoly 4: Write s = s 1 + θs 2 , where s 1 , s 2 ∈ K[x, y] 5: return Reshape(s 1 , η 2 , д 2) ∈ K[x, y]
have u(α i , βi) = γ i . By Theorem 3.2 then r has the same evaluations and deg y r < ⌊ √ n⌋ and deg x r ≤ k 1 i=1 deg x д 1,i . Then, in both cases ν y (P) = 1 and ν y (P) > 1, we have y] and all γ i 's are in K, we get s 2 (α i , β i) = 0 and s 1 (α i , β i) = γ i for i = 1, . . . , n. We also then have

γ i = r (α i , βi) = s(α i , β i) = s 1 (α i , β i) + θs 2 (α i , β i) for i = 1, . . . , n. Since s 1 , s 2 ∈ K[x,
that deg y s 1 ≤ deg y s < ⌊ √ n⌋ and deg x s 1 ≤ deg x s ≤ deg y r + deg x r ≤ ⌊ √ n⌋ + k 1 j=1 deg x д 1, j .
Thus, by Theorem 3.2 again, the output f is such that f (α i , β i) = γ i for i = 1, . . . , n, and deg y f < d, and

deg x f ≤ ⌊ √ n⌋ + k 1 j=1 deg x д 1, j + k 2 j=1 deg x д 2, j .
The complexity bound gathers the calls to Algorithms 1 and 3, and the relaxed cost assuming balancedness is due to Lemma 3.4. □

MODULAR COMPOSITION

We now turn to the following modular composition problem: given

M, A ∈ K[x] with n := deg x M > deg x A, and f ∈ K[x, y], compute f (x, A(x)) rem M(x) ∈ K[x] . (2)
We consider the variant of the problem where M and A are available for precomputation. Computing (2) is tantamount to computing the unique element of (f + I) ∩ K[x] of degree less than n, for the ideal

I = ⟨M, y -A⟩ ⊆ K[x, y].
One can thus see this as a reshaping task:

given f of some y-degree, reshape it to a polynomial of y-degree 0 while keeping it fixed modulo I : this is formalised as Algorithm 6.

Like for point sets above, if η = (η i) k i=0 is a reshaping sequence, we say that I = ⟨M, y -A⟩ is η-balanced if there exists an η-reshaper д = (д i) k i=1 for I such that deg

x д i ≤ ⌊ n 2η i -η i -1 +1 ⌋ + 1. Theorem 6.1. Algorithm 6 is correct. If ⟨M, y -A⟩ is η-balanced and η has length in O(log(n)), the complexity is Õ(deg x f deg y f +n). Algorithm 6 ModComp d,η, M,A (f) Preinput: d ∈ Z >0 ; a (d, 1)-reshaping sequence η; polynomials M, A ∈ K[x] with n := deg x M > deg x A. Precomputation: a: д ← η-reshaper for ⟨M, y -A⟩ Input: f ∈ K[x, y] with deg y f < d. Output: f (x, A) rem M ∈ K[x]. 1: f ← Reshape(f , η, д) ∈ K[x] 2: return f rem M ▷ univariate division
I δ = { f ∈ I | deg y f < δ }, let ŝ = max{i | deg y b i < δ, 0 ≤ i ≤ s}, let d i = deg y b i for 0 ≤ i ≤ ŝ and d ŝ+1 = δ . Then I δ is a K[x]- submodule of K[x, y] deg y <δ which is free of rank δ -d 0 and admits the basis {y j b i | 0 ≤ j < d i+1 -d i , 0 ≤ i ≤ ŝ}.
A proof is given in appendix. We will use the following K[x]module isomorphism which converts between bivariate polynomials of bounded y-degree and vectors over K[x]: for any δ ∈ Z >0 , In this section, we use the Popov form [START_REF] Popov | Some properties of the control systems with irreducible matrixtransfer functions[END_REF], which can be defined for any matrix and with "shifts"; here we only need the unshifted, nonsingular square case. Definition 7.2. For any row vector v ∈ K[x] 1×δ its row degree denoted deg v is the maximal degree among its entries. The pivot of v is the rightmost entry of v with degree deg v.

