
HAL Id: hal-02963147
https://unilim.hal.science/hal-02963147v2

Submitted on 9 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deterministic computation of the characteristic
polynomial in the time of matrix multiplication

Vincent Neiger, Clément Pernet

To cite this version:
Vincent Neiger, Clément Pernet. Deterministic computation of the characteristic polyno-
mial in the time of matrix multiplication. Journal of Complexity, 2021, 67, pp.101572.
�10.1016/j.jco.2021.101572�. �hal-02963147v2�

https://unilim.hal.science/hal-02963147v2
https://hal.archives-ouvertes.fr

Deterministic computation of the characteristic polynomial
in the time of matrix multiplication

Vincent Neiger

Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France

Clément Pernet

Université Grenoble Alpes, Laboratoire Jean Kuntzmann, CNRS, UMR 5224
700 avenue centrale, IMAG - CS 40700, 38058 Grenoble cedex 9, France

Abstract

This paper describes an algorithm which computes the characteristic polynomial of a matrix over
a field within the same asymptotic complexity, up to constant factors, as the multiplication of two
square matrices. Previously, this was only achieved by resorting to genericity assumptions or
randomization techniques, while the best known complexity bound with a general deterministic
algorithm was obtained by Keller-Gehrig in 1985 and involves logarithmic factors. Our algorithm
computes more generally the determinant of a univariate polynomial matrix in reduced form,
and relies on new subroutines for transforming shifted reduced matrices into shifted weak Popov
matrices, and shifted weak Popov matrices into shifted Popov matrices.

Keywords: Characteristic polynomial, polynomial matrices, determinant, fast linear algebra.

1. Introduction

The last five decades witnessed a constant effort towards computational reductions of linear
algebra problems to matrix multiplication. It has been showed that most classical problems are
not harder than multiplying two square matrices, such as matrix inversion, LU decomposition,
nullspace basis computation, linear system solving, rank and determinant computations, etc. [7]
[25] [8, Chap. 16]. In this context, one major challenge stands out: designing a similar reduction
to matrix multiplication for the computation of characteristic polynomials and related objects
such as minimal polynomials and Frobenius forms. For the characteristic polynomial, significant
progress was achieved by Keller-Gehrig [31], and more recently by Pernet and Storjohann [39]
who solved the problem if one allows randomization. This paper closes the problem by providing
a deterministic algorithm with the same asymptotic complexity as matrix multiplication.

The characteristic polynomial of a square matrix over a field K, say M ∈ Km×m, is defined as
det(xIm −M). Specific algorithms exist for sparse or structured matrices; here we consider the
classical, dense case. In this paper the complexity of an algorithm is measured as an upper bound
on its arithmetic cost, that is, the number of basic field operations it uses to compute the output.

Theorem 1.1. Let K be a field. Using a subroutine which multiplies two matrices in Km×m in
O(mω) field operations for some ω > 2, the characteristic polynomial of a matrix in Km×m can
be computed deterministically in O(mω) field operations.

Outline. The rest of this introduction gives more details about our framework for complexity
bounds (Section 1.1), summarizes previous work (Section 1.2), describes our contribution on
polynomial matrix determinant computation (Section 1.3), gives an overview of our approach
and of new tools that we designed to avoid logarithmic factors (Sections 1.4 and 1.5), and finally
lists a few perspectives (Section 1.6). Section 2 introduces the notation, main definitions, and
basic properties used in this paper. Then Section 3 presents the main algorithm of this paper along
with a detailed complexity analysis. This algorithm uses two new technical tools described in
Sections 4 and 5: the transformation of reduced forms into weak Popov forms and of weak Popov
forms into Popov forms, in the case of shifted forms.

1.1. Framework for complexity bounds

In this paper, K is any field and we seek upper bounds on the complexity of algorithms which
operate on objects such as matrices and polynomials over K. We consider the arithmetic cost of
these algorithms, i.e. the number of basic operations in K that are used to compute the output
from some input of a given size. The basic operations are addition, subtraction, multiplication,
and inversion in the field, as well as testing whether a given field element is zero.

As already highlighted in Theorem 1.1, in this paper we fix any 2 < ω ≤ 3 as well as any
algorithm which multiplies matrices in Km×m using O(mω) operations in K: this algorithm is
assumed to be the one used as a black box for all matrix multiplications arising in the algorithms
we design. The current best known cost bounds ensure that any ω > 2.373 is feasible [33].
In practice, one often considers a cubic algorithm with ω = 3 or Strassen’s algorithm with
ω = log2(7) [47]. Our results hold with the only assumption that 2 < ω ≤ 3.

In the computer algebra literature, this setting is classical and often implicit; we still em-
phasize it because here, and more generally when one studies the logarithmic factors in the cost
bound of some algorithm, this clarification of how the underlying matrix multiplications are per-
formed is of the utmost importance. Indeed, if one were allowed to use any matrix multiplication
subroutine, then the question of logarithmic factors becomes void: for any exponent ω known to
be feasible at the time of writing, it is known that ω− ε is feasible as well for a sufficiently small
ε > 0; then one might rather rely on this faster subroutine, and apply Keller-Gehrig’s algorithm
to obtain the characteristic polynomial in O(mω−ε log(m)) operations in K, which is in O(mω).

Similarly, we consider a nondecreasing function d 7→ M(d) and an algorithm which multiplies
two polynomials in K[x] of degree at most d using at most M(d) operations in K; our algorithms
rely on this subroutine for polynomial multiplication. Here d is any nonnegative real number; it
will often be a fraction D/m of positive integers; we assume that M(d) = 1 for 0 ≤ d < 1, so that
M(d) ≥ 1 for all d ≥ 0. To help derive complexity upper bounds, we also consider the following
assumptionsHsl,Hsm, andHω.
Hsl: 2 M(d) ≤ M(2d) for all d ≥ 1 (superlinearity).
Hsm: M(d1d2) ≤ M(d1) M(d2) for all d1, d2 ≥ 0 (submultiplicativity).
Hω: M(d) ∈ O(dω−1−ε) for some ε > 0.

The first assumption is customary, see e.g. [19, Sec. 8.3]; note that it implies M(d) ≥ d for
all d ≥ 1. The second and last assumptions are commonly made in complexity analyses for
divide and conquer algorithms on polynomial matrices [45, 23]: we refer to [45, Sec. 2] for
further comments on these assumptions. They are satisfied by the cost bounds of polynomial
multiplication algorithms such as the quasi-linear algorithm of Cantor and Kaltofen [9] and, for
suitable fields K, the quasi-linear algorithm of Harvey and van der Hoeven and Lecerf [24],
and most of Toom-Cook subquadratic algorithms [50, 10]. For the latter only Hω might not

2

be satisfied, depending on ω and on the number of points used. Note that with the current
estimates having ω > 2.373, an order 5 Toom-Cook multiplication (requiring a field with at least
9 points) has exponent log(9)/ log(5) ≈ 1.365 < ω−1; thus for such exponents ω all Toom-Cook
algorithms of order 5 or more satisfy all the above assumptions.

Following [45, 23], we also define a function d 7→ M′(d) related to the cost of divide and
conquer methods such as the half-gcd algorithm: M′(d) =

∑
0≤i≤dlog2(d)e 2i M(2−id) for d ≥ 1, and

M′(d) = 1 for 0 ≤ d ≤ 1. By definition one has M′(d) ≥ M(d) ≥ 1 for all d ≥ 0, and the identity
M′(2d) = 2 M′(d) + M(2d) for d ≥ 1 ensures that M′(d) is superlinear: 2 M′(d) ≤ M′(2d) for
all d ≥ 1. Assuming Hsl yields the asymptotic bound M′(d) ∈ O(M(d) log(d)) where the log(d)
factor only occurs if a quasi-linear polynomial multiplication is used; in particular, Hsl and Hω

imply M′(d) ∈ O(dω−1−ε) for some ε > 0. Furthermore, if one assumes Hsl and Hsm, then M′(·)
is submultiplicative as well: M′(d1d2) ≤ M′(d1) M′(d2) for all d1, d2 ≥ 0.

In what follows we assume that two polynomial matrices in K[x]m×m of degree at most d ≥ 0
can be multiplied in O(mω M(d)) operations in K. This is a very mild assumption: it holds as
soon as M(d) corresponds to one of the above-mentioned polynomial multiplication algorithms,
and it also holds if the chosen matrix multiplication algorithm defining ω supports matrices over
a commutative ring using only the operations {+,−,×} (so that one can use it to multiply m × m
matrices over K[x]/(x2d+1)). Note still that this bound O(mω M(d)) is slightly worse than the
best known ones [9, 24]; for example, Cantor and Kaltofen’s algorithm performs polynomial
matrix multiplication in O(mωd log(d) + m2d log(d) log(log(d))) field operations, which is finer
than the bound O(mω M(d)) with M(d) = Θ(d log(d) log(log(d))) in that case. This simplification
is frequent in the polynomial matrix literature, and it is made here for the sake of presentation,
to improve the clarity of our main complexity results and of the analyses that lead to them.

1.2. Previous work

Previous algorithms based on linear algebra over K for computing the characteristic polyno-
mial of M ∈ Km×m mainly fall in three types of methods.

Traces of powers: combining the traces of the first n powers of the input matrix using the
Newton identities reveals the coefficients of the characteristic polynomial. Known as the
Faddeev-LeVerrier algorithm, it was introduced in [34], refined and rediscovered in [43,
16, 18], and used in [11] to prove that the problem is in theNC2 parallel complexity class.

Determinant expansion formula: introduced in [41] and improved in [6], this approach does
not involve division, and is therefore well suited for computing over integral domains.
Later developments in this field include [1, 30], the latter reaching the best known cost
bound of O(m2.6973 log(m)c) ring operations using a deterministic algorithm, for some con-
stant c > 0.

Krylov methods: based on sequences of iterates of vectors under the application of the matrix:
(v,Mv,M2v, . . .). These methods rely on the fact that the first linear dependency between
these iterates defines a polynomial which divides the characteristic polynomial. Some al-
gorithms construct the Krylov basis explicitly [31, 20, 14], while others can be interpreted
as an implicit Krylov iteration with structured vectors [12, 39].

Methods based on traces of powers use O(m4) or O(mω+1) field operations, and are mostly com-
petitive for their parallel complexity. Methods based on determinant expansions use O(m4) or
O(mω+1) field operations and are relevant for division-free algorithms. Lastly, the Krylov meth-
ods run in O(m3) [12, 14] or O(mω log m) [31] field operations with deterministic algorithms, or
in O(mω) field operations with the Las Vegas randomized algorithm in [39].

3

Note that the characteristic polynomial of M cannot be computed faster than the determinant
of M, since the latter is the constant coefficient of the former. Furthermore, under the model of
computation trees, the determinant of m×m matrices cannot be computed faster than the product
of two m × m matrices [8, Sec. 16.4], a consequence of Baur and Strassen’s theorem [2].

Another type of characteristic polynomial algorithms is based on operations on matrices over
K[x], called polynomial matrices in what follows. Indeed the characteristic polynomial may be
obtained by calling a determinant algorithm on the characteristic matrix xIm −M, which is in
K[x]m×m. Existing algorithms, which accept any matrix in K[x]m×m of degree d as input, include
• the evaluation-interpolation method, which costs O(mω+1d + m3 M′(d)) field operations,

requires that the field K is large enough, and mainly relies on the computation of about md
determinants of matrices in Km×m;
• the algorithm of Mulders and Storjohann [36] based on weak Popov form computation,

which uses O(m3d2) field operations;
• retrieving the determinant as the product of the diagonal entries of the Smith form, itself

computed by a Las Vegas randomized algorithm in O(mω M′(d) log(m)2) field operations
[45, Prop. 41], assuming M′(d) ∈ O(dω−1);
• the algorithm based on unimodular triangularization in [32], which is deterministic and

uses O(mωd log(d)a log(m)b) field operations for some constants a, b ∈ Z>0.
In the last two items the cost bound is, up to logarithmic factors, the same as the cost of multiply-
ing matrices K[x]m×m of degree d by relying on both fast linear algebra over K and fast arithmetic
in K[x], as showed in [9]. The last two of these cost bounds do involve factors logarithmic in m,
whereas the first two have an exponent on m which exceeds ω.

In summary, the fastest characteristic polynomial algorithms either are randomized or have a
cost a logarithmic factor away from the lower bound. This paper, with Theorem 1.1, bridges this
gap by proposing the first deterministic algorithm with cost O(mω).

1.3. A more general result: determinant of reduced polynomial matrices
Our algorithm falls within the category of polynomial matrix determinant computation. Yet

unlike the above-listed approaches ours is tailored to a specific family of polynomial matrices,
which contains the characteristic matrix xIm −M: the family of row reduced matrices [52, 29].
Restricting to such matrices provides us with good control of the degrees in computations; as
a typical example, it is easy to predict the degree of a vector-matrix product v(xIm − M) by
observing the degrees in v, without actually computing the product. As we explain below, this
degree control allows us to avoid searches of degree profiles, which would add logarithmic terms
to the cost. Although the characteristic matrix has other properties besides row reducedness (it
has degree 1, and is in Popov form [40] hence column reduced), we do not exploit them.

When appropriate, the average row degree D/m, where D is the sum of the degrees of the rows
of the matrix, is chosen as a measure of the input degree which refines the matrix degree d used
above. This gives cost bounds more sensitive to the input degrees and also, most importantly,
leverages the fact that even if the algorithm starts from a matrix with uniform degrees such as
xIm −M, it may end up handling matrices with unbalanced row degrees in the process.

Theorem 1.2. Assuming Hsl, Hsm, and Hω (hence in particular ω > 2), there is an algorithm
which takes as input a row reduced matrix A ∈ K[x]m×m and computes its determinant using

O
(
mω M′(D/m)

)
⊆ O

(
mω M′

(
deg(A)

))
operations in K, where D = deg(det(A)) is equal to the sum of the degrees of the rows of A.

4

The fact that deg(det(A)) is the sum of row degrees is a consequence of row reducedness [29],
and the cost bound inclusion follows from deg(det(A)) ≤ m deg(A). Taking A = xIm −M for
M ∈ Km×m, Theorem 1.1 is a direct corollary of Theorem 1.2. The only assumption needed in
Theorem 1.1 is ω > 2, since it implies the existence of a polynomial multiplication algorithm
such thatHsl,Hsm, andHω hold, such as Cantor and Kaltofen’s algorithm [9].

Previous polynomial matrix determinant algorithms with costs of the order of mω deg(A), up
to logarithmic factors, have been listed above: a randomized one from [45], and a deterministic
one from [32]. To our knowledge, this paper gives the first description of an algorithm achieving
such a cost involving no factor logarithmic in m. Our approach partially follows the algorithm of
[32], but also substantially differs from it in a way that allows us to benefit from the reducedness
of A. The cost bound O(mω M′(deg(A))) has been obtained before in [21, Sec. 4.2.2] in the
particular case of a “sufficiently generic1” matrix A. In that case, both the algorithm of [32] and
the one here coincide and become the algorithm of [21, Sec. 4.2.2]; when A is the characteristic
matrix xIm −M, this also relates to the fast algorithm in [31, Sec. 6] for a generic M.

1.4. Approach, and existing tools
For the sake of presentation, suppose m is a power of 2. Writing A = [A1 A2

A3 A4
] with the Ai’s of

dimensions (m/2) × (m/2), the algorithm of [32] is based on the block triangularization[
∗ ∗

K1 K2

] [
A1 A2
A3 A4

]
=

[
R ∗

0 B

]
where the entries “∗” are not computed, B = K1A2 + K2A4, and R and [K1 K2] are computed
from [A1

A3
] as a row basis and a kernel basis, respectively (see Section 2.2 for definitions). Then

the leftmost matrix in the above identity is unimodular [32, Lem. 3.1] and thus, up to a constant
factor, det(A) can be computed recursively as det(R) det(B).

A first observation is that neither the kernel basis computation nor the matrix multiplication
giving B is an obstacle towards a cost which is free of log(m). (The fastest known method for
multiplying matrices with unbalanced degrees, such as in B = K1A2 + K2A4, splits the com-
putation into O(log(m)) multiplications of smaller matrices with balanced degrees [58, Sec. 3.6],
suggesting that its cost may involve a log(m) factor.) Indeed we show that, under the above as-
sumptions on M(·), the cost of these operations is in O(mω M(D/m)) and O(mω M′(D/m)), thus
only involving factors logarithmic in D/m. In previous work, cost bounds either hide logarith-
mic factors [58] or they are derived without assuming Hsm and have the form O(mω−1 M(D))
and O(mω−1 M′(D)) [27], thus resulting in factors logarithmic in D. Proving this observation is
straightforward from the analyses in [58, 27] (see Section 2.5). This is a first key towards our
main result: the characteristic matrix has D = m, and O(mω M(1)) is the same as O(mω) whereas
O(mω−1 M(m)) involves factors logarithmic in m.

However, the computation of the row basis R remains an obstacle which prevents the algo-
rithm of [32] from being a candidate for Theorem 1.2. Indeed, among the row basis algorithms
we are aware of, only one has a cost bound which fits into our target up to logarithmic factors: the
one of [56]. It relies on three kernel bases computations, and while one of them is similar to the
computation of [K1 K2] and is handled via the algorithm of [58], the two others have different
constraints on the input and were the subject of a specific algorithm described in [56, Sec. 4].

