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Abstract: For the first time, an original compound belonging to the heptazine family has been
deposited in the form of thin layers, both by thermal evaporation under vacuum and spin-coating
techniques. In both cases, smooth and homogeneous layers have been obtained, and their properties
evaluated for eventual applications in the field of organic electronics. The layers have been fully
characterized by several concordant techniques, namely UV-visible spectroscopy, steady-state and
transient fluorescence in the solid-state, as well as topographic and conductive atomic force microscopy
(AFM) used in Kelvin probe force mode (KPFM). Consequently, the afferent energy levels, including
Fermi level, have been determined, and show that these new heptazines are promising materials
for tailoring the electronic properties of interfaces associated with printed electronic devices. A test
experiment showing an improved electron transfer rate from a tris-(8-hydroxyquinoline) aluminum
(Alq3) photo-active layer in presence of a heptazine interlayer is finally presented.

Keywords: heptazine; interfaces; KPFM; Fermi level; photoluminescence; organic solar cells

1. Introduction

Related to the problem of global warming, the implementation of renewable energy sources
is currently a fundamental challenge to achieve sustainable development. Organic photovoltaic
(OPV) is, from this point of view, recognized as one of the healthy solutions to meet the increase in
energy needs. We can already put forward some properties such as mechanical flexibility, lightness,
low cost, and low temperature manufacturing technique borrowed from printing industries [1,2].
Power conversion efficiency of over 17% [3] has already been achieved in single junction organic solar
cells [4,5], thus legitimating hopes for a bright future.

A typical organic solar cell is formed by a multilayer stacking where a bulk heterojunction
(BHJ) active layer is surrounded with two interfacial layers: a hole transport layer (HTL) and an
electron transport layer (ETL). To date, the development of highly efficient OPV is mainly ensured
by the synthesis and use of materials with appropriate properties in the active layer [6], where the
mechanisms of photoelectric conversion, absorption, and transport are now well understood [7].
On the other hand, engineering the interface layers requires finding materials able to drive one
type of electrical charge toward the electrode while blocking the other [8,9]. Thus the main
goals of interfacial layers are the regulation of the electrode work function, the reduction of
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potential exciton losses, the enhancement of charge carrier extraction [10,11], and the blocking
of defect-related recombination events [12,13]. It can also reduce trap formation and smoothen
the surface roughness, thus protecting the active layer. Semiconducting metal oxides such as
ZnO, TiOx, and Cs2CO3 have been validated as air-stable electron transporting and hole-blocking
layers [14–17]. However, to limit defects with adsorbed oxygen, smoothen the surfaces, improve the
device reliability, and reduce the leakage current, conjugated polyelectrolytes, the most widespread
being poly (9,9-bis(3-(N,N-dimethylamino)propyl-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)) (PFN),
are implemented as ETL [18–21] or casted between the metallic oxide and the active layer [22–24].
However, the need for new ETL is still relevant as each BHJ requires interfacial material with highest
occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels,
correctly positioned, with respect to the energy level of the n type organic semiconductor as acceptor
of the BHJ, a still improvable feature. Further developments of tandem devices are of little help since
they introduce more complexity in matching energy levels [25,26].

Heptazines are electron deficient molecules whose interest is sharply rising, due to their exceptional
characteristics like delayed fluorescence [27], photocatalysis [28], and others [29–31]. While their
syntheses were delicate for a long time, an easy approach to this fascinating family was recently
introduced by one of us [32]. In compound 1 (Figure 1), the pyrazole moieties, besides the fact they are
exchangeable, are also sufficiently electron-deficient to arouse interest to investigate its use as ETL.
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Figure 1. Formula of heptazine 1 used in this work.

It should be noted that all heptazines substituted with electron-deficient groups are suitable
candidates for this general purpose, and this preliminary study is currently extended to other derivatives
of this highly promising family. Heptazine-derived materials have already been proposed in OPV
devices, but there are in situ formed polymers, with ill-defined structures, while however showing
interesting performance [33,34].