ϕ δ : f = δ -1 j=0 f j (x)y j ∈ K[x, y] → [f 0 , . . . , f δ -1] ∈ K[x]
A nonsingular matrix P = [p i j] ∈ K[x] δ ×δ is in Popov form if p ii
is the pivot of the ith row, is monic, and deg p ii > deg p ji for any j i.

B ∈ K[x] δ ×δ is cdeg(B) = (d i) δ i=1 ∈ Z δ ≥0
, with d i the largest degree in the ith column of B (for a zero column, d i = 0).

The next result allows us to compute Popov forms efficiently.

Proposition 7.3 ([16]

). There is an algorithm which inputs a nonsingular matrix B ∈ K[x] δ ×δ and outputs the Popov basis of the K[x]-row space of B using Õ(δ ω-1 |cdeg(B)|) operations in K, assuming that δ ∈ O(|cdeg(B)|).

Since Popov forms are "column reduced", they are well suited for matrix division with remainder [10, Thm. 6.3-15]: if P ∈ K[x] δ ×δ is the Popov basis of M, then for any v ∈ K[x] 1×δ there is a unique u ∈ v + M such that cdeg(u) < cdeg(P) entrywise; we denote u = v rem P. Furthermore, u has minimal row degree among all vectors in v + M. Such remainders can be computed efficiently: Proposition 7.4 ([START_REF] Neiger | Computing Canonical Bases of Modules of Univariate Relations[END_REF]). There is an algorithm which inputs a Popov form P ∈ K[x] δ ×δ and v ∈ K[x] 1×δ such that cdeg(v) < cdeg(P) + (∆(P), . . . , ∆(P)) entrywise, and outputs v rem P using Õ(δ ω-1 ∆(P)) operations in K, assuming that δ ∈ O(∆(P)).

Algorithm 7 ComputeReshaper(G, η, δ)

Input: A reduced ≺ lex -Gröbner basis G = {b 0 , . . . , b s } ⊂ K[x, y], sorted by increasing y-degree, for a zero-dimensional ideal I (hence b 0 ∈ K[x]); η, δ ∈ Z >0 with δ < η. Output: If no polynomial in y η + I has y-degree < δ , "Fail"; otherwise, д = y η -д ∈ I with deg y д < δ and deg x д minimal. 1: R ← y η rem G 2: if deg y R ≥ δ then return "Fail" 3: B δ ← basis of I δ = { f ∈ I | deg y f < δ } as in Corollary 7.1 4: B ∈ K[x] δ ×δ ← row-wise applying ϕ δ to elements of B δ 5: P ∈ K[x] δ ×δ ← Popov basis of I δ from the basis B 6: д ← -ϕ -1 δ (ϕ δ (R) rem P) ∈ K[x, y] 7: return д = y η -д ∈ K[x, y] Theorem 7.5. Algorithm 7 is correct. Assuming η ∈ O(∆(I δ)), it costs Õ(δ ω-1 ∆(I δ) + ηs deg x b 0) operations in K.
Proof. Since G is a ≺ lex -Gröbner basis, if y η + I contains a polynomial of y-degree less than δ , then deg y (y η rem G) ≤ δ and the algorithm does not fail at Line 2.

For correctness of the output, observe that y η -R ∈ I so satisfactory д = y ηд all have д ∈ R + I δ . Now, д of Line 6 is clearly in R + I δ since P is the Popov basis of I δ , but also д has minimal x-degree in the coset R + I δ . Hence among all д of the correct form, the algorithm returns that of minimal x-degree.

For complexity, work is done in Lines 1, 5 and 6. Since G is reduced, deg x b 0 > . . . > deg x b s . Therefore the diagonal entries in B are dominant in their columns and |cdeg B| = ∆(B) = ∆(P) = ∆(I δ).