1Precisely, if the upper triangular, row-wise Hermite normal form of A has diagonal entries (1, . . . , 1, λ det(A)), for
some λ ∈ K \ {0} making λ det(A) monic.

5

In this reference, cost bounds were given without showing logarithmic factors; our own analysis
revealed the presence of a factor logarithmic in m. The algorithm has a loop over Θ(log(m))
iterations, each of them calling [55, Algo. 2] for minimal approximant bases with unbalanced in-
put. This approximant basis algorithm may spend a logarithmic number of iterations for finding
some degree profile of the output basis, in a way reminiscent of Keller-Gehrig’s algorithm in [31,
Sec. 5] which finds the lengths of Krylov sequences (the link between the two situations becomes
more explicit for approximant bases at small orders, see [27, Sec. 7]).

Our attempts at accelerating the row basis algorithm of [56] having not succeeded, the algo-
rithm in this paper follows an approach which is more direct at first: remove the obstacle. Instead
of computing a row basis R and relying on the identity det(A) = det(R) det(B) (up to a constant),
keep the first block row of A: [

Im/2 0
K1 K2

] [
A1 A2
A3 A4

]
=

[
A1 A2
0 B

]
(1)

and rely on the identity det(A) = det(A1) det(B)/ det(K2). The nonsingularity of A1 and K2 is
easily ensured thanks to the assumption that A is reduced, as discussed in Section 1.5.

This leads to an unusual recursion scheme: we are not aware of a similar scheme being used
in the literature on computational linear algebra. The algorithm uses three recursive calls with
(m/2) × (m/2) matrices whose determinant has degree at most D/2 for two of them and at most
D for the third; our complexity analysis in Section 3.3 shows that such a recursion gives the cost
in Theorem 1.2. Precisely, if deg(det(A1)) ≤ D/2 then degree properties of minimal kernel bases
imply that deg(det(K2)) ≤ D/2, yielding the two calls in half the degree; otherwise the algorithm
uses inexpensive row and column operations on A to reduce to the case deg(det(A1)) ≤ D/2.

Although this approach removes the obstacle of row basis computation which arises in [32],
it adds a requirement: all recursive calls must take input matrices that are reduced. In the next
section we discuss how to ensure the reducedness of A1 and B thanks to a straightforward gener-
alization of [42, Sec. 3], and we describe a new algorithm which handles the more involved case
of K2.

1.5. New tools, and ensuring reduced form in recursive calls

When outlining the approach of our determinant algorithm via the identity in Eq. (1), we
implicitly assumed that the matrices used as input in recursive calls, i.e. A1 and K2 and B, do
satisfy the input requirement of row reducedness: this is not necessarily the case, even if starting
from a reduced matrix A.

Concerning A1, one may locate such a reduced submatrix of A and then permute rows and
columns of A (which only affects the sign of det(A)) to make this submatrix become the leading
principal submatrix A1. This is a classical operation on reduced matrices which suggests using
a form slightly stronger than reduced form called weak Popov form [36] (see Section 2.4). As-
suming that A has this form ensures that its leading principal submatrix A1 has it as well. This
assumption is acceptable in terms of complexity since one can transform a reduced A into a weak
Popov P by means of fast linear algebra in a cost negligible compared to our target [42, Sec. 3];
note that A and P have the same determinant up to an easily found constant (see Algorithm 1).

Next, the cases of K2 and B are strongly linked. First, we will not discuss K2 but the whole
kernel basis [K1 K2]. The fastest known algorithm for computing such a basis is that of [58],
and for best efficiency it outputs a matrix in shifted reduced form, which is a generalization of
reducedness involving degree weights given by a tuple s ∈ Zm called a shift (see Sections 2.3

6

and 2.4 for definitions); the non-shifted case is for s = 0. As in the determinant algorithm of [32],
here the shift for [K1 K2] is taken as the list of row degrees of A, denoted by s = rdeg(A); for the
characteristic matrix one has s = (1, . . . , 1) but non-uniform shifts may arise in recursive calls.
We want [K1 K2] to be not only s-reduced, but in s-weak Popov form: a direct consequence is
that B is in weak Popov form, and is thus suitable input for a recursive call.

To obtain [K1 K2] we use the kernel basis algorithm of [58] and transform its output into
s-weak Popov form. A minor issue is that the fastest known algorithm for such transformations
was written in [42, Sec. 3] for non-shifted forms; yet it easily extends to shifted forms as we
show in Section 4, obtaining the next result.

Theorem 1.3. There is an algorithm ReducedToWeakPopov which takes as input a matrix A ∈
K[x]m×n with m ≤ n and a shift s ∈ Zn such that A is in s-reduced form, and returns an s-weak
Popov form of A using O(mω−2nD + mω−1n) operations in K, where D = |rdegs(A)| −m ·min(s).

Here, following usual notation recalled in Section 2.1, |rdegs(A)| is the sum of the s-degrees of
the rows of A. This result extends [42, Thm. 13] since for s = 0 the quantity D is the sum of the
row degrees of A and in particular D ≤ m deg(A), leading to the cost bound O(mω−1n deg(A)).

To summarize, at this stage we have outlined how to ensure, without exceeding our target
cost bound, that A1 and B are valid input for recursive calls, i.e. are in weak Popov form. Having
det(A1) and det(B), it remains to find det(K2) and then the sought det(A) follows. We noted that,
to ensure the form of B but also for efficiency reasons, the kernel basis [K1 K2] is computed
in s-weak Popov form for the shift s = rdeg(A). This causes the main difficulty related to our
modification of the determinant algorithm of [32]: K2 is not valid input for a recursive call since
it is in v-weak Popov form for some shift v, a subtuple of s which is possibly nonzero.

A first idea is to extend our approach to the shifted case, allowing recursive calls with such
a v-reduced matrix: this is straightforward but gives an inefficient algorithm. Indeed, along the
recursion the shift drifts away from its initial value and becomes arbitrarily large and unbalanced
with respect to the degrees of the input matrices of recursive calls. For example, as mentioned
above the sum of row degrees of the initial non-shifted m × m matrix A is D = deg(det(A)),
whereas for the v-shifted (m/2) × (m/2) matrix K2 we only have the same bound D instead of
one related to deg(det(K2)) itself, which is known to be at most D/2 in our algorithm. This gap,
here between D and D/2, will only grow as the algorithm goes down the tree of recursive calls,
meaning that degrees in matrices handled recursively are not sufficiently well controlled.

Another idea is to compute a 0-reduced matrix which has the same determinant as K2. Find-
ing a 0-reduced form of K2 within our target cost seems to be a difficult problem. The best known
algorithms for general 0-reduction involve log(m) factors, either explicitly [23] or implicitly [38]
(in the latter approach one starts by using the above-discussed triangularization procedure of [32]
which we are modifying here to avoid log(m) factors). More specific algorithms exploit the form
of K2, interpreting the problem as a change of shift from v to 0; yet at the time of writing efficient
changes of shifts have only been achieved when the target shift is larger than the origin shift [27,
Sec. 5], a fact that offers degree control for the transformation between the two matrices. Another
possibility is to compute the so-called v-Popov form P of K2, since its transpose PT is 0-reduced
by definition (see Section 2.4), and det(PT) = det(P) is det(K2) up to a constant. However this
suffers from the same issue, as computing P is essentially the same as changing the shift v into
the nonpositive shift −δ, where δ is the list of diagonal degrees of K2 [42, 26].

To circumvent these issues, we use the property that the transpose KT
2 of a v-reduced matrix

is in −d-reduced form where d = rdegv(K2). This fact naturally comes up here since det(K2) =

7

det(KT
2), but seems otherwise rarely exploited in polynomial matrix algorithms: in fact we did

not find a previous occurrence of it apart from related degree considerations in [56, Lem. 2.2].
Transposing the above two approaches using KT

2 instead of K2, we observe that computing
a 0-reduced form of KT

2 is a change of shift from −d to 0, and computing the −d-Popov form P
of KT

2 is essentially a change of shift from −d to −δ. In both cases the target shift is larger than
the origin shift, implying that the kernel-based change of shift of [27, Sec. 5] involves matrices
of well-controlled degrees. Still, this is not enough to make this change of shift efficient as such,
the difficulty being now that the average row degree of KT

2 may not be small: only its average
column degree, which corresponds to the average row degree of K2, is controlled.

Our solution uses the second approach, computing the −d-Popov form P, because it offers the
a priori knowledge that the column degrees of P are exactly δ. We exploit this degree knowledge
to carry out partial linearization techniques, originally designed for approximant bases [46, 28],
which we extend here to kernel bases. These techniques allow us to reduce our problem to a
kernel basis computation where the matrix entries have uniformly small degrees, implying that
it can be efficiently handled via the minimal approximant basis algorithm PM-Basis from [21].
The next result summarizes the new algorithmic tool developed in Section 5 for finding P.

Theorem 1.4. Let s ∈ Zm, let A ∈ K[x]m×m be in −s-weak Popov form, let δ ∈ Zm
≥0 be the

−s-pivot degree of A, and assume that s ≥ δ. There is an algorithm WeakPopovToPopov which
takes as input (A, s) and computes the −s-Popov form of A by

• performing PM-Basis at order less than |s|/m + 4 on an input matrix of row dimension at
most 6m and column dimension at most 3m,
• multiplying the inverse of a matrix in Km×m by a matrix in K[x]m×m of column degree δ,
• and performing O(m2) extra operations in K.

Thus, computing the −s-Popov form of A can be done in O(mω M′(|s|/m)) operations in K.

This theorem is a generalization of [42, Sec. 4] to shifted forms, for shifts −s that satisfy the
assumption s ≥ δ. Indeed, if A is 0-weak Popov, then one recovers [42, Thm. 20] by taking
s = (deg(A), . . . , deg(A)) in the above theorem. For comparison, the naive generalization of [42,
Sec. 4] to shifted forms runs in O(mω M′(max(s))), which exceeds our target complexity as soon
as max(s) � |s|/m. Hence the use of partial linearization techniques, which were not needed in
the non-shifted case featuring max(s) = |s|/m = deg(A).

As mentioned above, our Algorithm WeakPopovToPopov is based on the computation of a
kernel basis with a priori knowledge of the degree profile of the output. This kernel problem is
very close to the one handled in [56, Sec. 4], except that in this reference one only has upper
bounds on the output degrees, implying a certain number—possibly logarithmic in m—of calls
to PM-Basis to recover the output and its actual degrees. In the same spirit but in the context of
approximant bases, [28, Sec. 5] uses partial linearization techniques to reduce an arbitrary input
with known output degrees to essentially one call to PM-Basis, whereas [55, Algo. 2] assumes
weaker output degree information and makes a potentially logarithmic number of calls to PM-
Basis.

1.6. Perspectives
We plan to implement our characteristic polynomial algorithm in the LinBox ecosystem [48,

49]. First prototype experiments suggest that, for large finite fields, it could be competitive
with the existing fastest-known implementation, based on the randomized algorithm of [39].
The native support for small fields of our algorithm should outperform the algorithm of [39]

8

which requires expensive field extensions. Another perspective stems from the remark that our
algorithm resorts to fast polynomial multiplication (see assumption Hω), while previous ones
did not [31, 39]: we woud like to understand whether the same cost can be achieved by a purely
linear algebraic approach. Finally, perhaps the most challenging problem related to characteristic
polynomial computation is to compute Frobenius forms deterministically in the time of matrix
multiplication, the current best known complexity bound being O(mω log(m) log(log(m))) [44];
and more generally computing Smith forms of polynomial matrices with a cost free of factors
logarithmic in the matrix dimension.

2. Preliminaries on polynomial matrices

In this section we present the notation as well as basic definitions and properties that will be
used throughout the paper.

2.1. Notation

Tuples of integers will often be manipulated entry-wise. In particular, for tuples s, t ∈ Zn of
the same length n, we write s + t for their entry-wise sum, and the inequality s ≤ t means that
each entry in s is less than or equal to the corresponding entry in t. The concatenation of tuples
is denoted by (s, t). We write |t| for the sum of the entries of t. The tuple of zeros is denoted by
0 = (0, . . . , 0); its length is understood from the context.

For an m × n matrix A over some ring, we write Ai, j for its entry at index (i, j). We extend
this to submatrices: given sets I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} of row and column indices, we
write AI,J for the submatrix of A formed by its entries indexed by I × J. Besides, AI,∗ stands for
the submatrix of A formed by its rows with index in I, and we use the similar notation A∗,J . The
transpose of A is denoted by AT. The identity matrix of size n is denoted by In, while the n × n
matrix with 1 on the antidiagonal and 0 elsewhere is denoted by Jn. In particular, when writing
sJn for a tuple s = (s1, . . . , sn) ∈ Zn, we mean the reversed tuple sJn = (sn, . . . , s1).

Now consider A with polynomial entries, i.e. A ∈ K[x]m×n. The degree of A is denoted by
deg(A) and is the largest of the degrees of its entries, or −∞ if A = 0. The row degree of A is
the tuple rdeg(A) ∈ (Z≥0 ∪ {−∞})m whose ith entry is max1≤ j≤n(deg(Ai, j)). More generally, for a
tuple s = (s1, . . . , sn) ∈ Zn, the s-row degree of A is the tuple rdegs(A) ∈ (Z ∪ {−∞})m whose ith
entry is max1≤ j≤n(deg(Ai, j) + s j). In this context, the tuple s is commonly called a (degree) shift
[4]. The (shifted) column degree of A is defined similarly.

We write Xs for the n×n diagonal matrix diag(xs1 , . . . , xsn) which is over the ring K[x, x−1] of
Laurent polynomials over K. Note that, hereafter, Laurent polynomials will only arise in proofs
and explanations, more specifically in considerations about shifted degrees: they never arise in
algorithms, which for the sake of clarity only involve polynomials in K[x]. The usefulness of
this matrix Xs will become clear in the definition of leading matrices in the next subsection.

The next lemma gives a link between shifted row degrees and shifted column degrees. We
will mostly use the following particular case of it: the column degree of A is at most d ∈ Zn

≥0
(entry-wise) if and only if the −d-row degree of A is nonpositive.

Lemma 2.1 ([56, Lemma 2.2]). Let A be a matrix in K[x]m×n, d be a tuple in Zn, and t be a
tuple in Zm. Then, cdegt(A) ≤ d if and only if rdeg−d(A) ≤ −t.

9

2.2. Bases of modules, kernel bases and approximant bases
We recall that any K[x]-submodule M of K[x]1×n is free, and admits a basis formed by r

elements of K[x]1×n, where r ≤ n is called the rank ofM [see e.g. 15]. Such a basis can thus be
represented as an r × n matrix B over K[x] whose rows are the basis elements; this basis matrix
B has rank r.

For a matrix A ∈ K[x]m×n, its row space is the K[x]-submodule {pA,p ∈ K[x]1×m} of K[x]1×n,
that is, the set of all K[x]-linear combinations of its rows. If B ∈ K[x]r×n is a basis of this row
space, then B is said to be a row basis of A; in particular, r is the rank of B and of A.

The left kernel of A, denoted byK(A), is the K[x]-module {p ∈ K[x]1×m | pA = 0}. A matrix
K ∈ K[x]k×m is a left kernel basis of A if its rows form a basis of K(A), in which case k = m − r.
Similarly, a right kernel basis of A is a matrix K ∈ K[x]n×(n−r) whose columns form a basis of
the right kernel of A.

Given positive integers γ = (γ1, . . . , γn) ∈ Zn
>0 and a matrix F ∈ K[x]m×n, the set of approxi-

mants for F at order γ [see e.g. 51, 3] is the K[x]-submodule of K[x]1×m defined as

Aγ(F) = {p ∈ K[x]1×m | pF = 0 mod Xγ }.

The identity pF = 0 mod Xγ means that pF∗, j = 0 mod xγ j for 1 ≤ j ≤ n. Since all m rows of
the matrix xmax(γ)Im are inAγ(F), this module has rank m.

2.3. Leading matrices and reduced forms of polynomial matrices
We will often compute with polynomial matrices that have a special form, called the (shifted)

reduced form. It corresponds to a type of minimality of the degrees of such matrices, and also
provides good control of these degrees during computations as illustrated by the predictable
degree property [17] [29, Thm. 6.3-13] which we recall below. In this section, we introduce the
notion of row reducedness; to avoid confusion, we will not use the similar notion of column
reducedness in this paper, and thus all further mentions of reducedness refer to row reducedness.

For shifted reduced forms, we follow the definitions in [4, 5]. Let A ∈ K[x]m×n and s ∈ Zn,
and let t = (t1, . . . , tm) = rdegs(A). Then, the s-leading matrix of A is the matrix lms(A) ∈ Km×n

whose entry (i, j) is the coefficient of degree ti − s j of the entry (i, j) of A, or 0 if ti = −∞.
Equivalently, lms(A) is the coefficient of degree zero of X−t AXs , whose entries are in K[x−1].
The matrix A is said to be in s-reduced form if its s-leading matrix has full row rank. In particular,
a matrix in s-reduced form must have full row rank.

For a matrix M ∈ K[x]k×m, we have rdegs(MA) ≤ rdegt(M) and this is an equality when no
cancellation of leading terms occurs in this left-multiplication. The predictable degree property
states that A is s-reduced if and only if rdegs(MA) = rdegt(M) holds for any M ∈ K[x]k×m. Here
is a useful consequence of this characterization.