In this work we propose a heptazine derivative, referred as compound 1 (Figure 1), with an
adapted LUMO level, to be used as interfacial modifier of potential interest in the field of organic
electronics. Considering its suitable electronic properties, this molecule could, for example, promote
electron injection in classical fullerene-based OPV devices. The synthesis of this heptazine has been
recently described by some of us [32]. We show that, beyond energy level matching, this large
conjugated molecule with a 3-fold symmetry forms very smooth uniform thin layers of controllable
thickness, whether they are processed from physical deposition methods (thermal evaporation under
vacuum) or from spin-coating, a rare feature with organic small molecules. The layers have been
thoroughly characterized by diverse spectroscopic techniques, including Kelvin probe force microscopy
(KPFM) which was used to estimate the influence of a heptazine thin film on the Fermi level (EF) of
a classical transparent electrode substrate (indium tin oxide, ITO). Finally, the potentialities of the
heptazine molecule are illustrated by photoluminescence spectroscopy, used to probe the electron
transfer efficiency from a reference organic active layer made of tris-(8-hydroxyquinoline) aluminum
(Alq3). The results are also discussed in relation to the electrochemical potentials.
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It should be also stressed that applications of monomeric heptazines in the field of molecular
organics are numerous and not restricted to inverse OPV cells. Concerning the adaptability of Alq3,
we have used this compound because it is widely used in organic devices, generally speaking, and fits
well with this particular heptazine. As recently demonstrated in our founding article on heptazines [35],
the redox potential of this molecular platform can be adjusted through the electron affinity of its
substituents. Therefore, it is more than likely that molecular engineering, playing on substitution,
will enable adaptation of the new heptazine platform to a vast number of other active layers.

2. Results and Discussion

2.1. Deposition and Characterization of Heptazine Thin Layers

2.1.1. Optical Characteristics

The heptazines are weakly soluble compounds when they do not possess flexible substituents.
However, the heptazine 1 studied in this work is quite soluble in dichloromethane (DCM) thanks to the
freely moving aryl substituents. On the other hand, due to its average molecular weight (≈550 g/mol)
it can still be sublimated under a relatively low pressure, and at a low enough temperature to prevent
degradation. Therefore, we investigated the deposition of these molecules, both by sublimation from
powder and by spin-coating from DCM solutions. The layers have been characterized by several types
of spectroscopy, in relation to their thickness.

The thickness of the layers can be controlled with reasonable precision, relying on one hand on
the deposition time (for the evaporation process), and on the other hand on the spinning rate and the
concentration of the solution (for the spin-coating process). Figure 2 represents the absorption of the
different heptazine deposited layers, in function of the thickness (measured through a profilometer,
see Materials and Methods (Section 3)).
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Figure 2. Absorbance of heptazine layers deposited on quartz, in function of the measured thickness.
(a) Evaporated layers and (b) spin-coated layers.

The fluorescence intensity recovered from the layers (Figure 3) excited at 320 nm, similarly follows
the same trend, with quite a remarkable proportionality between the thickness of the layers and
the emission.

The quantum yields (QY) for the fluorescence emission have been determined for layers of
different thicknesses, and given in Table 1.

They are similar to those measured in solution [32], showing that no aggregation induced
quenching occurs with these molecules (as is often the case with high nitrogen content azines).
In addition, the QY steadily increases with the film thicknesses, as the probable result of fluorescence
quenching for molecules close to the substrate surface; on the other hand, the decrease of luminescence
by reabsorption for the thick layers is quite limited, because of the relatively large Stokes shift associated



Materials 2020, 13, 3826 4 of 14

with heptazines. Indeed, the QY for the thickest evaporated layer is exactly the same as previously
measured in solution.Materials 2020, 13, x FOR PEER REVIEW 4 of 14 

 

 
Figure 3. Fluorescence of heptazine layers deposited on quartz, in function of the measured thickness. 
(a) Evaporated layers and (b) spin-coated layers. 

The quantum yields (QY) for the fluorescence emission have been determined for layers of 
different thicknesses, and given in Table 1. 

Table 1. QY of the deposited layers as a function of layer thicknesses. 