For Line 1, we use the algorithm of [START_REF] Van Der Hoeven | On the complexity of multivariate polynomial division[END_REF] with cost Õ(ηs deg x b 0), see Lemma A.2. Line 5 costs Õ(δ ω-1 |cdeg B|) by Proposition 7.3 and Line 6 costs Õ(δ ω-1 ∆(P)) since deg x R < deg x b 0 < ∆(P). □

Reshapers for the considered problems

We turn to obtaining the reduced ≺ lex -Gröbner basis of Γ(P). We will consider the K[x]-submodule Γ m (P) = Γ(P) ∩ K[x, y] deg y <m which by Lemma 2.2 and Corollary 7.1 is free and of rank m. To obtain a ≺ lex -Gröbner basis, our approach is to first compute the Hermite basis of Γ m (P). This is the unique basis whose corresponding matrix H ⊂ K[x] m×m is lower triangular, with each diagonal entry monic and strictly dominating the degrees in its column. Lemma 7.6. For any point set P ⊆ K 2 and any m > ν x (P), we have Γ(P) = ⟨Γ m (P)⟩ and ∆(Γ m (P)) = |P |.

Proof. By Lemma 2.2 the elements of the reduced ≺ lex -Gröbner basis of Γ(P) have y-degree at most ν x (P), implying the first claim. Further, this means the quotient K[x, y]/Γ(P) is isomorphic to the quotient of modules K[x, y] deg y <m /Γ m (P). It is a basic property of zero-dimensional varieties that the K-dimension of the former is the number of points in P, which is hence also the K-dimension of the latter. This dimension is ∆(Γ m (P)) by [START_REF] Neiger | Computing Canonical Bases of Modules of Univariate Relations[END_REF]Lem. 2.3]. □ Proposition 7.7. There is an algorithm which inputs P ⊂ K 2 and outputs the reduced ≺ lex -Gröbner basis of Γ(P) and has complexity Õ(ν x (P) ω-1 |P |).

Proof. Let Γ = Γ(P), Γ m = Γ m (P), and m = ν x (P) + 1. We first compute the Hermite basis H of Γ m (P) in time Õ(m ω-1 |P |) using (a special case of) [START_REF] Jeannerod | Fast Computation of Minimal Interpolation Bases in Popov Form for Arbitrary Shifts[END_REF]Thm. 1.5], in which taking s = (0, n, . . . , (m-1)n) ensures that the s-Popov basis P of Γ m is the Hermite basis.

Let G = {д 0 , . . . , д m-1 } ⊂ K[x, y] be given as the ϕ -1 m -image of the rows of H . By Lemma 7.6 and since H is lower triangular, G is a ≺ lex -Gröbner basis of Γ but not necessarily minimal. Construct G ′ ⊆ G from G by excluding the elements д ∈ G such that there is д ′ ∈ G with deg y д ′ < deg y д and deg x (LC y (д ′)) ≤ deg x (LC y (д)), i.e. LT lex (д ′) divides LT lex (д). This makes G ′ a minimal ≺ lex -Gröbner basis of Γ [4, Lem. 3 of Chap. 2 §7], and we claim it is the reduced one. Indeed, since H is in Hermite form, the selection criteria for G ′ ensures that for any д д ′ in G ′ and any term x i y j in д ′ , we have i < deg x (LT lex (д)) or j < deg y д, and hence G ′ is reduced. Obtaining G ′ from H costs no arithmetic operations. □ Corollary 7.8. Given a point set P ⊆ K 2 of cardinality n and a reshaping sequence η = (η i) k i=0 with n ≥ η k and satisfying the condition of Lemma 3.5, then we can determine if P is η-balanced and compute an η-reshaper д = (д i) k i=1 for P where each element has minimal possible x-degree in complexity Õ(kη ω-1 0 n + η 0 ν x nk).