Lemma 2.2. Let s ∈ Zn, let A ∈ K[x]m×n, and let t = rdegs(A). If A is s-reduced, then the
identity lms(MA) = lmt(M)lms(A) holds for any M ∈ K[x]k×m.

Proof. Let d = rdegs(MA). By definition, lms(MA) is the coefficient of degree 0 of the matrix
X−d MAXs = X−d MXt X−t AXs , whose entries are in K[x−1]. Besides, since rdegs(A) = t and
since the predictable degree property gives rdegt(M) = d, the matrices X−d MXt and X−t AXs

are over K[x−1] and their coefficients of degree 0 are lmt(M) and lms(A), respectively.

Another characterization of matrices in s-reduced form is that they have minimal s-row de-
gree among all matrices which represent the same K[x]-module [53, Def. 2.13]; in this paper, we
will use the following consequence of this minimality.

10

Lemma 2.3. LetM be a submodule of K[x]1×n of rank m, let s ∈ Zn, and let t ∈ Zm be the s-row
degree of some s-reduced basis ofM. Without loss of generality, assume that t is nondecreasing.
Let B ∈ K[x]m×n be a matrix of rank m whose rows are inM, and let d ∈ Zm be its s-row degree
sorted in nondecreasing order. If d ≤ t, then B is an s-reduced basis ofM, and d = t.

Proof. Up to permuting the rows of B, we assume that rdegs(B) = d without loss of generality.
Let A ∈ K[x]m×n be an s-reduced basis ofM such that rdegs(A) = t. Since the rows of B are in
M, there exists a matrix U ∈ K[x]m×m such that B = UA; and U is nonsingular since B and A
have rank m. Since A is s-reduced, the predictable degree property applies, ensuring that

d = rdegs(B) = rdegs(UA) = rdegt(U).

This means that deg(Ui, j) ≤ di − t j for all 1 ≤ i, j ≤ m.
Now, assume by contradiction that d = t does not hold. Thus, dk < tk for some 1 ≤ k ≤ m.

Then, for i ≤ k and j ≥ k we have di ≤ dk < tk ≤ t j, hence deg(Ui, j) < 0. Thus, the submatrix
U{1,...,k},{k,...,m} is zero, which implies that U is singular; this is a contradiction, hence d = t.

Since t is nondecreasing, the inequality deg(Ui, j) ≤ ti − t j implies that U is a block lower
triangular matrix whose diagonal blocks have degree 0; hence these blocks are invertible matrices
over K, and U is unimodular [see 42, Lemma 6 for similar degree considerations, starting from
stronger assumptions on A and B]. Thus, B is a basis ofM.

Furthermore, it is easily observed that lmd(U) ∈ Km×m is block lower triangular with the same
invertible diagonal blocks as U; hence lmd(U) is invertible. On the other hand, Lemma 2.2 states
that lms(B) = lmd(U)lms(A). Thus lms(B) has rank m = rank(lms(A)), and B is s-reduced.

2.4. Pivots and weak Popov forms of polynomial matrices

For algorithmic purposes, it is often convenient to work with reduced forms that satisfy some
additional requirements, called weak Popov forms. These are intrinsically related to the notion
of pivot of a polynomial matrix.

For a nonzero vector p ∈ K[x]1×n and a shift s ∈ Zn, the s-pivot of p is its rightmost entry p j

such that deg(p j)+ s j = rdegs(p) [4, 36]; it corresponds to the rightmost nonzero entry of lms(p).
The index j = π and the degree deg(pπ) = δ of this entry are called the s-pivot index and s-pivot
degree, respectively. For brevity, in this paper the pair (π, δ) is called the s-pivot profile of p. By
convention, the zero vector in K[x]1×n has s-pivot index 0 and s-pivot degree −∞. These notions
are extended to matrices A ∈ K[x]m×n by forming row-wise lists. For example, the s-pivot index
of A is π = (π1, . . . , πm) ∈ Zm

>0 where πi is the s-pivot index of the row Ai,∗. The s-pivot degree δ
and the s-pivot profile (πi, δi)1≤i≤m of A are defined similarly.

Then, A is said to be in s-weak Popov form if it has no zero row and π is strictly increasing;
and A is said to be in s-unordered weak Popov form if it is in s-weak Popov form up to row
permutation, i.e. the entries of π are pairwise distinct. Furthermore, a matrix is in s-Popov form
if it is in s-weak Popov form, its s-pivots are monic, and each of these s-pivots has degree strictly
larger than the other entries in the same column. For a given K[x]-submodule M of K[x]1×n,
there is a unique basis ofM which is in s-Popov form [4].

For a given matrix B, the matrix A is said to be an s-reduced (resp. s-weak Popov, s-Popov)
form of B if A is a row basis of B and A is in s-reduced (resp. s-weak Popov, s-Popov) form.

Like for s-reducedness, the property of a matrix A ∈ K[x]m×n to be in s-weak Popov form
depends only on its s-leading matrix lms(A) ∈ Km×n, namely on the fact that it has a staircase
shape. Indeed, A is in s-weak (resp. s-unordered weak) Popov form if and only if lms(A) has no

11

zero row and Jmlms(A)Jn is in row echelon form (resp. in row echelon form up to row permu-
tation); this was used as a definition by Beckermann et al. [4, 5]. In particular, for any constant
matrix C ∈ Km×n, we have lm0(C) = C and therefore C is in 0-weak (resp. 0-unordered weak)
Popov form if and only if it has no zero row and JmCJn is in row echelon form (resp. in row
echelon form up to row permutation). Taking C = lms(A), the next lemma follows.

Lemma 2.4. Let A ∈ K[x]m×n and let s ∈ Zn. Then, A is in s-weak (resp. s-unordered weak)
Popov form if and only if lms(A) is in 0-weak (resp. 0-unordered weak) Popov form.

Furthermore, if A is in s-weak Popov form and (j1, . . . , jm) is the list of indices of pivot
columns in the row echelon form Jmlms(A)Jn (in other words, this list is the column rank profile
of that matrix), then the s-pivot index of A is equal to (n + 1 − jm, . . . , n + 1 − j1). This leads
to the following lemma which states that the s-pivot profile is an invariant of left-unimodularly
equivalent s-weak Popov forms [29, 4, 5], generalizing the fact that for matrices over K the set
of indices of pivot columns is an invariant of left-equivalent row echelon forms.

Lemma 2.5. Let s ∈ Zn and let A ∈ K[x]m×n be in s-unordered weak Popov form with s-pivot
profile (πi, δi)1≤i≤m. Then, the s-pivot profile of the s-Popov form of A is (πσ(i), δσ(i))1≤i≤m, where
σ : {1, . . . ,m} → {1, . . . ,m} is the permutation such that (πσ(i))1≤i≤m is strictly increasing.

Proof. Without loss of generality we assume that A is in s-weak Popov form, implying also
σ(i) = i for 1 ≤ i ≤ m. Let P ∈ K[x]m×n be the s-Popov form of A: we want to prove that A and
P have the same s-pivot index and the same s-pivot degree. Let U be the unimodular matrix such
that P = UA; then Lemma 2.2 yields lms(P) = lmt(U)lms(A), where t = rdegs(A). Since both
lms(P) and lms(A) have full row rank, lmt(U) ∈ Km×m is invertible. Then

Jmlms(P)Jn = Jmlmt(U)JmJmlms(A)Jn

holds, and thus the row echelon forms Jmlms(P)Jn and Jmlms(A)Jn have the same pivot columns
since Jmlmt(U)Jm ∈ Km×m is invertible. It follows from the discussion preceding this lemma that
P has the same s-pivot index as A.

As a consequence, P has the same s-pivot degree as A if and only if rdegs(P) = rdegs(A).
Suppose by contradiction that there exists an index i such that rdegs(Pi,∗) < rdegs(Ai,∗). Then,
build the matrix B ∈ K[x]m×n which is equal to A except for its ith row which is replaced by
Pi,∗. By construction, B has rank m (since it is in s-weak Popov form) and its rows are in the row
space of A. Writing d for the tuple rdegs(B) sorted in nondecreasing order, and u for the tuple t
sorted in nondecreasing order, we have d ≤ u and d , u, which contradicts Lemma 2.3. Hence
there is no such index i, and since this proof by contradiction is symmetric in A and P, there is
no index i such that rdegs(Ai,∗) < rdegs(Pi,∗) either. Thus rdegs(A) = rdegs(P).

We will also use the following folklore fact, which is a corollary of Lemma 2.2, and has
often been used in algorithms for approximant bases or kernel bases in order to preserve the
reducedness of matrices during the computation.

Lemma 2.6. Let A ∈ K[x]m×n and B ∈ K[x]k×m, and let s ∈ Zn and t = rdegs(A) ∈ Zm. Then,

• if A is s-reduced and B is t-reduced, then BA is s-reduced;
• if A is in s-weak Popov form and B is in t-weak Popov form, then BA is in s-weak Popov

form.

12

Proof. Since A is s-reduced, Lemma 2.2 states that lms(BA) = ML where L = lms(A) ∈ Km×n

and M = lmt(B) ∈ Kk×m. The first item then follows from the fact that if M has rank k and L
has rank m, then ML has rank k. Similarly, the second item reduces to prove that, assuming M
and L are in row echelon form with full row rank, then ML is also in row echelon form. Let
(a1, . . . , ak) (resp. (b1, . . . , bm)) be the pivot indices of M (resp. L). Then the ith row of ML is a
nonzero multiple of row ai of L combined with multiples of rows of L of index greater than ai.
Consequently, the pivot indices of the rows of ML are ba1 < · · · < bak , which proves that ML is
in row echelon form.

Finally, under assumptions that generalize the situation encountered in our determinant algo-
rithm below, we show that the pivot entries of a kernel basis [K1 K2] are located in its rightmost
columns, that is, in K2.

Lemma 2.7. Let t ∈ Zn, let F ∈ K[x]n×n be in t-weak Popov form, and let u = rdegt(F). Let
G ∈ K[x]m×n and v ∈ Zm be such that v ≥ rdegt(G), and let K = [K1 K2] ∈ K[x]m×(m+n) be a
(u, v)-weak Popov basis ofK([F

G]), where K1 and K2 have m and n columns, respectively. Then,
the (u, v)-pivot entries of K are all located in K2; in particular, K2 is in v-weak Popov form.

Proof. Since the (u, v)-pivot entry of a row is the rightmost entry of that row which reaches the
(u, v)-row degree, it is enough to prove that rdegv(K2) ≥ rdegu(K1). First, from v ≥ rdegt(G), we
obtain rdegv(K2) ≥ rdegrdegt (G)(K2). Now, by definition, rdegrdegt (G)(K2) ≥ rdegt(K2G). Since
the rows of K are in K([F

G]), we have K2G = −K1F, hence rdegt(K2G) = rdegt(K1F). Since
F is t-reduced, we can apply the predictable degree property: rdegt(K1F) = rdegu(K1). This
proves the sought inequality. For the last point, note that the (u, v)-pivot entries of [K1 K2]
located in K2 correspond to v-pivot entries in K2. Thus, since [K1 K2] is in (u, v)-weak Popov
form with all (u, v)-pivot entries in K2, it follows that the v-pivot index of K2 is increasing.

2.5. Basic subroutines and their complexity

To conclude these preliminaries, we recall known fast algorithms for three polynomial matrix
subroutines used in our determinant algorithm: multiplication with unbalanced degrees, minimal
approximant bases, and minimal kernel bases; we give the corresponding complexity estimates
adapted to our context and in particular using our framework stated in Section 1.1.

Unbalanced multiplication. Polynomial matrix algorithms often involve multiplication with ma-
trix operands whose entries have degrees that may be unbalanced but still satisfy properties that
can be exploited to perform the multiplication efficiently. Here we will encounter products of
reduced matrices with degree properties similar to those discussed in [58, Sec. 3.6], where an
efficient approach for computing such products was given.

Lemma 2.8. There is an algorithm UnbalancedMultiplication which takes as input a matrix
B ∈ K[x]k×m with k ≤ m, a matrix A ∈ K[x]m×n with n ≤ m, and an integer D greater than or
equal to both the sum of the positive entries of rdeg0(A) and that of rdegrdeg0(A)(B), and returns
the product BA using O(mω M(D/m)) operations in K, assumingHsm andHω.

Proof. Zhou et al. [58, Sec. 3.6] gave such an algorithm, yet with a cost analysis which hides
logarithmic factors; because these factors are our main concern here we will rely on the version
in [27, Sec. 4]. In this reference, Algorithm UnbalancedMultiplication was described for square
matrices. One could adapt it to the case of rectangular A and B as in the statement above.

13

However, for the sake of conciseness and with no impact on the asymptotic cost bound, we
consider the more basic approach of forming the square m×m matrices D = [B

0] and C = [A 0],
computing DC using the above-cited algorithm, and retrieving BA from it. Now, by construction,
both the sum of the positive entries of rdeg0(C) and that of rdegrdeg0(A)(D) are at most D, hence
[27, Prop. 4.1] applies: defining m̄ and d as the smallest powers of 2 greater than or equal to m and
D/m, it states that the computation of DC costs O(

∑
0≤i≤log2(m̄) 2i(2−im̄)ω M(2id)) operations in K.

UsingHsm andHω, which ensure respectively that M(2id) ≤ M(2i) M(d) and M(2i) ∈ O(2i(ω−1−ε))
for some ε > 0, we obtain that this bound is in O(m̄ω M(d)

∑
0≤i≤log2(m̄) 2−iε) ⊆ O(m̄ω M(d)). This

is in O(mω M(D/m)), since m̄ ∈ Θ(m) and d ∈ Θ(1 + D/m).

Minimal approximant basis. The second basic tool we will use is approximant bases computa-
tion; for this, we will use the algorithm PM-Basis, originally described in [21]. Precisely, we
rely on the slightly modified version presented in [28] which ensures that the computed basis is
in shifted weak Popov form.

Lemma 2.9. There is an algorithm PM-Basis which takes as input a tuple γ ∈ Zn
>0, a matrix

F ∈ K[x]m×n with cdeg(F) < γ, and a shift s ∈ Zm, and returns a basis ofAγ(F) in s-weak Popov
form using O((m + n)mω−1 M′(max(γ))) operations in K.

Proof. The algorithm is [28, Algo. 2]; to accommodate non-uniform order γ, it is called with
input order Γ = max(γ) and input matrix FX(Γ,...,Γ)−γ as explained in [28, Rmk. 3.3]. According to
[28, Prop. 3.2], this costs O((1+ n

m)
∑

0≤i≤dlog2(Γ)e 2imω M(2−iΓ)) operations in K, which is precisely
the claimed bound by definition of M′(·).

Minimal kernel basis. We will make use of the algorithm of Zhou et al. [58], which itself relies
on unbalanced products and approximant bases, and returns a kernel basis in shifted reduced
form efficiently for input matrices with small average row degree.

Lemma 2.10. There is an algorithm KernelBasis which takes as input a full column rank matrix
F ∈ K[x]m×n with m ≥ n and m ∈ O(n), and a shift s ∈ Zm

≥0 such that s ≥ rdeg0(F), and returns a
basis ofK(F) in s-reduced form using O(mω M′(D/m)) operations in K, assumingHsl,Hsm,Hω.
Here D is the sum of the entries of s, and the sum of the s-row degree of this basis is at most D.

Proof. The algorithm of Zhou et al. [58] computes an s-reduced basis K ∈ K[x]k×m of K(F);
precisely, this reference is about computing a basis of the right kernel in column reduced form,
yet this naturally translates into left kernels and row reduced forms by taking suitable transposes.
Furthermore, the last claim in the lemma follows from [58, Thm. 3.4], which states that any such
basis K is such that |rdegs(K)| ≤ |s| = D. For the complexity, we rely on the analysis in [27,
Prop. B.1] which shows that, defining m̄ and d as the smallest powers of 2 greater than or equal
to m and D/m, this computation costs

O

log2(m̄)∑
j=0

2 j

log2(2− jm̄)∑
i=0

2i(2−i− jm̄)ω M
(
2i+ jd

)
+

log2(2 jd)∑
i=0

2i(2− jm̄)ω M
(
2 j−id

)

operations in K. Now the same analysis as in the proof of Lemma 2.8 shows that, assuming
Hsm and Hω, the first inner sum is in O((2− jm̄)ω M(2 jd)), and by definition of M′(·) the second
inner sum is in O((2− jm̄)ω M′(2 jd)). Thus the total cost is in O(

∑
0≤ j≤log2(m̄) 2 j(2− jm̄)ω M′(2 jd)),

which is in O(m̄ω M′(d)
∑

0≤ j≤log2(m̄) 2 j(1−ω) M′(2 j)) since Hsl and Hsm ensure that M′(·) is sub-
multiplicative. Similarly to the proof of Lemma 2.8, this bound is in O(mω M′(D/m)) thanks to
Hω.

14

3. Determinant algorithm for reduced matrices

In this section, we present the main algorithm in this paper, which computes the determinant
of a matrix in reduced form using the subroutines listed in Section 2.5 as well as the algorithms
ReducedToWeakPopov and WeakPopovToPopov from Theorems 1.3 and 1.4. Taking for granted
the proof of these theorems in Sections 4 and 5, here we prove the correctness of our determinant
algorithm in Section 3.2 and analyse its complexity in Section 3.3, thus proving Theorem 1.2.