Deposition Technique Thickness Photoluminescence Quantum Yield (QY) 
Evaporation 20 nm 3.5% 
Evaporation 80 nm 8.3% 
Evaporation 100 nm 9.2% 
Spin Coating 25 nm 9.3% 
Spin Coating 50 nm 13.8% 
Spin Coating 70 nm 14.2% 
Spin Coating 100 nm 15% 

 
They are similar to those measured in solution [32], showing that no aggregation induced 

quenching occurs with these molecules (as is often the case with high nitrogen content azines). In 
addition, the QY steadily increases with the film thicknesses, as the probable result of fluorescence 
quenching for molecules close to the substrate surface; on the other hand, the decrease of 
luminescence by reabsorption for the thick layers is quite limited, because of the relatively large 
Stokes shift associated with heptazines. Indeed, the QY for the thickest evaporated layer is exactly 
the same as previously measured in solution. 

The reason for the difference between the emission properties of the spin-coated and evaporated 
films is not clear at this stage. One possible explanation is probably associated with the inherent 
different local molecular arrangement in both films, which has also consequences on the global 
morphology of the deposited films (see next section). The purity of the deposited layer is also quite 
dependent on the method used, especially comparing a solvent-free deposition method such as 
vacuum evaporation and spin-coating. 

2.1.2. Surface and Morphology Characterizations 

The wettability of ITO electrodes is a subject of interest for the future realization of organic 
electronic devices. Organic layers must indeed adhere well to the electrode in order to achieve good 
electrical contact and limit the delamination of the layers often observed during aging. It is possible 
to control the wettability of ITO either by physical treatments [36], or by adding self-assembly layers 
[37–39]. The goal is generally to increase the ITO surface energy, and more particularly its polar 
component. In the context of this work, studying the wettability properties of the modified ITO 
electrodes is also a relevant tool to assess the presence of heptazine molecules, as they should directly 
alter the behavior of solvents on the surface. We have performed contact angle measurements to 
ascertain the modification of the ITO surface by the heptazine thin layer. Figure 4 shows the contact 
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(a) Evaporated layers and (b) spin-coated layers.

Table 1. QY of the deposited layers as a function of layer thicknesses.

Deposition Technique Thickness Photoluminescence Quantum Yield (QY)

Evaporation 20 nm 3.5%
Evaporation 80 nm 8.3%
Evaporation 100 nm 9.2%
Spin Coating 25 nm 9.3%
Spin Coating 50 nm 13.8%
Spin Coating 70 nm 14.2%
Spin Coating 100 nm 15%

The reason for the difference between the emission properties of the spin-coated and evaporated
films is not clear at this stage. One possible explanation is probably associated with the inherent
different local molecular arrangement in both films, which has also consequences on the global
morphology of the deposited films (see next section). The purity of the deposited layer is also quite
dependent on the method used, especially comparing a solvent-free deposition method such as vacuum
evaporation and spin-coating.

2.1.2. Surface and Morphology Characterizations

The wettability of ITO electrodes is a subject of interest for the future realization of organic
electronic devices. Organic layers must indeed adhere well to the electrode in order to achieve
good electrical contact and limit the delamination of the layers often observed during aging. It is
possible to control the wettability of ITO either by physical treatments [36], or by adding self-assembly
layers [37–39]. The goal is generally to increase the ITO surface energy, and more particularly its
polar component. In the context of this work, studying the wettability properties of the modified
ITO electrodes is also a relevant tool to assess the presence of heptazine molecules, as they should
directly alter the behavior of solvents on the surface. We have performed contact angle measurements
to ascertain the modification of the ITO surface by the heptazine thin layer. Figure 4 shows the contact
angle of a water drop before (Figure 4a) and after (Figure 4b) heptazine sublimation on glass/ITO,
which clearly shows the hydrophobic nature of the surface after modification by the organic heptazine,
the contact angle strongly increasing from 20◦ to 35◦ ± 1◦. This result is consistent with those obtained
in the case of conjugated self-assembly layers [37].
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The morphology of the films has also been characterized by optical microscopy (OM) and at
the nanoscale by atomic force microscopy (AFM). AFM images of both evaporated and spin-coated
heptazine films on ITO are given in Figure 5 (the OM images are given as Supplementary Materials,
Figure S2).
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Figure 5. Topographic AFM images of (a) bare glass/ITO substrate, and 50 nm thick heptazine
layers deposited on glass/ITO by (b) vacuum evaporation and (c) spin-coating. The corresponding
root-mean-square (RMS) roughness values are given in all cases.