Proof. By Proposition 7.7, computing a reduced ≺ lex -Gröbner basis G = (b i) ν x i=0 of Γ(P) costs Õ(ν ω-1

x n) ⊂ Õ(η ω-1 0 n). We then run Algorithm 7 on input η = η i and δ i = 2η i -η i-1 + 1 > ν x for i = 1, . . . , k. Lemma 7.6 ensures ∆(Γ δ (P)) = n for any δ > ν x , thus the cost of each call to Algorithm 7 becomes Õ(η ω-1 0 n +η 0 ν x n). □ Corollary 7.9. Given M, A ∈ K[x] with n := deg M > deg A and a reshaping sequence η = (η i) k i=0 with n ≥ η k , then we can determine if I := ⟨M, y -A⟩ is η-balanced and compute an η-reshaper д = (д i) k i=1 for P where each element has minimal possible x-degree in complexity Õ(kη ω-1 0 n).

Proof. For any δ , and using the notation of Algorithm 7, the basis B of I δ is lower triangular with diagonal entries (M, 1, . . . , 1). Hence ∆(B) = ∆(I δ) = n. Using s = 1 and deg x b 0 = deg x M = n, the cost follows from Theorem 7.5. □

GENERICITY

Now we show that on random input our algorithms usually have quasi-linear complexity, i.e. that random point sets are balanced and that ⟨M, y -A⟩ is balanced for random univariate A, M.

Lemma 8.1. Let α 1 , . . . , α n ∈ K be distinct, let y 1 , . . . , y n be new indeterminates, and consider for s ∈ Z >0 the matrix

A s = V s | DV s | . . . | D m-1 V s ∈ K[y 1 , . . . , y n] n×ms (3)
where D is the diagonal matrix with entries (y 1 , . . . , y n), and V s = [α j-1 i] 1≤i ≤n,1≤j ≤s ∈ K n×s . Then A s has rank min(n, ms).

Proof. Note that by rank of a matrix over K[y 1 , . . . , y n], we mean the rank of that matrix seen as over the field of fractions K(y 1 , . . . , y n). If we specialise y i to α s i for i = 1, . . . , n, we obtain the Vandermonde matrix Âs = [α j-1 i] 1≤i ≤n,1≤j ≤ms ∈ K n×ms of the points α 1 , . . . , α n . Since these points are distinct, Âs has full rank min(n, ms). Hence A s must also have full rank. □

The columns of A s can be identified to monomials x i y j with i < s and j < m. In particular, if p ∈ Γ(P) is a bivariate polynomial with x-degree less than s and y-degree less than m which vanishes on a point set P = {(α i , β i)} n i=1 ⊂ K 2 with distinct α i 's, then the coefficients of p form a vector in the right kernel of the matrix Âs = (A s) |y i →β i ∈ K n×ms specializing y i to β i .

The next lemma determines the exact row degrees of the Popov basis P ∈ K[x] m×m of ϕ m (Γ m (P)) for a "random" point set P, where Γ m (P) = Γ(P) ∩ K[x, y] deg y <m as in Section 7.2. Lemma 8.2. Let α 1 , . . . , α n ∈ K be distinct, let T ⊆ K be a finite subset, and let λ : K n → K n be an affine map. For γ 1 , . . . , γ n ∈ T chosen independently and uniformly at random, set Proof. Let p 1 , . . . , p m ∈ K[x, y] be the polynomials defined by the rows of P. Lemma 2.2 shows ∆(P) = n = m i=1 deg x p i . For any s ∈ Z >0 , let A s ∈ K[y 1 , . . . , y n] n×ms be as in Lemma 8.1, hence rank(A s) = min(n, ms). Let Âs = (A s) |y i →β i ∈ K n×ms . Taking s = d, as mentioned above, if deg x p i < d for some i, then the coefficient vector of p i is in the right kernel of Âd , and so rank(Âd) < rank(A d) = md ≤ n. Thus, letting M ∈ K[y 1 , . . . , y n] be a non-zero md×md minor of A d then M(β 1 , . . . , β n) = M(λ(γ 1 , . . . , γ n)) = 0; M has degree at most m -1 in each variable, so the total degree of M is less than nm, and since λ is affine the composition M(λ(z 1 , . . . , z n)) also has total degree less than nm. Then, by Lemma 2.1 the probability that M(λ(γ 1 , . . . , γ n)) = 0 is at most nm/|T |.