3.1. Two properties of determinants of reduced matrices

Leading coefficient of the determinant. All bases of a given submodule of K[x]1×n of rank n have
the same determinant up to a constant factor, i.e. up to multiplication by an element of K \ {0}.
Many algorithms operating on polynomial matrices such as PM-Basis and KernelBasis compute
such bases, so that their use in a determinant algorithm typically leads to obtaining the sought
determinant up to a constant factor; then finding the actual determinant requires to efficiently
recover this constant [see e.g. 32, Sec. 4]. Since in this paper we seek determinants of matrices
in reduced form, this issue is easily handled using the next result.

Lemma 3.1. Let s ∈ Zn and A ∈ K[x]n×n. If A is in s-reduced form, the leading coefficient
of det(A) is det(lms(A)). In particular, if A is in s-weak Popov form, the leading coefficient of
det(A) is the product of the leading coefficients of the diagonal entries of A.

Proof. The second claim is a direct consequence of the first, since for A in s-weak Popov form,
lms(A) is lower triangular with diagonal entries equal to the leading coefficients of the diagonal
entries of AXs , which are the leading coefficients of the diagonal entries of A. For the first claim
in the case s = 0, we refer to [29, Sec. 6.3.2], and in particular Eq. (23) therein. Now, for an
arbitrary s and A in s-reduced form, we consider the nonnegative shift t = s−(min(s), . . . ,min(s))
and observe that lms(A) = lm0(AXt), hence AXt is 0-reduced, and thus the leading coefficient
of det(AXt) = det(A) det(Xt) (which is the same as that of det(A)) is equal to det(lm0(AXt)) =

det(lms(A)).

From shifted to non-shifted. In Section 1.5, we explained that one step of our algorithm consists
in finding det(K) for a matrix K in v-weak Popov form, and that it achieves this by computing the
−d-Popov form of KT, which is already in −d-weak Popov form. The next lemma substantiates
this; note that in Section 1.5 we had left out the reversal matrix Jn for the sake of exposition.

Lemma 3.2. Let v ∈ Zn, let K ∈ K[x]n×n, and let d = rdegv(K).
(a) if lmv(K) has no zero column, then lm−d(KT) = lmv(K)T and rdeg−d(KT) = −v;
(b) if K is in v-reduced form, then KT is in −d-reduced form;
(c) if K is in v-weak Popov form, then JnKTJn is in −dJn-weak Popov form;
(d) if furthermore P is the −dJn-Popov form of JnKTJn, then PT is in 0-weak Popov form and

det(K) = det(lmv(K)) det(PT).

Proof. By definition, lmv(K)T is the coefficient of degree 0 of (X−d KXv)T = Xv KTX−d , which
is a matrix over K[x−1]. The assumption on lmv(K) implies that this coefficient of degree 0 has
no zero row. It follows that rdeg−d(KT) = −v and that this coefficient of degree 0 is lm−d(KT).
Item (b) follows from Item (a) by definition of shifted reduced forms.

From now on, we assume that K is in v-weak Popov form. Then lmv(K) is invertible and
lower triangular, and in particular lm−d(KT) = lmv(K)T. Since Jn is a permutation matrix, we

15

obtain lm−dJn (JnKTJn) = Jnlm−d(KT)Jn = Jnlmv(K)TJn, which is invertible and lower triangular.
Hence JnKTJn is in −dJn-weak Popov form.

For Item (d), since P is n × n and in −dJn-Popov form, we have lm0(PT) = In, hence PT is in
0-weak Popov form. Furthermore, since JnKTJn is unimodularly equivalent to P, its determinant
is det(K) = det(JnKTJn) = λ det(P) for some λ ∈ K \ {0}. Applying Lemma 3.1 to P shows
that det(P) is monic, hence λ is the leading coefficient of det(K); applying the same lemma to K
yields λ = det(lmv(K)).

3.2. Algorithm and correctness
Our main determinant algorithm is DeterminantOfWeakPopov (Algorithm 2), which takes

as input a matrix in 0-weak Popov form and computes its determinant using recursive calls on
matrices of smaller dimension. Then, we compute the determinant of a 0-reduced matrix by first
calling ReducedToWeakPopov to find a 0-weak Popov matrix which has the same determinant
up to a nonzero constant, and then calling the previous algorithm on that matrix. This is detailed
in Algorithm 1.

Algorithm 1 DeterminantOfReduced(A)
Input: a matrix A ∈ K[x]m×m in 0-reduced form.
Output: the determinant of A.

1: P ∈ K[x]m×m ← ReducedToWeakPopov(A, 0)
2: ∆← DeterminantOfWeakPopov(P); `∆ ∈ K \ {0} ← leading coefficient of ∆

3: return det(lm0(A)) ∆/`∆

The correctness of Algorithm 1 is obvious: according to Theorem 1.3 and Proposition 3.3, P
is a 0-weak Popov form of A, and ∆ is the determinant of P up to multiplication by some element
of K \ {0}. Thus det(A) = `∆ for some ` ∈ K \ {0}, and Lemma 3.1 yields ` = det(lm0(A))/`∆.

Concerning the cost bound, Theorem 1.3 states that the first step uses O(mω(1 + D/m))
operations in K, where D = |rdeg0(A)|; since A is 0-reduced, this is D = deg(det(A)) [29,
Sec. 6.3.2]. In the last step, the determinant computation costs O(mω) operations, while scal-
ing ∆ by a constant costs O(D) operations. The second step uses O(mω M′(D/m)) operations
according to Proposition 3.3, under the assumptionsHsl,Hsm, andHω.

We now describe the main algorithm of this paper (Algorithm 2) and focus on its correctness.
We also mention cost bounds for all steps of the algorithm that are not recursive calls, but we
defer the core of the complexity analysis to Section 3.3.

Proposition 3.3. Algorithm 2 is correct, and assuming that Hsl, Hsm, and Hω hold (hence in
particular ω > 2), it uses O(mω M′(D/m)) operations in K.

Proof of correctness. The fact that A is in 0-weak Popov form has two consequences on the tuple
s computed at Line 1: first, it is the 0-pivot degree of A (i.e. its diagonal degrees), and second,
the sum D = |s| is equal to the degree of the determinant of A [29, Sec. 6.3.2].

The main base case of the recursion is when m = 1 and is handled at Line 2; it uses no
operation in K. We use a second base case at Line 3: if D = 0, then A is an m × m matrix over
K. Since it is in 0-weak Popov, it is invertible and lower triangular, hence det(A) is the product
of its diagonal entries, which is computed in O(m) multiplications in K. This base case is not
necessary for obtaining the correctness and the cost bound in Proposition 3.3; still, not using it
would incur a cost of O(mω) operations in the case D = 0.

16

Algorithm 2 DeterminantOfWeakPopov(A)
Input: a matrix A ∈ K[x]m×m in 0-weak Popov form.
Output: the determinant of A, up to multiplication by some element of K \ {0}.

1: s = (s1, . . . , sm) ∈ Zm
≥0 ← rdeg0(A); D← s1 + · · · + sm . D = degree of det(A)

2: if m = 1 then return the polynomial f such that A = [f] . base case: 1 × 1 matrix
3: if D = 0 then return the product of diagonal entries of A . base case: matrix over K
4: if D < m then . handle constant rows to reduce to dimension ≤ D
5: B← A lm0(A)−1 from which rows and columns with indices in {i | si = 0} are removed
6: return DeterminantOfWeakPopov(B)
7: if s1 + · · · + sbm/2c > D/2 then return DeterminantOfWeakPopov(JmA lm0(A)−1Jm)
8: Write A = [A1 A2

A3 A4
], with A1 of size bm/2c × bm/2c and A4 of size dm/2e × dm/2e

9: K ∈ K[x]dm/2e×m ← KernelBasis([A1
A3

], s)
10: [K1 K2] ∈ K[x]dm/2e×m ← ReducedToWeakPopov(K, s), where K2 is dm/2e × dm/2e
11: B← UnbalancedMultiplication([K1 K2], [A2

A4
],D) . B = K1A2 + K2A4

12: ∆1 ← DeterminantOfWeakPopov(B) . first recursive call
13: ∆2 ← DeterminantOfWeakPopov(A1) . second recursive call
14: P←WeakPopovToPopov(Jdm/2eKT

2 Jdm/2e, rdeg(sbm/2c+1,...,sm)(K2)Jdm/2e)
15: ∆3 ← DeterminantOfWeakPopov(PT) . third recursive call
16: return ∆1∆2/∆3

For the recursion, we proceed inductively: we assume that the algorithm correctly computes
the determinant for all 0-weak Popov matrices of dimension less than m, and based on this we
show that it is also correct for any 0-weak Popov matrix A of dimension m.

Case 1: D < m. Then A has at least one constant row; using linear algebra we reduce to the
case of a matrix B of dimension at most D with all rows of degree at least 1. Since s = rdeg0(A),
we can write A = Xs lm0(A) + R for a matrix R ∈ K[x]m×m such that rdeg0(R) < s. Since A is
0-reduced, lm0(A) is invertible and A lm0(A)−1 = Xs + R lm0(A)−1 with rdeg0(R lm0(A)−1) < s,
which implies lm0(A lm0(A)−1) = Im. In particular, A lm0(A)−1 is in 0-weak Popov form, and
for each i such that the row Ai,∗ is constant, i.e. si = 0, the ith row of A lm0(A)−1 is the ith row
of the identity matrix. Therefore the matrix B at Line 5 is in 0-weak Popov form, has the same
determinant as A up to a constant, and has dimension #{i | si , 0} ≤ D. Hence the correctness
in this case. In terms of complexity, computing B essentially amounts to computing the product
A lm0(A)−1, which is done by row-wise expanding A into a (m + D) × m matrix over K, right-
multiplying by lm0(A)−1, and compressing the result back into a polynomial matrix: this costs
O(mω(1 + D/m)) ⊆ O(mω) operations.

Case 2: s1 + · · ·+ sbm/2c > D/2. Then we modify the input A so as to reduce to Case 3. As we
have seen above, lm0(A lm0(A)−1) = Im. We now reverse the diagonal entries by reversing the
order of rows and columns: let B = JmAlm0(A)−1Jm. Then lm0(B) = Jmlm0(Alm0(A)−1)Jm = Im,
hence B is in 0-weak Popov form: Line 7 calls the algorithm on this matrix to obtain det(B) up
to a constant, and this yields det(A) since it is equal to det(lm0(A)) det(B). To conclude the proof
of correctness in that case (assuming correctness in Case 3), it remains to observe that B has the
same matrix dimension m as A, and that the matrix B has degrees such that calling the algorithm
with input B does not enter Case 2 but Case 3. Indeed, we have rdeg0(B) = sJm, hence the sum
of the first bm/2c entries of the tuple rdeg0(B) is sm + · · · + sdm/2e+1 = D − (s1 + · · · + sdm/2e),
which is at most D/2 by assumption. In terms of complexity, the main step is to compute the

17

product A lm0(A)−1, which costs O(mω(1 + D/m)) operations as we have seen above; this is in
O(mω M′(D/m)).

Case 3: s1 + · · · + sbm/2c ≤ D/2. Then, Line 7 performs no action, and Line 8 defines
submatrices of A. By construction, [A1

A3
] has full column rank and s ≥ rdeg0([A1

A3
]) holds. Thus,

according to Lemma 2.10, Line 9 uses O(mω M′(D/m)) operations to compute an s-reduced basis
K of K([A1

A3
]), with |rdegs(K)| ≤ D. Then, Theorem 1.3 states that Line 10 transforms K into

an s-weak Popov basis [K1 K2] of this kernel at a cost of O(mω(1 + D/m)) operations, since
|rdegs(K)| ≤ D and min(s) ≥ 0. Since all s-reduced bases ofK(F) have the same s-row degree up
to permutation, |rdegs([K1 K2])| ≤ D holds, hence the assumptions of Lemma 2.8 are satisfied
and Line 11 uses O(mω M(D/m)) operations to compute B = K1A2 + K2A4.

The important observation at this stage is the identity[
Idm/2e 0
K1 K2

] [
A1 A2
A3 A4

]
=

[
A1 A2
0 B

]
(2)

which, provided that K2 is nonsingular, implies det(A) = det(B) det(A1)/ det(K2). We are going
to show that this is the formula used in Line 16 to compute det(A).

First, A1 has dimension less than m and, being a principal submatrix of the 0-weak Popov
matrix A, it is also in 0-weak Popov form. Hence the recursive call at Line 13 is sound and ∆2 is
equal to det(A1) up to a constant.

Since A is in 0-weak Popov form and [Idm/2e 0
K1 K2

] is in rdeg0(A)-weak Popov form, their product
[A1 A2

0 B] is in 0-weak Popov form; see Lemma 2.6, or note that lm0([A1 A2
0 B]) is invertible and lower

triangular according to Lemma 2.2. It follows that B is in 0-weak Popov form and has dimension
less than m: Line 12 recursively computes ∆1, equal to det(B) up to a constant.

It remains to prove that ∆3 computed at Lines 14 and 15 is equal to det(K2) up to a constant.
Let v = rdeg0(A4) = (sbm/2c+1, . . . , sm) be the shift used at Line 14, and let d = rdegv(K2) =

rdegs([K1 K2]). Applying Lemma 2.7 (with F = A1, G = A3, t = 0, and v as above) shows
that [K1 K2] has all its s-pivot entries in K2, and in particular K2 is in v-weak Popov form. Let
δ ∈ Zn

≥0 be the v-pivot degree of K2, where n = dm/2e, and note that d = δ + v ≥ δ since v ≥ 0.
Then, Lemma 3.2 states that JnKT

2 Jn is in −dJn-weak Popov form; its −dJn-pivot degree is the
list of degrees of its diagonal entries, that is, δJn. Since dJn ≥ δJn, we can apply Theorem 1.4,
which implies that Line 14 computes the −dJn-Popov form P of JnKT

2 Jn using O(mω M′(|d|/m))
operations; as we have seen above, |d| = |rdegs([K1 K2])| ≤ D. Then, from the last item
of Lemma 3.2, PT is in 0-weak Popov form and det(K) = det(lmv(K)) det(PT), hence Line 15
correctly computes det(K) up to a constant.

To conclude this presentation of our determinant algorithm, we note that it would be benefi-
cial, in a practical implementation, to add an early exit. Precisely, just after computing det(B) at
Line 12, one could perform the following action before (possibly) proceeding to the next steps:

12b: if deg(∆1) = D then return ∆1 . early exit

Indeed, recall that ∆1 is det(B) up to a constant; furthermore we claim that
• for a generic A, we have deg(∆1) = D,
• if deg(∆1) = D (i.e. deg(det(B)) = D), then det(B) is det(A) up to a constant.

It follows that for a generic matrix A, then ∆1 is det(A) up to a constant, hence the correctness
of this early exit (see also [21, Sec. 4.2.2] for similar considerations). To prove the above claim,

18

first note that since [K1 K2] is a kernel basis, it has unimodular column bases [22, Lem. 2.2],
and thus it can be completed into a unimodular matrix U = [U1 U2

K1 K2
] ∈ K[x]m×m [57, Lem. 2.10].

Therefore

UA =

[
U1 U2
K1 K2

] [
A1 A2
A3 A4

]
=

[
B1 B2
0 B

]
where [B1 B2] = [U1 U2]A. Since det(U) is in K \ {0}, det(A) is det(B1) det(B) up to a constant.
For the second item of the claim, deg(∆1) = D implies deg(det(B)) = D = deg(det(A)), hence
det(B1) is in K \ {0}. The first item follows from the fact that B1 is a row basis of [A1

A3
] [56,

Lem. 3.1]; since the latter matrix has more rows than columns, if A1 and A3 have generic entries,
then such a row basis B1 is unimodular which means det(B1) ∈ K \ {0} and thus deg(∆1) = D.

3.3. Complexity analysis
We have seen above that all computations in Algorithm 2 other than recursive calls have an

arithmetic cost in O(mω M′(D/m)) operations in K; here, we complete the proof of the cost bound
in Proposition 5.14. In this section, we use the assumptions Hsl, Hsm, and Hω as well as their
consequences stated in Section 1.1.

Let C(m,D) denote the arithmetic cost of Algorithm 2; recall that D is the degree of the
determinant of the input, which is also the sum of its row degrees. First consider the case m ≤ D.
If s1 + · · · + sbm/2c > D/2, the reduction to the case s1 + · · · + sbm/2c ≤ D/2 with the same m
and D performed at Line 7 costs O(mω(1 + D/m)). Once we are in the latter case, there are three
recursive calls with input matrices having the following dimensions and degrees:
• At Line 12, the matrix B is dm/2e × dm/2e, and applying the predictable degree property

on Eq. (2) gives in particular rdeg0(B) = rdegs([K1 K2]), hence |rdeg0(B)| ≤ D.
• At Line 13, the matrix A1 is bm/2c×bm/2c and the sum of its row degrees is s1 +· · ·+ sbm/2c,

which is at most D/2 by assumption.
• At Line 15, the matrix PT is dm/2e×dm/2e and its 0-pivot degree is rdeg0(PT) = δJm. Recall

indeed that this is the list of diagonal degrees of PT, which is the same as that of P, and
thus the same as that of JnKT

2 Jn according to Lemma 2.5. Now, from |δ+ v| = |δ|+ |v| ≤ D
and the assumption |v| = sbm/2c+1 + . . . + sm > D/2, we obtain |rdeg0(PT)| = |δ| ≤ D/2.