In both cases, the local morphology is found to be rather smooth on ITO for these 50 nm
thick heptazine films, with low root-mean-square (RMS) roughness values below 2 nm. While the
homogeneity of the sublimated layer is very good on large scales (see the OM images, Figure S2) as well
as at the nanoscale, the spin-coated layer seems to show larger grains or domains, suggesting that the
molecular interactions could be slightly different between both techniques. The large-scale morphology
of the spin-coated layer, as seen through OM (Figure S2), is also much less homogeneous, which proves
that evaporation is a preferred way to prepare even, defect-less thin layers, thus comparable to
well-known reference compounds, such as the classical Alq3 metallic complex and a few other organic
active molecules. In any cases, the slightly different morphologies induced by the deposition technique
are likely to explain the different emission properties of the film revealed in the previous section.

2.2. Electronic Properties of the Surface with Heptazine and Ability for Interfacial Charge Transfer

The key parameters for charge injection or extraction when using an interfacial layer to modify a
metallic electrode, are the work function of this modified electrode and where the HOMO and LUMO
levels of the organic layer referred to as the vacuum level (VL) are placed. In this part, we focus on
the Fermi level (EF) determination of an ITO/Heptazine modified electrode by KPFM. As EF will be
situated between the HOMO and the LUMO levels of the organic layer, it will not directly give the
extraction potential of the modified electrode since electron transport occurs via the HOMO or the
LUMO level of this organic layer. It will just give us insight into whether or not an interfacial dipole
layer is present, due to electron exchange between the metal and the organic layer, and if band bending
occurs in the depths of the organic layer.

In the case of a pure metallic electrode, using KPFM we can easily measure the work function ΦM

that corresponds to the difference between the vacuum level at the immediate proximity of the metal
surface (noted VLS) and the metal Fermi level (Figure 6a).
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Figure 6. (a) Kelvin Probe Force Microscopy (KPFM) measurements of a metal and an organic layer
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electrode and the organic layer in the case of interfacial dipole.

Note that this vacuum level can be different from that of VL far from the metal due to the
electron-rich environment at the metal surface [40–42]. When we add the interfacial layer to the
electrode surface, the same KPFM measurement will give ΦS, the difference between the VL and the
Fermi level at the surface of the organic layer. In the case of organic layers with poor electron density at
the surface, one can assume the vacuum level value will be VL (Figure 6a). When the contact is effective
between the metal and the organic layer, VLorganic (i.e., VL) will take the value of VLS with (Figure 6b)
or without (Figure 6c) continuity between the respective vacuum levels whether or not the contact
obeys the Mott–Schottky law. In the case of discontinuity, it is attributed to a spatially-limited electron
exchange between the electrode and the organic layer resulting in a dipole moment ∆, the sign of
which depends on the dipole orientation. When electrons flow from the electrode to the organic layer
(case of Figure 6c, which corresponds to the heptazines layer case) the dipoles are oriented from the
organic layer to the metal resulting in a VL decay from the organic to the metal and ∆ > 0. Moreover,
electron exchange will take place between the electrode and the organic layer in order to align the
Fermi levels in the two materials at equilibrium provided there are enough charges in the organic part.
This condition is generally fulfilled as soon as the organic layer thickness is larger than few nanometers.
Consequently, a band bending occurs in the organic part, including VL, so that a change in Fermi level
values depicted by KPFM between the bare electrode ΦM and the metal/organic modified electrode ΦS
will denote the presence of a band bending of value eVbi and possibly an interface dipole ∆ (see figure
below): eVbi = |ΦM −ΦS| or eVbi = |ΦM −ΦS + ∆| accordingly [4,43].