P = {(α i , β i)} n i=1 where (β 1 , . . . , β n) = λ(γ 1 , . . . , γ n). Let m ∈ Z with ν x (P) < m ≤ n
Assume now that all rows of P have degree at least d. For each i such that deg x p i = d, the coefficients of p i form a vector in the right kernel of Âd+1 ∈ K n×m(d +1) . By Lemma 8.1, A d +1 has a right kernel (over the fractions) of dimension m(d + 1) -n = mt. Since the rows of P are linearly independent over K[x], and therefore also over K, whenever rank(Âd+1) = rank(A d +1) at most mt rows of P have x-degree d. We thus consider N ∈ K[y 1 , . . . , y n] a non-zero n × n minor of A d +1 . Again N has total degree less than nm and the probability that N (β 1 , . . . , β n) = N (λ(γ 1 , . . . , γ n)) = 0 is at most nm/|T |, bounding the probability that rank(Âd+1) < rank(A d +1).

Hence, with probability at least 1 -2nd/|T |, P has all rows of degree at least d and j rows of degree exactly d with j ≤ mt. Each of the remaining mj rows has degree at least d + 1, while their degrees must sum to n-jd = md +t -jd = (m-j)d +t ≤ (m-j)(d +1). Hence each of them has degree exactly d + 1. □ Algorithm 7 for computing reshapers outputs a д = y ηд with deg y д < δ satisfying deg x д ≤ deg x P, where P is the Popov basis of Γ δ (P). Lemma 8.2 states that generically we can expect deg x P ≤ ⌊ n δ ⌋ + 1, and so when δ = 2η i -η i-1 + 1 in a reshaping sequence, this matches the definition of η-balanced.

Corollary 8.3. Let α 1 , . . . , α n ∈ K be distinct, let T ⊆ K a finite subset, and let λ : K n → K n be an affine map. For γ 1 , . . . , γ n ∈ T chosen independently and uniformly at random, set P = {(α i , β i)} n i=1 where (β 1 , . . . , β n) = λ(γ 1 , . . . , γ n). Let η = (η i) k i=0 be a reshaping sequence with η 0 ≤ n and satisfying the constraint of Lemma 3.5. Then P is η-balanced with probability at least 1 -n 2 k/|T |.

The above proposition directly applies to both our MPE and interpolation algorithms on random point sets with unique x-coordinates. Note that in the case of interpolation, where the point set is sheared if its y-valency is greater than one, the property of being η-balanced is not inherited a priori by the sheared point set. The probability of being η-balanced, however, is preserved, since the shearing acts as an affine transformation on the y-coordinates. There are many formulations depending on the type of randomness one needs over the point sets; the following is a simple example over finite fields: Corollary 8.4. Let d, n ∈ Z >0 with d ≤ n and F q be a finite field with q elements, and let P = {(α i , β i)} n i=1 ⊆ F 2 q be chosen uniformly at random among point sets with cardinality n. Then with probability of at least 1 -n 2 q 1 -3n 2 (log 3/2 (n)+1) q over the choice of P the following two problems can be solved with cost Õ(n):

(1) Input polynomial f ∈ F q [x, y] such that deg x f < n/d and deg y f < d, and output (f (α i , β i)) n i=1 ∈ F n q .

(2) Input interpolation values γ = (γ i) n i=1 ∈ F n q , and output f ∈ F q [x, y] satisfying f (α i , β i) = γ i for i = 1, . . . , n, as well as deg y f < d and deg x f ≤ cn for some constant c which depends only on n and d.