We assume without loss of generality that m is a power of 2. If it is not, a given input matrix
can be padded with zeros, and ones on the main diagonal, so as to form a square matrix with
dimension the next power of two and the same determinant. According to the three items above,
the cost bound then satisfies:

C(m,D) ≤ 2C(m/2, bD/2c) + C(m/2,D) + O
(
mω M′(D/m)

)
.

Letting the O(·) term aside, we illustrate this recurrence relation in Fig. 1.
Let µ = log2(m) and let K be the constant of the O(·) term above. Recalling that m ≤ D and

bbD/2 jc/2c = bD/2 j+1c, unrolling this recurrence to the ith recursion level for 0 ≤ i ≤ µ yields

C(m,D) ≤
i∑

j=0

ai, jC

(m
2i ,

⌊ D
2 j

⌋)
+ K

i−1∑
k=0

k∑
j=0

ak, j

(m
2k

)ω
M′

(
D/2 j

m/2k

)

≤

i∑
j=0

ai, jC

(m
2i ,

⌊ D
2 j

⌋)
+ Kmω M′

(D
m

) i−1∑
k=0

k∑
j=0

ak, j2−kω M′
(
2k− j

) ,
19

m,D

m/2,D m/2, bD/2c

m/4,D m/4, bD/2c m/4, bD/4c

m/8,D m/8, bD/2c m/8, bD/4c m/8, bD/8c

1,D . . . 1, bD/2 jc . . . 1, bD/2µc

1

1 2

1 4 4

1 6 12 8

1
2 j

(
µ
j

)
2µ

1 2

1 2 2 4

1 2 4 8 4 8

Figure 1: Directed acyclic graph of recursive calls, of depth µ = log2(m). Each boxed node shows the matrix dimensions
and the determinantal degree of a recursive call. Beginning with one call in dimension and determinantal degree (m,D),
for a given node the number above it indicates the number of times a recursive call corresponding to this node is made,
and the numbers of recursive sub-calls this node generates are indicated on both arrows starting from this node.

where the last inequality comes from the submultiplicativity of M′(·) and the coefficients ai, j

satisfy
ai,0 = 1,
ai,i = 2i,
ai, j = ai−1, j + 2ai−1, j−1 for 0 < j < i.

In Fig. 1, one can observe the similarity between Pascal’s triangle and the number of calls with
parameters (m/2i,D/2 j). This translates as a connection between the ai, j’s and the binomial
coefficients: one can prove by induction that ai, j = 2 j

(
i
j

)
.

Now, by assumption M′(d) ∈ O(dω−1−ε) for some ε > 0; for such an ε > 0, let K̃ be a constant
such that M′(d) ≤ K̃dω−1−ε for all d ≥ 0. Then

i−1∑
k=0

k∑
j=0

ak, j2−kω M′
(
2k− j

)
≤ K̃

i−1∑
k=0

2−(1+ε)k
k∑

j=0

ak, j

2 j(ω−1−ε) ≤ K̃
i−1∑
k=0

2−(1+ε)k
k∑

j=0

(
k
j

)
= K̃

i−1∑
k=0

2−εk

and, defining the constant K̂ = KK̃
∑+∞

k=0 2−εk, for i = µ we obtain

C(m,D) ≤
µ∑

j=0

aµ, jC
(
1,

⌊ D
2 j

⌋)
+ K̂mω M′

(D
m

)
.

As we have seen above, parameters (1, d) for any d ∈ Z≥0 correspond to base cases with a 1 × 1
matrix, and they incur no arithmetic cost (one might want to consider them to use O(1) operations

20

each; then the total cost of these base cases is bounded asymptotically by
∑µ

j=0 aµ, j ≤ mlog2(3)).
Thus we obtain C(m,D) = O(mω M′(D/m)), under the assumption m ≤ D.

For the case D < m handled at Line 4, Section 3.2 showed that C(m,D) = C(m̂,D) + O(mω)
where m̂ is the number of non-constant rows of the input matrix. Since m̂ ≤ D, our proof above
shows that C(m̂,D) is in O(m̂ω M′(D/m̂)). Now our assumptions on M(·) imply in particular
that M′(·) is subquadratic, hence this bound is in O(m̂ω(D/m̂)2) = O(m̂ω−2D2) ⊆ O(mω). This
concludes the complexity analysis.

4. Shifted forms: from reduced to weak Popov

This section proves Theorem 1.3 by generalizing the approach of [42, Sec. 2 and 3], which
focuses on the non-shifted case s = 0. It first uses Gaussian elimination on the 0-leading matrix
of A to find a unimodular matrix U such that UA is in 0-weak Popov form, and then exploits the
specific form of U to compute UA efficiently. Here we extend this approach to arbitrary shifts
and show how to take into account the possible unbalancedness of the row degree of A.

First, we generalize [42, Lem. 8] from s = 0 to an arbitrary s, by describing how U can be
obtained by computing a 0-weak Popov form of the s-leading matrix of A.

Lemma 4.1. Let s ∈ Zn and let A ∈ K[x]m×n be s-reduced with rdegs(A) nondecreasing. There
exists an invertible lower triangular T ∈ Km×m which can be computed in O(mω−1n) operations
in K and is such that T lms(A) is in 0-unordered weak Popov form. For any such matrix T,

• U = Xt TX−t has polynomial entries and is unimodular, where t = rdegs(A),
• rdegs(UA) = rdegs(A) and lms(UA) = T lms(A),
• UA is in s-unordered weak Popov form.

Proof. Consider the matrix lms(A)Jn and its generalized Bruhat decomposition lms(A)Jn = CPR
as defined in [35]: C ∈ Km×m is in column echelon form, R ∈ Km×n is in row echelon form, and
P ∈ Km×m is a permutation matrix. Therefore JmRJn is in 0-weak Popov form (see the paragraph
before Lemma 2.4 in Section 2.4), and PRJn is in 0-unordered weak Popov form. Since lms(A)
has full row rank, C is lower triangular and invertible, hence PRJn = C−1lms(A) which proves
the existence of T = C−1. Computing the decomposition costs O(mω−1n) operations [13, Cor. 25]
while inverting C costs O(mω) operations. Alternatively, [42, Sec. 3] shows how to compute T
within the same cost bound using an LUP decomposition with a modified pivoting strategy.

For any such matrix T, write T = (Ti j)i j and t = (ti)i. Then the entry (i, j) of U is Ti jxti−t j .
Thus, U is lower triangular in K(x)m×m with diagonal entries in K \ {0}, and since t = rdegs(A)
is nondecreasing, U is a unimodular matrix in K[x]m×m.

Now, consider the nonnegative shift u = t − (min(t), . . . ,min(t)) ∈ Zm
≥0, and note that U =

Xu TX−u . (The introduction of u is to circumvent the fact that we have not defined the row
degree of a matrix over the Laurent polynomials, a notion which would be needed if we used Xt

rather than Xu in Eq. (4).) Since A is in s-reduced form, the predictable degree property yields

rdegs(UA) = rdegt(U) = rdegu(U) + (min(t), . . . ,min(t)). (3)

On the other hand,

rdegu(U) = rdeg0(UXu) = rdeg0(Xu T) = u = rdegs(A) − (min(t), . . . ,min(t)), (4)

where the third equality follows from the fact that T is a constant matrix with no zero row. Then,
from Eqs. (3) and (4), we obtain rdegs(UA) = rdegs(A) = t.

21

Then, lms(UA) is formed by the coefficients of nonnegative degree of

X−rdegs(UA) UAXs = X−t UAXs = TX−t AXs .

Since T is constant and lms(A) is formed by the coefficients of nonnegative degree of X−t AXs ,
we obtain that lms(UA) = T lms(A). The third item then directly follows from Lemma 2.4.

Knowing T, and therefore U, the remaining difficulty is to efficiently compute UA. For this,
in the case s = 0, the approach in [42] has a cost bound which involves the maximum degree
d = deg(A) = max(rdeg0(A)) [42, Thm. 13], and uses the following steps:
• first compute xdX−rdeg0(A) UA = T(X(d,...,d)−rdeg0(A) A);
• then scale the rows via the left multiplication by x−dXrdeg0(A) .

While the scaling does not use arithmetic operations, the first step asks to multiply the constant
matrix T by an m × n polynomial matrix of degree d: this costs O(mω−1nd) operations in K.
Such a cost would not allow us to reach our target bound for the computation of characteristic
polynomials, since d may be too large, namely when A has unbalanced row degrees.

Below, we refine the approach to better conform with the row degrees of A. This leads to
an improvement of the above cost bound to O(mω−1n(1 + D/m)) where D = |rdeg0(A)|, thus
involving the average row degree of A instead of its maximum degree d. For this, we follow the
strategy of splitting the rows of A into subsets having degrees in prescribed intervals; when these
intervals get further away from the average row degree of A, the corresponding subset contains
a smaller number of rows. Earlier works using a similar strategy such as [54], [58, Sec. 2.6], and
[22, Sec. 4], are not directly applicable to the problem here. Furthermore, we exploit the fact that
A has nondecreasing row degree and that T has a lower triangular shape to avoid logarithmic
factors in the cost bound. This results in Algorithm 3.

Algorithm 3 ReducedToWeakPopov(A, s)
Input: a matrix A ∈ K[x]m×n, a shift s ∈ Zn such that A is in s-reduced form.
Output: an s-weak Popov form of A.

1: . Step 1: Ensure nonnegative shift and nondecreasing s-row degree /
2: ŝ ∈ Zn

≥0 ← s − (min(s), . . . ,min(s))
3: (B, t) ∈ K[x]m×n × Zm

≥0 ← matrix B obtained from A by row permutation such that the tuple
t = rdegŝ(B) is nondecreasing

4: . Step 2: Compute the factor T in the unimodular transformation U = Xt TX−t /
5: L ∈ Km×n ← lmŝ(B), that is, the entry (i, j) of L is the coefficient of degree ti − s j of the

entry (i, j) of B, where ŝ = (s1, . . . , sn) and t = (t1, . . . , tm)
6: T ∈ Km×m ← invertible lower triangular matrix such that TL is in 0-unordered weak Popov

form . can be computed via a generalized Bruhat decomposition, see Lemma 4.1
7: . Step 3: Compute the product P = UB /
8: D← t1 + · · · + tm; K ← blog2(mtm/D)c + 1 . K = min{k ∈ Z>0 | tm < 2kD/m}
9: i0 ← 0; ik ← max{i | ti < 2kD/m} for 1 ≤ k ≤ K . 0 = i0 < i1 ≤ · · · ≤ iK−1 < iK = m

10: P← zero matrix in K[x]m×n

11: for k from 1 to K do
12: R ← {ik−1 + 1, . . . ,m}; C ← {ik−1 + 1, . . . , ik}; θ ← tik = max(tC)
13: PR,∗ ← PR,∗ + XtR−(θ,...,θ) TR,C X(θ,...,θ)−tC BC,∗
14: return the row permutation of P which has increasing ŝ-pivot index

22

Proof of Theorem 1.3. The first step builds a nonnegative shift ŝ which only differs from s by
an additive constant, and builds a matrix B which is a row permutation of A; hence any ŝ-weak
Popov form of B is an s-weak Popov form of A. Since the ŝ-row degree t of B is nondecreasing,
the construction of T at Step 2 ensures that the matrix U = Xt TX−t ∈ K[x]m×m is unimodular
and such that UB is in ŝ-unordered weak Popov form, according to Lemma 4.1. Thus, for the
correctness, it remains to prove that the matrix P computed at Step 3 is P = UB.

Using notation from the algorithm, define Ck = {ik−1 + 1, . . . , ik} for 1 ≤ k ≤ K. The Ck’s
are pairwise disjoint and such that {1, . . . ,m} = C1 ∪ · · · ∪ CK . Then, slicing the columns of T
according to these sets of column indices, we obtain

UB = Xt TX−t B =
∑

1≤k≤K

Xt T∗,Ck X
−tCk BCk ,∗.

Furthermore, since T is lower triangular, all rows of T∗,Ck with index not in Rk = {ik−1 +1, . . . ,m}
are zero. Hence, more precisely,

UB =
∑

1≤k≤K

[
0ik−1×n

XtRk TRk ,Ck X−tCk BCk ,∗

]
.

This formula corresponds to the slicing of the product P = Xt TX−t B in blocks as follows:

∗

∗ ∗

XtRk

∗

∗ ∗

∗ ∗

∗ ∗ TRk ,Ck

∗ ∗ ∗

∗ ∗ ∗ ∗

∗

∗

X−tCk

∗

∗

∗

∗

BCk ,∗

∗

∗

.

The for loop at Step 3 computes P by following this formula, hence P = UB. (Note indeed
that the scaling by (θ, . . . , θ) in the algorithm can be simplified away and is just there to avoid
computing with Laurent polynomials.)

Concerning the complexity bound, we first note that the quantity D defined in the algorithm
is the same as that in Theorem 1.3; indeed, rdegŝ(B) = rdegs(B) − (min(s), . . . ,min(s)), hence

D = t1 + · · · + tm = |rdegŝ(B)| = |rdegs(B)| − m ·min(s) = |rdegs(A)| − m ·min(s).

By Lemma 4.1, Step 2 uses O(mω−1n) operations. As for Step 3, its cost follows from bounds on
the cardinalities of Ck and Rk. Precisely, we have Ck ⊆ Rk, and min(Rk) > ik−1 implies that each
entry of the subtuple tRk is at least 2k−1D/m. Hence #Rk ·2k−1D/m ≤

∑
i∈Rk

ti ≤ t1 + · · ·+ tm = D,
and #Ck ≤ #Rk ≤ m/2k−1.

Then, in the product XtRk−(θ,...,θ) TRk ,Ck X(θ,...,θ)−tCk BCk ,∗, the left multiplication by XtRk−(θ,...,θ)

does not use arithmetic operations; the matrix TRk ,Ck is over K and has at most m/2k−1 rows and
at most m/2k−1 columns; and the matrix X(θ,...,θ)−tCk BCk ,∗ is over K[x] and has n columns and at
most m/2k−1 rows. Furthermore, the latter matrix has degree at most θ: indeed, ŝ ≥ 0 implies
that t = rdegŝ(B) ≥ rdeg0(B), hence in particular tCk ≥ rdeg0(BCk ,∗). Recall that θ = tik ≤ 2kD/m
holds, by definition of θ and ik. From these bounds on the dimensions and the degrees of the
involved matrices, and using the fact that m/2k−1 ≤ m ≤ n, it follows that computing the product

23

XtRk−(θ,...,θ) (TRk ,Ck (X(θ,...,θ)−tCk BCk ,∗)) uses O((m/2k−1)ω−1n(θ+1)) ⊆ O((m/2k−1)ω−1n(2kD/m+1))
operations in K. Thus, since ω > 2, the cost of Step 3 is

O

 ∑
1≤k≤K

(m
2k−1

)ω−1
n
(

2kD
m

+ 1
) ⊆ O

mω−2nD

 ∑
1≤k≤K

2k(2−ω)

 + mω−1n

 ∑
1≤k≤K

2k(1−ω)

⊆ O
(
mω−2nD + mω−1n

)
.

5. Shifted forms: from weak Popov to Popov

This section culminates in Section 5.5 with the description of Algorithm WeakPopovToPopov
and a proof of Theorem 1.4. Based on [42, Lem. 14] (which extends to the shifted case), the result
in Theorem 1.4 can easily be used to solve the same problem in the rectangular case with an m×n
matrix A; while this is carried out in Algorithm WeakPopovToPopov, it is out of the main scope
of this paper and thus for conciseness we only give a cost analysis in the case m = n.

Our approach is to obtain the −s-Popov form of A from a shifted reduced kernel basis of
some matrix F built from A. This fact is substantiated in Section 5.1, which also proves that we
have precise a priori information on the degrees of this sought kernel basis.

A folklore method for kernel basis computation is to find an approximant basis at an order
sufficiently large so that it contains a kernel basis as a submatrix. More precisely, assuming we
know a list of bounds s such that there exists a basis of K(F) with column degree bounded by s,
the following algorithm computes such a kernel basis which is furthermore −s-reduced:
• γ← cdegs(F) + 1;
• M← basis ofAγ(F) in −s-reduced form;
• return the submatrix of M formed by its rows with nonpositive −s-degree.

The idea is that any row p of M is such that pF = 0 mod Xγ , and if it further satisfies cdeg(p) ≤ s
then cdeg(pF) ≤ cdegs(F) < γ, so that pF = 0 holds. Here the complexity mainly depends on
|s| and |cdegs(F)|, quantities that are often large in which case the algorithm of Zhou et al. [58]
is more efficient. Nevertheless there are cases, such as the one arising in this section, where both
sums are controlled, and elaborating over this approach leads to an efficient algorithm.

In order to propose Algorithm KnownDegreeKernelBasis in Section 5.4, efficiently comput-
ing the kernel basis using essentially a single call to PM-Basis, we transform the input into one
with a balanced shift and a balanced order. Here and in what follows, for a nonnegative tuple
t ∈ Zn

≥0, we say that t is balanced if max(t) ∈ O(|t|/n), meaning that the maximum entry in t is
not much larger than the average of all entries of t. Section 5.2 deals with the shifts by describing
a transformation of the input inspired from [46, Sec. 3], allowing us to reduce to the case of a
shift s whose entries are balanced. Section 5.3 deals with balancing the order γ by performing
the overlapping partial linearization of [46, Sec. 2].