We have extensively explored the work function of an ITO electrode modified by thin layers of
different thicknesses of heptazine 1, prepared by spin coating or by vacuum sublimation. The Fermi
levels are listed in Table 2 below (the measurement made in the case of Au is given for reference).
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Table 2. Extraction potential values for the different heptazine layers, including the gold and ITO
references. Top, evaporated layers; bottom, spin-coated layers.

Sample Thickness Fermi Level

Au _ 5.1 eV
ITO _ 4.86 eV ± 50 meV

ITO/Heptazine 10 ± 5 nm 5.49 eV ± 35 meV
ITO/Heptazine 20 ± 5 nm 5.5 eV ± 35 meV
ITO/Heptazine 46 ± 5 nm 5.45 eV ± 40 meV
ITO/Heptazine 70 ± 5 nm 5.45 eV ± 40 meV

Au _ 5.1 eV
ITO _ 4.89 eV ± 30 meV

ITO/Heptazine 25 ± 10 nm 5.2 eV ± 20 meV
ITO/Heptazine 50 ± 10 nm 5.12 eV ± 20 meV
ITO/Heptazine 100 ± 10 nm 5.09 eV ± 20 meV

The measured potentials do not change as could be expected with the layer thicknesses, which is
a point in support of the homogeneity of the deposits and reveals that the thicknesses we used are too
large to observe any band bending resulting from the electron exchange at the interface. Indeed, band
bending does not extend more than a few nanometers in most metal–organic interfaces studied to
date [41,42], and its observation requires very sophisticated experiments (UHV in situ measurements),
typically out of reach in open air. For the two deposition methods, we clearly see a reproducible shift
of the modified electrode work function with values of 0.6 eV and 0.25 eV for evaporated and spin
coated layers, respectively. This denotes the presence of a bend bending or an incoming dipole from
the organic layer to the metallic electrode due to electron transfer from the metal to the organic and
corresponding to a positive value of ∆. This is reasonable taking into account the strong acceptor
nature of the heptazine. Note that the presence of a positive dipole at a metal organic interface
is particularly uncommon and joins the cases of few very strong organic acceptors like TCNQ or
perylene (DP-NTCI) [42]. We also think that the work function shift we obtain is rather due to the
cumulative effect of an interface dipole and band bending (Figure 6c) than a band bending alone
(pure Mott–Schottky contact, Figure 6b). If it was so, taking into account a 0.6 eV shift and an organic
band gap of 3.5 eV (extracted from optical absorption Figure 2) the electrode Fermi level would take
place very close to the LUMO of the organics when contact is established, possibly with a pinning of
the Fermi level at this LUMO state. In this case, the work function decay would be far higher, towards
1–2 eV. Nevertheless, our potentials seem slightly dependent on the deposition technique. Attempts to
relate this to crystallinity failed, since both types of layers did not show any crystallinity, as far as we
could investigate by our means (see Supplementary Materials, Figure S2). A more likely interpretation
can be proposed considering that interfacial dipole values can be strongly sensitive to any change in
the molecular orientation or dielectric permittivity near the interface, which can result from using two
different deposition techniques.

2.3. Comparative Discussion on the Behavior of Heptazine Layers

With KPFM, the work function of surfaces can be observed at a scale of a few nanometers.
The difference in Fermi levels between the AFM tip and the sample surface leads to a current flowing
until Fermi levels are aligned. Applying a voltage between the tip and the sample to compensate for
this contact difference potential (CDP) allows extraction of the Fermi level of the sample, knowing that
of the tip (which can be derived from a suitable calibration using reference samples). The notion of
Fermi level in a molecular material is more elusive, but it can be considered that it lies in the middle of
the gap for undoped materials, so that EF is equal to (ELUMO − EHOMO)/2.