Proof sketch. The probability simply bounds the probability that P has unique x-coordinates and that it is balanced in all the necessary ways. By Corollary 3.6 there is an appropriate reshaping sequence of length at most log 3/2 (n) + 2. □

We do not make a claim about the genericity in Algorithm 4: due to the shearing in that algorithm, the arguments of this section do not immediately apply. Lastly, we turn to modular composition. Theorem 8.5. Let M ∈ K[x] be square-free of degree n and let η be a (d, 1)-reshaping sequence of length k with 0 < d ≤ n. Let T ⊆ K be a finite subset, and let A = n-1 i=0 a i x i-1 ∈ K[x] where a 0 , . . . , a n-1 are chosen independently and uniformly at random from T . Then ⟨M, y -A⟩ is η-balanced with probability at least 1 -n 2 k/|T |.

Proof. Let L be the splitting field of M, so M = n i=1 (x -α i) for some pairwise distinct α 1 , . . . , α n ∈ L. Define the stochastic variables β i = A(α i) for i = 1, . . . , n; the map λ(a 0 , . . . , a n-1) = (β 1 , . . . , β n) is L-linear. Consider P = {(α i , β i)} n i=1 ⊆ L 2 . Then Corollary 8.3 implies that P is η-balanced with probability at least 1 -n 2 k | T | . In this case, for each i there exists д i = y η i + дi ∈ I L where deg y дi < 2η i -η i-1 and deg x дi ≤ ⌊ n 2η i -η i -1 +1 ⌋ + 1, and where I L = ⟨M, y -A⟩ ⊗ K L. Let {1, ζ , . . . , ζ s-1 } ⊂ L be a basis of L : K and write д i = д i,0 + ζ д i,1 + . . . + ζ s-1 д i,s-1 with д i, j ∈ K[x, y]. Then д i ∈ I L implies that д i,0 ∈ I , and by the shape of д i then д i,0 = y η i + дi,0 where the xand y-degree of дi,0 satisfy the same bounds as дi . Then the tuple д 0 = (д 1,0 , . . . , д k,0) ∈ K[x, y] k forms a balanced η-reshaper for I . □

α n and β 1

 1 , . . . , β n in K with the α i 's pairwise distinct, we may compute the unique corresponding interpolant in time O(M(n) log n) ⊆ Õ(n). We will also use the fact that two bivariate f , д ∈ K[x, y] can be multiplied in time O(M(d x d y)) ⊂ Õ(d x d y), where d x = max(deg x f , deg x д) and d y = max(deg y f , deg y д) [30, Cor. 8.28].

Theorem 4 . 3 .

 43 Algorithm 4 is correct. If P is η-balanced and η has length in O(log(n)), its complexity is Õ(deg x f (deg x f +deg y f)+n).

with remainder 7 PRECOMPUTING RESHAPERS 7 . 1

 771 Reshapers for general idealsHere we describe Algorithm 7 for precomputing reshapers for any zero-dimensional idealI ⊆ K[x, y], given a ≺ lex -Gröbner basis of I . It operates through the K[x]-module I δ := { f ∈ I | deg y f < δ },so we first expound the relation between this and I as a corollary of Lazard's structure theorem on bivariate ≺ lex -Gröbner bases[START_REF] Lazard | Ideal bases and primary decomposition: case of two variables[END_REF]. Corollary 7.1. Let G = {b 0 , . . . , b s } ⊂ K[x, y] be a minimal ≺ lex -Gröbner basis defining an ideal I = ⟨G⟩. For δ ∈ Z >0 , let

 1×δ . If I is zero-dimensional then in Corollary 7.1 we have d 0 = 0 and I δ has rank δ . Any basis B of I δ can be represented as a nonsingular matrix M B ∈ K[x] δ ×δ whose rows are ϕ δ (B). Then, ∆(I δ) := deg det(M B) does not depend on the choice of B since all bases of I δ have the same determinant up to scalar multiplication.