For the latter transformation, as noted above, we assume that there exists a basis of the consid-
ered kernel whose column degree is bounded by s, or equivalently that −s-reduced kernel bases
have nonpositive −s-row degree. On the other hand, for the first transformation we must ensure
that −s-reduced kernel bases have nonnegative −s-row degree. Thus our algorithm works under
the requirement that −s-reduced bases of K(F) have −s-row degree exactly 0, hence its name.
This is a restriction compared to [56, Algo. 1] which only assumes that −s-reduced bases ofK(F)
have nonpositive −s-row degree and has to perform several approximant basis computations to

24

recover the whole kernel basis, as outlined in the introduction. In short, we have managed to ex-
ploit the fact that we have better a priori knowledge of degrees in kernel bases than in the context
of [56], leading to a faster kernel computation which, when used in our determinant algorithm,
brings no logarithmic factor in the complexity.

5.1. Normalization via kernel basis computation

We normalize the matrix A into its −s-Popov form P using a kernel basis computation, an ap-
proach already used in a context similar to ours in the non-shifted case in [42, Lem. 19]. Roughly,
this stems from the fact that the identity UA = P with a unimodular U can be rewritten as

[
U P

] [A
−Im

]
= 0;

and that, for a well-chosen shift, one retrieves [U P] as a shifted reduced kernel basis. The next
statement gives a choice of shift suited to our situation, and describes the degree profile of such
kernel bases. The focus on the shift −δ comes from the fact that any −δ-reduced form R of A is
only a constant transformation away from being the −s-Popov form P of A [see 26, Lem. 4.1].

Lemma 5.1. Let s ∈ Zm, let A ∈ K[x]m×m be in −s-weak Popov form, let δ ∈ Zm
≥0 be the −s-

pivot degree of A, and assume that s ≥ δ. Let R be a −δ-weak Popov form of A and let U be the
unimodular matrix such that UA = R. Let further d = (s−δ, δ) ∈ Z2m and F =

[
A
−Im

]
∈ K[x]2m×m.

Then,

• the −d-pivot profile of [U R] is (m + j, δ j)1≤ j≤m,
• [U R] is in −d-weak Popov form with rdeg−d([U R]) = 0 and cdeg([U R]) ≤ d,
• [U R] is a basis of K(F).

Proof. First, we prove that R has −δ-pivot degree δ; note that this implies rdeg−δ(R) = 0 and
cdeg(R) = δ since R is in −δ-weak Popov form. Lemma 2.5 shows that the −s-Popov form
P of A has the same −s-pivot degree as A, that is, δ. Hence, by definition of Popov forms,
cdeg(P) = δ. Then, [26, Lem. 4.1] states that P is also in −δ-Popov form. Since R is a −δ-weak
Popov form of P, by Lemma 2.5 it has the same −δ-pivot degree as P, that is, δ.

Now, by the predictable degree property and since rdeg−s(A) = −s + δ,

rdeg−s+δ(U) = rdeg−s(UA) = rdeg−s(R) ≤ rdeg−δ(R) = 0,

where the inequality holds because −s ≤ −δ. Thus, by choice of d, the −d-pivot entries of [U R]
are the −δ-pivot entries of its submatrix R; this proves the first item.

Then, the second item follows: the matrix [U R] is in −d-weak Popov form since its −d-
pivot index is increasing; its −d-row degree is equal to the −δ-row degree of R which is 0; and
rdeg−d([U R]) = 0 implies cdeg([U R]) ≤ d by Lemma 2.1.

Let [K1 K2] ∈ K[x]m×2m be a basisK(F) (it has m = 2m−m rows since F is 2m×m and has
rank m). Since UA = R, the rows of [U R] are in this kernel. As a result, there exists a matrix
V ∈ K[x]m×m such that [U R] = V[K1 K2]. In particular, U = VK1, and since U is unimodular,
this implies that V is unimodular as well. Thus, the basis [K1 K2] is unimodularly equivalent to
[U R], and the latter matrix is also a basis of K(F).

One may note similarities with [27, Lem. 5.1], which is about changing the shift of reduced
forms via kernel basis computations. Here, we consider A in −s-reduced form and are interested

25

in its −δ-reduced forms R: we change −s into −δ = −s + (s − δ), with a nonnegative difference
s − δ ≥ 0. Still, the above lemma does not follow from [27] since here the origin shift −s is
nonpositive and thus we cannot directly incorporate it in the matrix F by considering AX−s .

The next corollary uses notation from Lemma 5.1 and shows how to obtain the −s-Popov
form of A via a −d-reduced basis of the kernel of F. Then Sections 5.2 to 5.4 focus on the
efficient computation of such a kernel basis.

Corollary 5.2. Let [Û R̂] ∈ K[x]m×2m be a −d-reduced basis of K(F). Then, R̂ is a −δ-reduced
form of A, and P = (lm−δ(R̂))−1R̂ is the −s-Popov form of A.

Proof. It suffices to prove that R̂ is a −δ-reduced form of A; then, the conclusion follows from
[26, Lem. 4.1]. Both matrices [Û R̂] and [U R] are −d-reduced and thus have the same −d-row
degree up to permutation. Lemma 5.1 yields rdeg−d([U R]) = 0, hence rdeg−d([Û R̂]) = 0. In
particular, since −d = (δ − s,−δ), we have rdeg−δ(R̂) ≤ 0.

We conclude by applying Lemma 2.3 to the row space of A, which has rank m, and which
has a basis R in −δ-reduced form with −δ-row degree 0. From ÛA = R̂, we obtain that the rows
of R̂ are in this row space. This identity also implies that R̂ has rank m, otherwise there would
exist a nonzero vector in the left kernel of R̂, which would also be in the left kernel of Û since
A is nonsingular, hence it would be in the left kernel of the full row rank matrix [Û R̂]. The
assumptions of the lemma are satisfied, and thus R̂ is a −δ-reduced form of A.

5.2. Reducing to the case of balanced pivot degree

Here, we show that the output column partial linearization, used previously in algorithms for
approximant bases and generalizations of them [46, Sec. 3], [55, 26], can be applied to kernel
computations when the sought kernel basis has nonnegative shifted row degree. The main effect
of this transformation is to make the shift and output degrees more balanced, while preserving
most other properties of (s,F). The transformation itself, defined below, is essentially a column-
wise xδ-adic expansion for a well-chosen integer parameter δ.

Definition 5.3. Let s = (s1, . . . , sm) ∈ Zm
≥0, and let δ ∈ Z>0. For 1 ≤ j ≤ m, write s j =

(α j − 1)δ + β j with α j = ds j/δe and 1 ≤ β j ≤ δ if s j , 0, and α j = 1 and β j = 0 if s j = 0. Define
m = α1 + · · · + αm, and the expansion-compression matrix E ∈ K[x]m×m as

E =

1
xδ
...

x(α1−1)δ

. . .

1
xδ
...

x(αm−1)δ

.

Define also
s = (δ, . . . , δ, β1︸ ︷︷ ︸

α1

, . . . , δ, . . . , δ, βm︸ ︷︷ ︸
αm

) ∈ Zm
≥0.

In this context, for a matrix K ∈ K[x]k×m, we define the column partial linearization of K as the
unique matrix K ∈ K[x]k×m such that K = KE and all the columns of K whose index is not in
{α1 + · · · + α j, 1 ≤ j ≤ m} have degree less than δ.

26

We use the notation in this definition in all of Section 5.2. More explicitly, K = [K1 · · · Km]
where K j ∈ K[x]k×α j is the unique matrix such that

K∗, j = K j

1
xδ
...

x(α j−1)δ

and the first α j − 1 columns of K j have degree less than δ.

This construction originates from [46, Sec. 3], where it was designed for approximant basis
computations, in order to make the shift more balanced at the cost of a small increase of the
dimension; this is stated in Lemma 5.4. As mentioned above, several slightly different versions
of this column partial linearization have been given in the literature: each version requires some
minor adaptations of the original construction to match the context. Here, in order to benefit from
properties proved in [28, Sec. 5.1], we follow the construction in [28, Lem. 5.2]: one can check
that Definition 5.3 is a specialization of the construction in that reference, for the shift −s ∈ Zm

≤0
and taking the second parameter to be t = max(−s) so that t = −s −max(−s) + t = −s.

Lemma 5.4. The entries of s are in {0, 1, . . . , δ}. Furthermore, if δ ≥ |s|/m, then m ≤ m ≤ 2m.

Proof. The first remark is obvious. For the second one, note that 1 ≤ α j ≤ 1 + s j/δ holds by
construction, for 1 ≤ j ≤ m. Hence m ≤ m ≤ m + |s|/δ ≤ 2m.

Importantly, this column partial linearization behaves well with respect to shifted row degrees
and shifted reduced forms.

Lemma 5.5. Let K ∈ K[x]k×m with rdeg−s(K) ≥ 0, and let K ∈ K[x]k×m be its column partial
linearization. Then, row degrees are preserved: rdeg−s(K) = rdeg−s(K). Furthermore, if K is in
−s-weak Popov form, then K is in −s-weak Popov form.

Proof. We show that this follows from the second item in [28, Lem. 5.2]; as noted above, the
shift t = (t1, . . . , tm) in that reference corresponds to −s = (−s1, . . . ,−sm) here. Let (πi, δi)1≤i≤k

denote the −s-pivot profile of K. By definition of the −s-pivot index and degree, rdeg−s(K) =

(δi − sπi)1≤i≤k, hence our assumption rdeg−s(K) ≥ 0 means that δi ≥ sπi for 1 ≤ i ≤ k. Thus, we
can apply [28, Lem. 5.2] to each row of K, from which we conclude that K has −s-pivot profile
(α1 + · · · + απi , δi − sπi + βπi)1≤i≤k.

First, since the entry of −s at index α1 + · · · + απi is −βπi , this implies that

rdeg−s(K) = (δi − sπi + βπi − βπi)1≤i≤k = (δi − sπi)1≤i≤k = rdeg−s(K).

Furthermore, if K is in −s-weak Popov form, then (πi)1≤i≤k is increasing, hence (α1+· · ·+απi)1≤i≤k

is increasing as well and K is in −s-weak Popov form.

Remark 5.6. One may further note the following properties:

• Writing lm−s(K) = [L∗,1 · · · L∗,m] ∈ Kk×m, we have

lm−s(K) = [0 · · · 0 L∗,1︸ ︷︷ ︸
α1

· · · 0 · · · 0 L∗,m︸ ︷︷ ︸
αm

] ∈ Kk×m.

27

• If K is in −s-Popov form, then K is in −s-Popov form.

These properties are not used here, but for reference we provide a proof in Appendix A.

We will also need properties for the converse operation, going from some matrix P ∈ K[x]m×m

to its compression PE.

Lemma 5.7. Let P ∈ K[x]k×m have −s-pivot profile (πi, δi)1≤i≤k and assume πi = α1 + · · · + α ji
for some ji ∈ Z>0, for 1 ≤ i ≤ k. Then, rdeg−s(PE) = rdeg−s(P), and PE has −s-pivot profile

(ji, δi + (α ji − 1)δ)1≤i≤k = (ji, δi + s ji − β ji)1≤i≤k.

If P is in −s-weak Popov form, then PE is in −s-weak Popov form.

Proof. The −s-pivot profile of PE is directly obtained by applying the first item in [28, Lem. 5.2]
to each row of P. From this −s-pivot profile, we get

rdeg−s(PE) = (δi + s ji − β ji − s ji)1≤i≤k = (δi − β ji)1≤i≤k.

On the other hand, since the entry of −s at index α1 + · · · + α ji is −β ji , the −s-pivot profile of P
yields rdeg−s(P) = (δi − β ji)1≤i≤k. Thus, rdeg−s(PE) = rdeg−s(P). Now, if P is in −s-weak Popov
form, then (α1 + · · ·+α ji)1≤i≤k is increasing, which implies that (ji)1≤i≤k is increasing. As a result,
PE is in −s-weak Popov form, since (ji)1≤i≤k is the −s-pivot index of PE.

Our approach for computing the kernel of F is based on the fact that if K is a basis of K(F)
and K is its column partial linearization, then KF = KEF = 0. This identity shows that the
kernel K(EF) contains the rows of K, so we may hope to recover K, and thus K = KE, from a
basis of K(EF); the main advantage is that the latter basis is computed with the balanced shift
−s. Note that a basis of K(EF) does not straightforwardly yield K, at least because this kernel
also contains K(E). In Lemma 5.8 we exhibit a basis S for K(E), and then in Lemma 5.9 we
show that K(EF) is generated by K and S. We also give properties which allow us, from a basis
of K(EF), to easily recover a basis K of K(F) which has the sought form (see Lemma 5.11).

Lemma 5.8. The matrix S = diag(S1, . . . ,Sm) ∈ K[x](m−m)×m, where

S j =

xδ −1

. . .
. . .

xδ −1

 ∈ K[x](α j−1)×α j

for 1 ≤ j ≤ m, is the 0-Popov basis of the kernelK(E). Furthermore, S is also in −s-Popov form,
it has −s-row degree 0, and its −s-pivot profile is (α1 + · · · + α j−1 + i, δ)1≤i<α j,1≤ j≤m.

Proof. By construction, SE = 0 and S is in 0-Popov form. Besides, S has rank m − m, which is
the rank ofK(E) since E has rank m. Now, observe that there is no nonzero vector of degree less
than δ in the left kernel of the vector [1 xδ · · · x(α j−1)δ]T, and thus there is no nonzero vector
of degree less than δ in K(E). It follows that S is a basis of K(E). Indeed, if K ∈ K[x](m−m)×m is
a basis of K(E) in 0-reduced form, then rdeg(K) ≥ (δ, . . . , δ). Since SE = 0, we have S = UK
for some nonsingular U ∈ K[x](m−m)×(m−m). By the predictable degree property,

(δ, . . . , δ) = rdeg(S) = rdeg(UK) = rdegrdeg(K)(U) ≥ rdeg(U) + (δ, . . . , δ),

28

hence U is constant. Thus U is unimodular, and S is a basis of K(E).
Now consider j such that α j > 1, and write t = (−δ, . . . ,−δ,−β j) ∈ Zα j . Then, the definition

of α j and β j, notably the fact that −β j < 0, ensures that S j is in t-Popov form with t-pivot degree
(δ, . . . , δ) and t-pivot index (1, . . . , α j − 1). The conclusion about S follows.

Lemma 5.9. Let F ∈ K[x]m×n. The following properties hold.

(i) Column degrees are preserved: cdegs(EF) = cdegs(F).
(ii) The kernels of F and EF are related by K(EF)E = K(F).

(iii) Let K ∈ K[x]k×m be a basis of K(F) (hence k = m − rank(F)), and let K ∈ K[x]k×m be any
matrix such that K = KE. Then,

B =

[
K
S

]
∈ K[x](k+m−m)×m (5)

is a basis of K(EF), where S is the matrix defined in Lemma 5.8.
(iv) Assume that rdeg−s(K) ≥ 0 and that K is the column partial linearization of K. Then,

rdeg−s(B) = (rdeg−s(K), 0), and if K is in −s-weak Popov form, then B is in −s-unordered
weak Popov form.

Proof. (i) By definition, cdegs(EF) = cdeg(Xs EF) and cdegs(F) = cdeg(Xs F). Since the matrix

Xs E =

Xδ

...
X(α1−1)δ

Xs1

. . .
Xδ

...
X(αm−1)δ

Xsm

has column degree s and contains Xs as a subset of its rows, we get cdeg(Xs EF) = cdeg(Xs F).

(ii) For any vector p ∈ K(EF), we have pEF = 0, which means pE ∈ K(F). Conversely,
from any p ∈ K(F) we can construct q ∈ K[x]1×m such that qE = p since E has the identity as a
subset of its rows; then, qEF = pF = 0, which means q ∈ K(EF).

(iii) We recall that, by Lemma 5.8, S is a basis of K(E). The rows of B are in K(EF), since
SEF = 0 and KEF = KF = 0. Now, we want to prove that any u ∈ K(EF) is a K[x]-linear
combination of the rows of B. By Item (ii), uE ∈ K(F); thus uE = vK = vKE for some
v ∈ K[x]1×k. Therefore u − vK ∈ K(E), and it follows that u − vK = wS for some w ∈ K[x]1×m.
This yields u = [v w]B.

(iv) Since rdeg−s(K) ≥ 0, we can apply Lemma 5.5, which yields rdeg−s(K) = rdeg−s(K),
hence rdeg−s(B) = (rdeg−s(K), 0). Now, if K is in −s-weak Popov form, then Lemma 5.5 shows
that K is in −s-weak Popov form and that all entries of its −s-pivot index are in {α1 + · · ·+αi, 1 ≤
i ≤ m}. Besides, by Lemma 5.8, S is in −s-Popov form with a −s-pivot index which is disjoint
from {α1 + · · · + αi, 1 ≤ i ≤ m}. Hence B is in −s-unordered weak Popov form.

Remark 5.10. Similarly to Item (iv), one may observe that if K is in −s-reduced form, then B
is in −s-reduced form; and that if K is in −s-Popov form, then B is in −s-Popov form up to row
permutation. These points will not be used here; for reference a proof is given in Appendix A.

29

Finally, we combine the above results to show that one can compute a basis of K(F) by
computing a −s-weak Popov basis of K(EF) and taking a submatrix of it.