This value can be correlated to the results already obtained in fluorescence and electrochemistry.
We can identify the ELUMO to the reduction redox potential, applying the correspondence formula
Eorbital = −(−4.55 + Vredox), Vredox being the electrochemical potential in solution [42,43], and Eorbital
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measured with origin at vacuum level, the classically admitted 4.55 V representing the difference
between the vacuum level and the saturated calomel electrode (SCE) [44], (4.3 V being the difference
between the normal hydrogen electrode (NHE) and vacuum, and 0.25 V the additional difference
between the NHE and the SCE). Of course, these comparisons stand within the formal errors due
with the fact that solvent effects are neglected, but are usually reasonably meaningful in the case of
conjugated aromatic molecules, where the solvation effects are limited. The fluorescence measurements
give the HOMO–LUMO gap, from the intersection of both absorption and emission spectra, from
which the HOMO energy is in turn easily calculated. From our previous work we know that the
electrochemical potential of 1 is equal to −1.23 V, and its optical gap is 3.5 eV; we thus obtain
ELUMO = −3.32 eV and EHOMO = −6.82 eV. The Fermi level can therefore be calculated of 5.02 eV.
Taking into account the vacuum level shift (0.6 eV in the case of spin coated layers, 0.25 eV in the
case of evaporated layers), the value of which having to be added to ΦS (Figure 6c), we obtained
heptazine Fermi levels with the values of 5.67 eV and 5.32 eV, respectively, if the layer was intrinsic
(i.e., EFS = (ELUMO − EHOMO)/2). The measured values are inferior of 0.1–0.2 eV, which denotes a
slightly higher Fermi level, corresponding to an n doping of the layer on ITO. Indeed, this approach
appears quite reasonable taking into account the strong acceptor nature of the heptazine.

While it can be considered that the evaporated layers form a purer material, probably even more
organized after the low temperature annealing step, those values can be considered as remarkably
concordant for evaluating the absolute position of frontier orbitals in the solid-state compared to
solution, in the case of such molecular materials thin layers.

2.4. Influence of Heptazine Thin Layers on Electron Transfer Rates from An Alq3 Thin Films

Of course, a step beyond the in-depth evaluation of the heptazine layer’s optical and electrical
behavior, was to investigate their behavior in the presence of an active organic layer, such as an OPV
blend or an emissive organic layer in the case of light-emitting diodes for example. In this direction,
Alq3 layers were a reasonable first choice as a proof of concept, since they show compatible energy
levels and since they can be easily deposited on top of the heptazine layers using thermal evaporation.
Moreover, Alq3 layers absorb visible light where heptazines do not, allowing a simple characterization
of the charge transfer mechanisms by photoluminescence spectroscopy [45–47].

An efficient means of investigation is to monitor the emission of the Alq3 layer under visible
excitation at 404 nm, whether it is deposited on an ITO or an ITO/heptazine electrode. Indeed,
the emission properties of Alq3 on specific substrates can reveal the charge transfer mechanisms
occurring at the interface, which are responsible for a significant PL extinction. Such charge transfer
processes are preliminary steps required for efficient charge extraction in a final device, assuming a
reasonable charge mobility (which is currently being assessed, while being out of the scope of the
present study). To illustrate our strategy, Figure 7 below represents the proposed energy configuration
of the materials, as well as the expected photo-induced charge transfers mechanism from Alq3.

Charges extracted from the Alq3 layer at the interface can be extracted in the heptazine layer and
later on, either driven to the ITO electrode, or lost by non-radiative recombination with the oxidized
Alq3 layer, therefore decreasing its PL emission. We note that it was important to reduce the thickness
of the Alq3 layer, considering the exciton diffusion length of the material usually reported (between 3
and 25 nm) [48].

Figure 8a below represents the change in the emission of the Alq3 layer deposited on top of a
heptazine layer in the case of an ITO substrate, using a 404 nm excitation (the case of a glass substrate
is given as Supplementary Materials, Figure S3a).

In both cases, the emission of the Alq3 layers are significantly reduced when the fluorophore
is deposited onto the heptazine layer, in comparison to the case where it is deposited directly either
on glass (Figure S3a) or ITO (Figure 8a). This trend is confirmed by transient photoluminescence
measurements made on the same samples, which show a significantly reduced Alq3 exciton lifetime in
the presence of heptazine (average lifetime of 11.5 ns without heptazine versus 9.5 ns with heptazine,
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see Figure 8b for samples deposited on glass/ITO substrates, and Figure S3b in ESI for samples
deposited on glass substrates).Materials 2020, 13, x FOR PEER REVIEW 9 of 14 
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Both results demonstrate that fluorescence quenching is much more pronounced in the presence
of the heptazine interfacial layer. Actually, since the excitation takes place at 404 nm, a wavelength
where the heptazine is not absorbing, the quenching process mainly occurs by photo-induced charge
transfer to the heptazine layer. Both experiments on glass and on ITO (see Supplementary Materials,
Figure S3) provide quite similar features.