 For a (free) K[x]-submodule M ⊂ K[x] 1×δ of rank δ , we identify a basis of M as the rows of a nonsingular matrix in K[x] δ ×δ . Any such M has a unique basis P ∈ K[x] δ ×δ in Popov form, which we call the Popov basis of M. It has minimal row degrees in the following sense: if N ∈ K[x] δ ×δ is another basis of M, there is a bijection ψ from the rows of P to the rows of N such that deg p ≤ degψ (p) for any row p of P. The Popov basis satisfies ∆(M) = ∆(P) = |cdeg(P)|, using the following notation: the sum of the entries of a tuple t ∈ Z δ ≥0 is denoted |t |; the column degree of a matrix

 and let (d, t) = qo_rem(n, m). With probability at least 1-2nm/|T |, the Popov basis P ∈ K[x] m×m of ϕ m (Γ m (P)) has exactly mt rows of degree d and t rows of degree d +1 and in particular deg x P ≤ d +1.

 Theorem 4.2. Algorithm 3 correctly computes f (ax +by, y), which has x-degree at most d x and y-degree at mostd x + d y , at a cost of O((d x + d y)M(d x) log(d x)) ⊂ Õ(d x (d x + d y)) operations in L.Proof. Observe that y t h t (x/y) is the homogeneous component of f of degree t, and in particular f = hence the correctness. The degree bounds on the output are straightforward. As for complexity, only Line 3 uses arithmetic operations. First, scalingh t (z) → h t (az) costs O(d x) operations in L, since deg h t ≤ d x ; then the Taylor shift h t (az) → h t (az + b) costs O(M(d x) log(d x)) operations in L according to [29, Fact 2.1(iv)].Summing over the d x + d y iterations yields the claimed bound. □ This leads to Algorithm 4, where P may have repeated α i 's.

					d x +d y t =0	y t h t (x/y). Thus
	f (ax + by, y) =	d x +d y t =0	y t h t	ax +by y	=	d x +d y t =0	y t s t (x/y),

3: s t ← h t (az + b) ▷ Taylor shift 4: return d x +d y t =0 y t s t (x/y) Algorithm 4 MPE-Shear d,η, P (f) Preinput: an integer d ∈ Z >0 ; a (d, 1)-reshaping sequence η; a point set

APPENDIX

Corollary A.1 (of [START_REF] Lazard | Ideal bases and primary decomposition: case of two variables[END_REF]). Let G = {b 0 , . . . , b s } ⊂ K[x, y] be a minimal ≺ lex -Gröbner basis, sorted according to ≺ lex . Then

Let B denote the (claimed) basis in the corollary. Clearly B ⊆ I δ , and the elements of B all have different y-degree and so are K[x]-linearly independent. Also |B| = δd 0 , so if B generates I δ then it is a basis of it and the rank of I δ is δd 0 . It remains to show that B generates I δ , so take some f ∈ I δ . Since f ∈ I the multivariate division algorithm using G and the order ≺ lex results in q 0 , . . . ,

Say that in each iteration of the division algorithm, we use the greatest index i for which LT lex (b i) divides the leading term of the current remainder. Thus no term of q i b i is divisible by LT lex (b i+1) for any i < s. But by Corollary A.1 then LC y (b i+1) divides LC y (b i), and so if deg y (q Proof. This is a special case of [START_REF] Van Der Hoeven | On the complexity of multivariate polynomial division[END_REF]: the multivariate division algorithm computes q 0 , . . . , q s , R ∈ K[x, y] such that f = q 0 b 0 + . . . + q s b s + R with R = f rem G, and the cost of the algorithm can be bounded as x (q 0 b 0): since q 0 b 0 = fq 1 b 1 -. . . -q s b s -R, then deg x (q 0 b 0) ≤ max(deg x f , 2 deg x b 0). □