Lemma 5.11. Let F ∈ K[x]m×n and let r = m − rank(F) be the rank of K(EF). Assume that
−s-reduced bases of K(F) have nonnegative −s-row degree. Let Q ∈ K[x]r×m be a −s-weak
Popov basis of K(EF). Let P ∈ K[x]k×m be the submatrix of the rows of Q whose −s-pivot index
is in {α1 + · · · + α j, 1 ≤ j ≤ m}. Then, PE is a −s-weak Popov basis of K(F).

Proof. We first prove that the number of rows of PE is the rank ofK(F), that is, k = m− rank(F).
Indeed, by Item (iv) of Lemma 5.9, the −s-pivot index of the −s-Popov basis of K(EF) contains
the −s-pivot index of S. By Lemma 5.8, the latter is the tuple formed by the integers in the set
{1, . . . ,m} \ {α1 + · · · + α j, 1 ≤ j ≤ m} sorted in increasing order. Since P is the submatrix of the
rows of Q whose −s-pivot index is not in this set, P has k = r − (m − m) = m − rank(F) rows.

Now, by construction, P is in −s-weak Popov form and its −s-pivot index has entries in
{α1 + · · ·+αi, 1 ≤ i ≤ m}. Thus we can apply Lemma 5.7; it ensures that PE is in −s-weak Popov
form and that rdeg−s(PE) = rdeg−s(P).

It remains to prove that PE is a basis of K(F). Let K ∈ Kk×m be the −s-Popov basis of
K(F), and let K ∈ Kk×m be its column partial linearization. Let d = rdeg−s(K), which has
nonnegative entries by assumption. Then, according to Lemma 5.5, K is in −s-weak Popov form,
and rdeg−s(K) = d. Then, we define B ∈ K(k+m−m)×m as in Eq. (5); by Item (iv) of Lemma 5.9,
the matrix B is a −s-unordered weak Popov basis of K(EF).

Then, Lemma 2.5 shows that Q has the same −s-pivot profile as the row permutation of B
which is in −s-weak Popov form. Since P (resp. K) is the submatrix of the rows of Q (resp. B)
whose −s-pivot index is in {α1 + · · · + α j, 1 ≤ j ≤ m}, and since both P and K are in −s-weak
Popov form, it follows that P and K have the same −s-pivot profile. In particular, we have
rdeg−s(P) = rdeg−s(K) = d, from which we get rdeg−s(PE) = d. According to Lemma 2.3, since
the rows of PE are in K(F), this implies that PE is a basis of K(F).

5.3. Reducing to the case of a balanced order
Now we apply the overlapping partial linearization of [46, Sec. 2], more precisely the version

in [28, Sec. 5.2] which supports arbitrary γ as showed in the definition below that we recall for
completeness. In the next lemma, we will show that the sought kernel basis can be retrieved as a
submatrix of an approximant basis for the transformed problem.

Definition 5.12 ([46, 28]). Let γ = (γ1, . . . , γn) ∈ Zn
>0, let F ∈ K[x]m×n with cdeg(F) < γ, and

let µ ∈ Z>0. Then, for 1 ≤ i ≤ n, let γi = αiµ + βi with αi =
⌈
γi
µ
− 1

⌉
and 1 ≤ βi ≤ µ. Let also

n = max(α1 − 1, 0) + · · · + max(αn − 1, 0), and define

Lµ(γ) = (γ1, . . . , γn) ∈ Zn+n
>0 ,

where γi = (2µ, . . . , 2µ, µ+βi) ∈ Zαi
>0 if αi > 1 and γi = γi otherwise. Considering the ith column

of F, we write its xµ-adic representation as

F∗,i = F(0)
∗,i + F(1)

∗,i xµ + · · · + F(αi)
∗,i xαiµ

where cdeg([F(0)
∗,i F(1)

∗,i · · · F(αi)
∗,i]) < (µ, . . . , µ, βi).

If αi > 1, we define

F∗,i =
[
F(0)
∗,i + F(1)

∗,i xµ F(1)
∗,i + F(2)

∗,i xµ · · · F(αi−1)
∗,i + F(αi)

∗,i xµ
]
∈ K[x]m×αi

30

and Ji = [0 Iαi−1] ∈ K[x](αi−1)×αi , and otherwise we let F∗,i = F∗,i and Ji ∈ K[x]0×1. Then,

Lγ,µ(F) =

F∗,1 F∗,2 · · · F∗,n
J1

J2
. . .

Jn

∈ K[x](m+n)×(n+n)

is called the overlapping linearization of F with respect to γ and µ.

Lemma 5.13. Let F ∈ K[x]m×n, and let s ∈ Zm
≥0 be such that there exists a basis of K(F) with

nonpositive −s-row degree. Let µ ∈ Z>0 with µ > max(s), t = (s, µ − 1, . . . , µ − 1) ∈ Zm+n
≥0 , and

γ ∈ Zn
>0 with γ ≥ cdegs(F)+1. Let M ∈ K[x](m+n)×(m+n) be a −t-reduced basis ofALµ(γ)(Lγ,µ(F)).

Then, exactly k = m − rank(F) rows of M have nonpositive −t-degree, and the first m columns of
these rows form a matrix K ∈ K[x]k×m which is a −s-reduced basis of K(F). Besides, if M is in
−t-weak Popov form, then K is in −s-weak Popov form.

Proof. Let [K Q] be the submatrix of M formed by its rows of nonpositive −t-degree, where
K ∈ K[x]k×m and Q ∈ K[x]k×n; we have 0 ≤ k ≤ m + n. By choice of t, from rdeg−t([K Q]) ≤ 0
we get deg(Q) < µ and rdeg−s(K) ≤ 0.

In particular, deg(K) ≤ max(s) < µ: applying the second item in [28, Lem. 5.6] to each
row of [K Q] shows that rdeg(Q) < rdeg(K) and that the rows of K are in Aγ(F), that is,
KF = 0 mod Xγ . On the other hand, cdeg(K) ≤ s implies that cdeg(KF) ≤ cdegs(F) < γ, hence
KF = 0, i.e. the rows of K are in K(F). This implies that the rank of K is at most the rank of the
module K(F), i.e. rank(K) ≤ m − r where r = rank(F).

Furthermore, from rdeg(Q) < rdeg(K) and max(s) < µ we obtain

rdeg−s(K) ≥ rdeg(K) −max(s) > rdeg(Q) − µ + 1 = rdeg(−µ+1,...,−µ+1)(Q),

hence by choice of t we have lm−t([K Q]) = [lm−s(K) 0]. Since this matrix is a subset of
the rows of the nonsingular matrix lm−t(M), it has full row rank, and thus lm−s(K) has full row
rank. This shows that K is in −s-reduced form, and that k = rank(K). If M is furthermore
in −t-weak Popov form, then [K Q] is in −t-weak Popov form as well; then, the identity
lm−t([K Q]) = [lm−s(K) 0] shows that the −t-pivot entries of [K Q] are all located in K,
hence K is in −s-weak Popov form.

It remains to prove that k = m − r and that the rows of K generate K(F).
By assumption, there exists a basis P ∈ K[x](m−r)×m of K(F) such that cdeg(P) ≤ s. In

particular, the rows of P are in Aγ(F), and applying the first item of [28, Lem. 5.6] to each of
these rows shows that there exists a matrix R ∈ K[x](m−r)×n with rdeg(R) < rdeg(P) and such
that the rows of [P R] are inALµ(γ)(Lγ,µ(F)). Thus, [P R] is a left multiple of M.

A key remark now is that rdeg−t([P R]) ≤ 0. Indeed, by Lemma 2.1 rdeg−s(P) ≤ 0 follows
from cdeg(P) ≤ s, and we have

deg(R) < deg(P) = max(cdeg(P)) ≤ max(s) < µ.

Thus, since M is −t-reduced, the predictable degree property ensures that [P R] is a left multiple
of M which does not involve the rows of M of positive −t-degree, i.e. a left multiple of [K Q].
In particular, P is a left multiple of K: there exists a matrix V ∈ K[x](m−r)×k such that VK = P.

31

Since P has rank m − r, we obtain k ≥ m − r, hence k = m − r. On the other hand, since the
rows of K are in K(F), there exists a matrix W ∈ K[x]k×k such that WP = K. It follows that
P = VWP, and since P has full row rank this implies VW = Ik. This means that P and K are left
unimodularly equivalent, hence K is a basis of K(F), which concludes the proof.

5.4. Computing kernel bases with known pivot degree

After applying the transformations presented in Sections 5.2 and 5.3, we are left with the
computation of an approximant basis for a balanced order Lµ(γ) and a balanced shift −s: this is
done efficiently by PM-Basis, designed in [21] as an improvement of [3, Algo. SPHPS]. Here,
we use the version in [28, Algo. 2] which ensures that the output basis is in −s-weak Popov form.

Algorithm 4 KnownDegreeKernelBasis(F, s)
Input: a matrix F ∈ K[x]m×n, and a nonnegative shift s ∈ Zm

≥0.
Requirement: −s-reduced bases of K(F) have −s-row degree 0.
Output: a −s-weak Popov basis of K(F).

1: . Step 1: Output column partial linearization /
2: δ← dD/me ∈ Z>0, where D = max(|s|, |cdegs(F)|, 1)
3: Apply Definition 5.3 to (s, δ) to obtain the parameters and expansion-compression matrix:

(α1, . . . , αm) ∈ Zm
>0, m ∈ Z>0, s ∈ Zm

≥0, E ∈ K[x]m×m

4: . Step 2: Overlapping partial linearization /
5: γ← cdegs(F) + 1 ∈ Zn

>0 . order for approximation, equal to cdegs(EF) + 1
6: Apply Definition 5.12 to (γ,EF, δ + 1) to obtain the order Lδ+1(γ) ∈ Zn+n

>0 and the matrix
Lγ,δ+1(EF) ∈ K[x](m+n)×(n+n)

7: . Step 3: Compute −t-weak Popov basis ofALδ+1(γ)(Lγ,δ+1(EF)) /
8: t ← (s, δ, . . . , δ) ∈ Zm+n

≥0
9: Γ← max(Lδ+1(γ)); G = Lγ,δ+1(EF)X(Γ,...,Γ)−Lδ+1(γ) . use uniform order (Γ, . . . ,Γ)

10: M ∈ K[x](m+n)×(m+n) ← PM-Basis(Γ,G,−t)
11: . Step 4: Deduce first −s-weak Popov basis of K(EF), then −s-weak Popov basis of K(F) /

12: Q ∈ K[x]k×m ← first m columns of the rows of M which have nonpositive −t-degree
13: P ∈ K[x]k×m ← the rows of Q whose −s-pivot index is in {α1 + · · · + α j, 1 ≤ j ≤ m}
14: return PE

Proposition 5.14. Algorithm 4 is correct. Let D = max(|s|, |cdegs(F)|, 1). Then, assuming m ≥ n
and using notation from the algorithm, its cost is bounded by the sum of:

• the cost of performing PM-Basis at order at most 2dD/me + 2 on an input matrix of row
dimension m + n ≤ 3m and column dimension n + n ≤ 2m;
• O(m2) extra operations in K.

Thus, Algorithm 4 uses O(mω M′(D/m)) operations in K.

Proof. Using the assumption that −s-reduced bases of K(F) have −s-row degree 0 along with
Item (iv) of Lemma 5.9 shows that the −s-reduced bases of K(EF) have −s-row degree 0. Thus,
we can apply Lemma 5.13 to (EF, s, µ,γ) with µ = δ + 1 > max(s) and γ = cdegs(EF) + 1,
which is γ = cdegs(F) + 1 according to Item (i) of Lemma 5.9. Note that M is a −t-weak Popov
basis ofA(Γ,...,Γ)(G) = ALδ+1(γ)(Lγ,δ+1(EF)) (see e.g. [28, Rmk. 3.3] for this approach to make the
order uniform). Then, Lemma 5.13 states that the matrix Q at Line 12 has k = m − rank(EF) =

32

m − rank(F) rows and is a −s-weak Popov basis of K(EF). Then, by Lemma 5.11, PE is a
−s-weak Popov basis of K(F), hence the correctness.

For the cost analysis, we assume m ≥ n, and we start by summarizing bounds on the dimen-
sions and degrees at play. Lemma 5.4 yields m ≤ m ≤ 2m, while Item (i) of Lemma 5.9 ensures
cdegs(EF) = cdegs(F). Each entry of Lδ+1(γ) is at most 2(δ+ 1) = 2dD/me+ 2, by construction.
Writing γ = (γ1, . . . , γn), by Definition 5.12 we have

n = max
(⌈

γ1

δ + 1
− 1

⌉
, 0

)
+ · · · + max

(⌈
γn

δ + 1
− 1

⌉
, 0

)
≤

γ1

δ + 1
+ · · · +

γn

δ + 1
=
|γ|

δ + 1
.

Since |γ| = |cdegs(F)| + n ≤ D + m, and since δ + 1 ≥ (D + m)/m, it follows that n ≤ m. Besides,
rdeg−s(P) ≤ 0 by construction, so that cdeg(P) ≤ s by Lemma 2.1.

The only steps that involve operations in K are the call to PM-Basis at Line 10 and the
multiplication PE at Line 14. The construction of E and the inequality cdeg(P) ≤ s imply that
the product PE mainly involves concatenating vectors of coefficients; concerning operations in
K, there are m − m columns of P for which we may add the constant term of that column to
the term of degree δ of the previous column. Therefore Line 14 has cost bound O(mk); since
m ≤ 2m and k ≤ m this is in O(m2). At Line 10, we call the approximant basis subroutine PM-
Basis discussed in Section 2.5; since Γ = max(Lδ+1(γ)) is at most 2dD/me + 2 ∈ O(1 + D/m),
Lemma 2.9 states that this call uses

O
(
(m + n + n + n)(m + n)ω−1 M′(D/m)

)
operations in K. Since n + n ≤ m + n ≤ 3m, this yields the claimed cost bound.

5.5. Proof of Theorem 1.4

Algorithm 5 WeakPopovToPopov(A, s)
Input: a matrix A ∈ K[x]m×n, a shift s ∈ Zn such that A is in −s-weak Popov form.
Requirement: sπ ≥ δ, where (π, δ) is the −s-pivot profile of A.
Output: the −s-Popov form of A.

1: . Step 1: Find unimodular transformation and −δ-reduced form of A∗,π /
2: (π, δ)← the −s-pivot profile of A

3: [U R] ∈ K[x]m×2m ← KnownDegreeKernelBasis
([

A∗,π
−Im

]
, (sπ − δ, δ)

)
4: . Step 2: Deduce −s-Popov form of A /
5: P← zero matrix in K[x]m×n

6: P∗,π ← lm−δ(R)−1R
7: P∗,{1,...,n}\π ← lm−δ(R)−1U A∗,{1,...,n}\π
8: return P

For proving Theorem 1.4, we describe Algorithm WeakPopovToPopov (Algorithm 5) and we
focus on the square case, m = n. Then, by definition of the −s-weak Popov form, δ is the tuple
of degrees of the diagonal entries of A, and π = (1, . . . ,m). Furthermore, in this case, sπ = s,
A∗,π = A, and P∗,π = P; in particular, we can discard the step at Line 7 since the submatrices it
involves are empty.

First note that the shift d = (sπ − δ, δ) = (s − δ, δ) used at Line 3 is nonnegative. Besides,
Lemma 5.1 shows that −d-reduced bases of K(F) have −d-row degree 0. Thus the requirements

33

of Algorithm KnownDegreeKernelBasis are met, and Proposition 5.14 shows that the matrix
[U R] computed at Line 3 is a −d-weak Popov basis of K(F). Then, Corollary 5.2 shows that
the matrix P = P∗,π = lm−δ(R)−1R computed at Line 6 is the −s-Popov form of A. This proves
that Algorithm 5 is correct.

Concerning the cost bound, we focus on the case |s| > 0. Indeed, since s ≥ δ ≥ 0, if |s| = 0,
then s = δ = 0. In this case, no computation needs to be done: the −s-Popov form of A is Im, the
unique matrix in Popov form whose pivot degree is 0.

The cost of Line 6 is that of multiplying lm−δ(R)−1 ∈ Km×m by R ∈ K[x]m×m, which has
column degree δ as explained in Section 5.1; this computation corresponds to the second item in
Theorem 1.4. This multiplication can be done by first performing a column linearization of R
into a m × (m + |δ|) matrix R over K, computing lm−δ(R)−1R, and finally compressing the result
back into a polynomial matrix. This uses O(mω(1 + |δ|/m)) operations in K.

Concerning Line 3, we rely on Proposition 5.14. Here, the matrix we give as input to Al-
gorithm KnownDegreeKernelBasis has dimensions 2m × m, hence the dimensions in Proposi-
tion 5.14 satisfy m ≤ 4m and n ≤ 2m (the latter bound comes from the proof of that proposition).
Then, Proposition 5.14 states that Line 3 costs:
• O(m2) operations in K, which is the third item in Theorem 1.4,
• one call to PM-Basis on a matrix of row dimension m + n ≤ 6m, column dimension

m + n ≤ 3m, and at order at most 2dD/(2m)e + 2, where D = max(|d|, |cdegd(F)|, 1) and F
is the input matrix [AT − Im]T.

Besides, Proposition 5.14 also implies that Line 3 uses O(mω M′(D/m)) operations in K.
We are going to prove that D = |s|, which concludes the proof. Indeed, the previous paragraph

then directly gives the overall cost bound O(mω M′(|s|/m)) in Theorem 1.4, and using

2
⌈ D
2m

⌉
+ 2 < 2

(D
2m

+ 1
)

+ 2 = |s|/m + 4,

the previous paragraph also gives the first item in that theorem.
To observe that D = |s|, we first use the definition of d to obtain |d| = |s − δ| + |δ| = |s|.