This fact that similar observations are made for ITO and bare glass substrates indicates that
charge extraction down to ITO is a very minor process compared to non-radiative recombination
at the Alq3 interface, immediately after photo-excitation. The relatively thick layer of heptazine
layer (50 nm) is certainly a drawback for efficient charge collection by the electrode (Figure 7). This
assumption is also confirmed through thickness-dependent PL and time-resolved photoluminescence
(TRPL) measurements made on samples of varying heptazine layer thicknesses (from 10 to 100 nm;
see Supplementary Materials, Figure S4). Similar Alq3 emission properties (emission intensity and
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TRPL decay kinetics) are observed for thin and thick heptazine interfacial layers. It indicates relatively
limited charge mobility in the heptazine layer, although a specific characterization is required on
this aspect.

3. Materials and Methods

3.1. Synthesis of Heptazine Molecules

Heptazine 1 preparation has been reported recently by one of us [32].

3.2. Elaboration and Characterization of Heptazine Thin Films

The heptazine 1 studied in this work is quite soluble in dichloromethane DCM (Carlo Erba, Spain).
On the other hand, due to its average molecular weight (≈500 g/mol), it can be sublimated under a
relatively low pressure, at a temperature where the molecules are still stable. Therefore, we investigated
the deposition of these molecules, both by sublimation under vacuum and by spin-coating from DCM
solutions. The solutions were prepared following these steps: 15 mg of heptazine (weighed with a
microbalance) were solubilized into 3 mL of DCM in a tight vial. After quick hand mixing, the vial was
shaken first on a mechanic stirrer, then sonicated for at least 15 min in a standard water sonicating bath.

To prepare heptazine films by sublimation, the process described below was followed.
The heptazine was placed in a dedicated tungsten crucible, in an Edwards Auto 306 high vacuum
evaporator. The pressure was lowered to about 10−6 mbar, then the current (provided by a current
source) was gradually increased up to 8 A, following two 4 A steps of 5 min each. When 8 A was
reached, the current was increased by smaller steps of 1 A every 3 min. At 12 A, the deposition speed
reached an approximately stable rate of 0.1 nm/s and the conditions were kept constant until obtention
of the desired thickness, ranging from 10 to 100 nm (accuracy of ±5 nm), as measured by a mechanical
profilometer (DEKTAK XT, Bruker, Switzerland).

3.3. Spectroscopic Characterizations

3.3.1. UV-Visible Absorption Spectroscopy and Optical Microscopy Images

UV-visible absorption spectra of heptazine thin layers were recorded in transmission mode using
an AGILENT Cary 300, (Santa Clara, CA, USA) spectrometer equipped with an integrating sphere.
The baseline was defined by the bare substrate priori to thin film measurements. Optical images of thin
films on various substrates were recorded using a LEICA DM12000 M microscope, (Dresden, Germany)

3.3.2. Photoluminescence Studies

Photoluminescence (PL) spectroscopy measurements on solutions and solid-state films were
performed using an FLS980 spectrometer from Edinburgh Instruments (Edimburgh, UK). Steady-state
PL was performed using a monochromated 450 W Xenon lamp and a cooled Hamamatsu R928P
photodetector. Samples were placed at 45◦ in a specific sample holder, ensuring similar excitation
conditions for all heptazine films (λexc = 320 nm). The spectral resolution of the emission monochromator
was set to 2 nm and the excitation intensity was chosen so that no damages were observed on the
samples over time. Absolute PL emission quantum yields (PLQY) of both solutions and thin films
deposited on quartz substrates were estimated using an integrating sphere. Charge injection rates
on heptazine/Alq3 samples were estimated using Time-Resolved Photoluminescence (TRPL) spectra
recorded on the same apparatus using a 404 nm picosecond laser diode (temporal width of 150 ps)
and by detecting the emission at 533 nm (2.33 eV) using Time-Correlated Single Photon Counting
(TCSPC). PL decays were adjusted using bi-exponential decay functions, which were subsequently
used to evaluate an average decay time τa [49]. The instrument response function (full width at half
maximum of ~520 ps), measured using a diffusive reference sample LUDOX HS-40, (Sigma Aldrich,
Buchs, Switzerland) was systematically deconvoluted for each TRPL spectrum.
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3.3.3. AFM and KPFM Analysis

The nanoscale morphology and work function of the heptazine thin films were recorded using
a Nano-Observer atomic force microscope (AFM) from CSI Instruments. While topographic images
were recorded in tapping mode, the Fermi level of heptazine layers deposited on glass/ITO substrates
was performed using Kelvin probe force microscopy (KPFM) measurements. Platinum-coated AFM
tips with a resonant frequency between 43 and 81 kHz and elastic coefficient of 1.5 N/m were
used to determine the contact potential difference VCPD between the tip and the ITO/heptazine
sample. Measurement was performed in amplitude modulation mode and single pass KPFM mode
in ambient conditions; thereby VCPD between the tip and the sample was mapped simultaneously to
the topography (VCPD is measured as the maximum potential change of the tip required to null the
alternating current, between tip and heptazine, resulting from the oscillating capacitance). VCPD is

defined as: VCPD =
φtip−φsample

−e where φtip and φsample are the work functions of the tip and the sample,
respectively; and e the elementary charge. As a calibration is needed for absolute measurements by
KPFM, we measured the contact potential difference between the tip and a fresh gold layer evaporated
on glass, as well as with a highly oriented pyrolytic graphite (HOPG) plate. Assuming thatφAu = 5.1 eV
and φHOPG = 4.47 eV [50], the tip work function was calculated for each AFM tip used in this work.

4. Conclusions

This study describes, for the first time, the deposition of molecular heptazine thin layers, as well as
their physical properties, based on fluorescence measurements and Fermi level assessment by Kelvin
probe force microscopy. A relevant estimation of their energetic configuration as thin film has been
obtained, which allows us to propose their use as interfacial layers in organic devices such as solar
cells. As a proof of concept, we built a simple model device where heptazine thin films are promoting
charge transfer process from an Alq3 photo-active layer, as revealed by steady-state and transient
photoluminescence spectroscopy. Although only one heptazine molecule has yet been studied in this
respect, the results gathered are already encouraging, since they clearly suggest the possibility of using
this new family of molecules as interfacial modifiers in organic optoelectronic devices. In particular,
it is likely that substituents engineering could still noticeably improved the efficiency of this new
family in the field of molecular electronics. New molecules of this emerging family are currently
under investigation.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/17/3826/s1,
Figure S1: Comparison by optical microscopy of different types of heptazine layers, according to the deposition
conditions. The film thickness is around 50 nm in all cases. (a) ITO neat substrate, (b) Spin-coated heptazine on
ITO, (c) Same as (b), but with 20 min annealing at 90◦ (d) Heptazine spin coated on a heated (90 ◦C) substrate,
then annealing at 90 ◦C, (e) Heptazine evaporated on ITO (see Materials and Methods). Scale bar: 0.5 mm,
Figure S2: XRD diagram of heptazine 1 powder and thin films. Note: the black and blue traces are overlapping,
Figure S3: PL emission (a) and TRPL decay curves (b) of Alq3 deposited on glass or on glass/heptazine substrate,
Figure S4: PL emission (a) and TRPL decay curves (b) of Alq3 deposited on ITO/heptazine substrates as a function
of the heptazine layer thickness. The excitation is made at 404 nm in both cases, Table S1: Optimized deposition
parameters for the realization of heptazine thin films by spin coating, Table S2: Quantitative analysis of TRPL
decay curves of Alq3 emission deposited on glass/ITO or on glass/ITO/heptazine substrate.
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