Since |s| ≥ 1, this gives D = max(|s|, |cdegd(F)|). Now, cdegd(F) is the entry-wise maximum of
cdegs−δ(A) and cdegδ(−Im) = δ. Since A is in −s-row reduced form with rdeg−s(A) = −s + δ,
Lemma 3.2 ensures that AT is in s − δ-reduced form with cdegs−δ(A) = rdegs−δ(AT) = s. Then,
since s ≥ δ we obtain cdegd(F) = s, and thus D = |s|. This concludes the proof of Theorem 1.4.

As for the rectangular case m < n, the correctness of Algorithm 5 follows from the above
proof in the square case, which shows that the algorithm correctly computes the −sπ-Popov form
P∗,π of A∗,π, and from [37, Lem. 5.1] concerning the computation of P∗,{1,...,n}\π and the fact that
lm−δ(R)−1U is the unimodular matrix which transforms A into P. The cost bound can be derived
using the degree bounds on rectangular shifted Popov forms given in [5, 37] (we do not detail
this here since this would add technical material unrelated to the main results of this article).

Appendix A.

In this appendix, we give proofs for Remarks 5.6 and 5.10. We use notation from Section 5.2:
a shift s ∈ Zm

≥0, an integer δ ∈ Z>0, and a matrix F ∈ K[x]m×n are given; K ∈ K[x]k×m is a
basis of K(F); (α j, β j)1≤ j≤m and s ∈ Zm

≥0 and K ∈ K[x]k×m are as described in Definition 5.3.
Following the context of Remarks 5.6 and 5.10, we assume rdeg−s(K) ≥ 0, hence in particular
rdeg−s(K) = rdeg−s(K) (see Lemma 5.5). We start with the claims in Remark 5.6.

34

Lemma A.1. Writing lm−s(K) = [L∗,1 · · · L∗,m] ∈ Kk×m, we have

lm−s(K) = [0 · · · 0 L∗,1︸ ︷︷ ︸
α1

· · · 0 · · · 0 L∗,m︸ ︷︷ ︸
αm

] ∈ Kk×m.

If K is in −s-Popov form, then K is in −s-Popov form.

Proof. For given i ∈ {1, . . . , k} and j ∈ {1, . . . ,m}, we rely on the definition of a leading matrix
(see Section 2.3): the entry (i, j) of lm−s(K) is the coefficient of degree di + s j of Ki, j, where
di = rdeg−s(Ki,∗) = rdeg−s(Ki,∗) ≥ 0. First consider the case j < {α1 + · · · + απ, 1 ≤ π ≤ m}.
Then the jth entry of s is s j = δ, and by definition of the output column partial linearization Ki, j

has degree less than δ, hence its coefficient of degree di + δ ≥ δ must be zero. This proves that
all columns of lm−s(K) with index not in {α1 + · · · + απ, 1 ≤ π ≤ m} are indeed zero. It remains
to prove that in the case j = α1 + · · · + απ for some 1 ≤ π ≤ m, then the entry (i, j) of lm−s(K)
is equal to Li,π. This holds, since in this case we have s j = βπ, and by construction of K the
coefficient of degree di +βπ of Ki, j is equal to the coefficient of degree di + (απ−1)δ+βπ = di + sπ
of Ki,π, which itself is equal to Li,π by definition of a leading matrix.

Now assume K is in −s-Popov form. We have showed in Lemma 5.5 that K is in −s-weak
Popov form and that the row Ki,∗ has its −s-pivot at index α1 + · · · + απi where πi is the −s-pivot
index of Ki,∗. By construction, the column K∗,α1+···+απi

is the part of nonnegative degree of the
column x−(απi−1)δK∗,πi = x−sπi +βi K∗,πi . It follows first that the −s-pivot entry Ki,α1+···+απi

is monic
since it is a high degree part of the (monic) −s-pivot entry Ki,πi ; and second that Ki,α1+···+απi

has
degree strictly larger than all other entries in the column K∗,α1+···+απi

since Ki,πi has degree strictly
larger than all other entries in the column K∗,πi . Hence K is in −s-Popov form.

Now we prove the claims in Remark 5.10 concerning variants of Item (iv) of Lemma 5.9,
using further notation from Section 5.2: S is the basis of K(E) described in Lemma 5.8 and B =

[K
S] ∈ K[x](k+m−m)×m is the basis ofK(EF) given in Eq. (5). As above we assume rdeg−s(K) ≥ 0,

and therefore rdeg−s(B) = (rdeg−s(K), 0) as stated in Item (iv) of Lemma 5.9.

Lemma A.2. With the above notation and assumptions,

• If K is in −s-reduced form, then B is in −s-reduced form.
• If K is in −s-Popov form, then B is in −s-Popov form up to row permutation.

Proof. Suppose first that K is in −s-reduced form. We apply Lemma A.1:

lm−s(K) = [0 · · · 0 L∗,1 · · · 0 · · · 0 L∗,m]

where lm−s(K) = [L∗,1 · · · L∗,m] ∈ Kk×m. The latter matrix has full rank, since K is in
−s-reduced form. On the other hand, for matrices such as the diagonal blocks of S we have

lm(−δ,...,−δ,−β)

xδ −1

. . .
. . .

xδ −1

 =

1 0

. . .
. . .

1 0

35

for any integer β ≥ 1. As a result,

lm−s(B) =

[
lm−s(K)
lm−s(S)

]
=

| |

L∗,1 · · · L∗,m
| |

1
. . .

1
. . .

1
. . .

1

has full rank as well, which means that B is in −s-reduced form.

Now, assume further that K is in −s-Popov form. Then Lemma A.1 states that K is in −s-
Popov form, and the above description of lm−s(B) shows that K and S have disjoint −s-pivot
indices, and that all their −s-pivots are monic. Hence B is in −s-unordered weak Popov form
with monic −s-pivots. It remains to show that each of these −s-pivots has degree strictly larger
than the other entries in the same column. Each row of the submatrix S of B has −s-pivot entry
xδ and the other entries in the same column of B are either −1, which has degree 0 < δ, or are in
a column of K whose index is not in {α1 + · · · + α j, 1 ≤ j ≤ m}, which has degree less than δ by
definition of the column partial linearization. The jth row of the submatrix K of B has −s-pivot
index α1 + · · · + α j and strictly positive −s-pivot degree since rdeg−s(K) ≥ 0 and the entry of −s
at index α1 + · · ·+α j is −β j < 0. This concludes the proof since the column S∗,α1+···+α j has degree
0, and since K is in −s-Popov form.

References

[1] Abdeljaoued, J., Malaschonok, G.I., 2001. Efficient algorithms for computing the characteristic polynomial in a
domain. Journal of Pure and Applied Algebra 156, 127–145. doi:10.1016/S0022-4049(99)00158-9.

[2] Baur, W., Strassen, V., 1983. The complexity of partial derivatives. Theoretical computer science 22, 317–330.
doi:10.1016/0304-3975(83)90110-X.

[3] Beckermann, B., Labahn, G., 1994. A uniform approach for the fast computation of matrix-type Padé approximants.
SIAM J. Matrix Anal. Appl. 15, 804–823. doi:10.1137/S0895479892230031.

[4] Beckermann, B., Labahn, G., Villard, G., 1999. Shifted normal forms of polynomial matrices, in: ISSAC’99,
ACM. pp. 189–196. doi:10.1145/309831.309929.

[5] Beckermann, B., Labahn, G., Villard, G., 2006. Normal forms for general polynomial matrices. J. Symbolic
Comput. 41, 708–737. doi:10.1016/j.jsc.2006.02.001.

[6] Berkowitz, S.J., 1984. On computing the determinant in small parallel time using a small number of processors.
Information Processing Letters 18, 147–150. doi:10.1016/0020-0190(84)90018-8.

[7] Bunch, J.R., Hopcroft, J.E., 1974. Triangular factorization and inversion by fast matrix multiplication. Mathematics
of Computation 28, 231–236. doi:10.2307/2005828.

[8] Bürgisser, P., Clausen, M., Shokrollahi, A., 1997. Algebraic Complexity Theory. 1st ed., Springer-Verlag Berlin
Heidelberg. doi:10.1007/978-3-662-03338-8.

[9] Cantor, D.G., Kaltofen, E., 1991. On fast multiplication of polynomials over arbitrary algebras. Acta Inform. 28,
693–701. doi:10.1007/BF01178683.

[10] Cook, S.A., 1966. On the minimum computation time of functions. Ph.D. thesis.
[11] Csanky, L., 1975. Fast parallel matrix inversion algorithms, in: 16th Annual Symposium on Foundations of

Computer Science (sfcs 1975), pp. 11–12. doi:10.1109/SFCS.1975.14.
[12] Danilevskij, A.M., 1937. The numerical solution of the secular equation. Matem. Sbornik 44, 169–171. In Russian.

36

http://dx.doi.org/10.1016/S0022-4049(99)00158-9
http://dx.doi.org/10.1016/0304-3975(83)90110-X
http://dx.doi.org/10.1137/S0895479892230031
http://dx.doi.org/10.1145/309831.309929
http://dx.doi.org/10.1016/j.jsc.2006.02.001
http://dx.doi.org/10.1016/0020-0190(84)90018-8
http://dx.doi.org/10.2307/2005828
http://dx.doi.org/10.1007/978-3-662-03338-8
http://dx.doi.org/10.1007/BF01178683
http://dx.doi.org/10.1109/SFCS.1975.14

[13] Dumas, J.G., Pernet, C., Sultan, Z., 2017. Fast computation of the rank profile matrix and the generalized Bruhat
decomposition. J. Symbolic Comput. 83, 187–210. doi:10.1016/j.jsc.2016.11.011.

[14] Dumas, J.G., Pernet, C., Wan, Z., 2005. Efficient computation of the characteristic polynomial, in: ISSAC’05,
ACM. pp. 140–147. doi:10.1145/1073884.1073905.

[15] Dummit, D.S., Foote, R.M., 2004. Abstract Algebra. John Wiley & Sons.
[16] Faddeev, D., Sominskii, I., 1949. Collected Problems in Higher Algebra, Problem n°979.
[17] Forney, Jr., G.D., 1975. Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear

Systems. SIAM Journal on Control 13, 493–520. doi:10.1137/0313029.
[18] Frame, J., 1949. A simple recurrent formula for inverting a matrix (abstract). Bull. of Amer. Math. Soc. 55, 1045.
[19] Gathen, J.v.z., Gerhard, J., 2013. Modern Computer Algebra (third edition). Cambridge University Press. doi:10.

1017/CBO9781139856065.
[20] Giesbrecht, M., 1995. Nearly optimal algorithms for canonical matrix forms. SIAM Journal on Computing 24,

948–969. doi:10.1137/S0097539793252687.
[21] Giorgi, P., Jeannerod, C.P., Villard, G., 2003. On the complexity of polynomial matrix computations, in: ISSAC’03,

ACM. pp. 135–142. doi:10.1145/860854.860889.
[22] Giorgi, P., Neiger, V., 2018. Certification of minimal approximant bases, in: ISSAC’18, ACM. pp. 167–174.

doi:10.1145/3208976.3208991.
[23] Gupta, S., Sarkar, S., Storjohann, A., Valeriote, J., 2012. Triangular x-basis decompositions and derandomization

of linear algebra algorithms over K[x]. J. Symbolic Comput. 47, 422–453. doi:10.1016/j.jsc.2011.09.006.
[24] Harvey, D., Van Der Hoeven, J., Lecerf, G., 2017. Faster polynomial multiplication over finite fields. J. ACM 63.

doi:10.1145/3005344.
[25] Ibarra, O.H., Moran, S., Hui, R., 1982. A generalization of the fast LUP matrix decomposition algorithm and

applications. Journal of Algorithms 3, 45–56. doi:10.1016/0196-6774(82)90007-4.
[26] Jeannerod, C.P., Neiger, V., Schost, E., Villard, G., 2016. Fast computation of minimal interpolation bases in Popov

form for arbitrary shifts, in: ISSAC’16, ACM. pp. 295–302. doi:10.1145/2930889.2930928.
[27] Jeannerod, C.P., Neiger, V., Schost, E., Villard, G., 2017. Computing minimal interpolation bases. J. Symbolic

Comput. 83, 272–314. doi:10.1016/j.jsc.2016.11.015.
[28] Jeannerod, C.P., Neiger, V., Villard, G., 2020. Fast computation of approximant bases in canonical form. J.

Symbolic Comput. 98, 192–224. doi:10.1016/j.jsc.2019.07.011.
[29] Kailath, T., 1980. Linear Systems. Prentice-Hall.
[30] Kaltofen, E., Villard, G., 2005. On the complexity of computing determinants. Computational Complexity 13,

91–130. doi:10.1007/s00037-004-0185-3.
[31] Keller-Gehrig, W., 1985. Fast algorithms for the characteristic polynomial. Theoretical Computer Science 36,

309–317. doi:10.1016/0304-3975(85)90049-0.
[32] Labahn, G., Neiger, V., Zhou, W., 2017. Fast, deterministic computation of the Hermite normal form and determi-

nant of a polynomial matrix. J. Complexity 42, 44–71. doi:10.1016/j.jco.2017.03.003.
[33] Le Gall, F., 2014. Powers of tensors and fast matrix multiplication, in: ISSAC’14, ACM. pp. 296–303. doi:10.

1145/2608628.2608664.
[34] Le Verrier, U., 1840. Sur les variations séculaires des éléments elliptiques des sept plantètes principales. Journal

des Mathématiques Pures et Appliquées 5, 220–254.
[35] Manthey, W., Helmke, U., 2007. Bruhat canonical form for linear systems. Linear Algebra Appl. 425, 261–282.

doi:10.1016/j.laa.2007.01.022.
[36] Mulders, T., Storjohann, A., 2003. On lattice reduction for polynomial matrices. J. Symbolic Comput. 35, 377–401.

doi:10.1016/S0747-7171(02)00139-6.
[37] Neiger, V., Rosenkilde, J., Solomatov, G., 2018. Computing Popov and Hermite Forms of Rectangular Polynomial

Matrices, in: ISSAC’18, ACM. pp. 295–302. doi:10.1145/3208976.3208988.
[38] Neiger, V., Vu, T.X., 2017. Computing canonical bases of modules of univariate relations, in: ISSAC’17, ACM.

pp. 357–364. doi:10.1145/3087604.3087656.
[39] Pernet, C., Storjohann, A., 2007. Faster Algorithms for the Characteristic Polynomial, in: ISSAC’07, ACM. pp.

307–314. doi:10.1145/1277548.1277590.
[40] Popov, V.M., 1972. Invariant description of linear, time-invariant controllable systems. SIAM Journal on Control

10, 252–264. doi:10.1137/0310020.
[41] Samuelson, P.A., 1942. A method of determining explicitly the coefficients of the characteristic equation. Annals

of Mathematical Statistics 13, 424–429.
[42] Sarkar, S., Storjohann, A., 2011. Normalization of row reduced matrices, in: ISSAC’11, ACM. pp. 297–304.

doi:10.1145/1993886.1993931.
[43] Souriau, J.M., 1948. Une méthode pour la décomposition spectrale et l’inversion des matrices. Comptes-Rendus

de l’Académie des Sciences 227, 1010–1011.
[44] Storjohann, A., 2001. Deterministic computation of the frobenius form, in: Proceedings 42nd IEEE Symposium

37

http://dx.doi.org/10.1016/j.jsc.2016.11.011
http://dx.doi.org/10.1145/1073884.1073905
http://dx.doi.org/10.1137/0313029
http://dx.doi.org/10.1017/CBO9781139856065
http://dx.doi.org/10.1017/CBO9781139856065
http://dx.doi.org/10.1137/S0097539793252687
http://dx.doi.org/10.1145/860854.860889
http://dx.doi.org/10.1145/3208976.3208991
http://dx.doi.org/10.1016/j.jsc.2011.09.006
http://dx.doi.org/10.1145/3005344
http://dx.doi.org/10.1016/0196-6774(82)90007-4
http://dx.doi.org/10.1145/2930889.2930928
http://dx.doi.org/10.1016/j.jsc.2016.11.015
http://dx.doi.org/10.1016/j.jsc.2019.07.011
http://dx.doi.org/10.1007/s00037-004-0185-3
http://dx.doi.org/10.1016/0304-3975(85)90049-0
http://dx.doi.org/10.1016/j.jco.2017.03.003
http://dx.doi.org/10.1145/2608628.2608664
http://dx.doi.org/10.1145/2608628.2608664
http://dx.doi.org/10.1016/j.laa.2007.01.022
http://dx.doi.org/10.1016/S0747-7171(02)00139-6
http://dx.doi.org/10.1145/3208976.3208988
http://dx.doi.org/10.1145/3087604.3087656
http://dx.doi.org/10.1145/1277548.1277590
http://dx.doi.org/10.1137/0310020
http://dx.doi.org/10.1145/1993886.1993931

on Foundations of Computer Science, pp. 368–377. doi:10.1109/SFCS.2001.959911.
[45] Storjohann, A., 2003. High-order lifting and integrality certification. J. Symbolic Comput. 36, 613–648. doi:10.

1016/S0747-7171(03)00097-X.
[46] Storjohann, A., 2006. Notes on computing minimal approximant bases, in: Challenges in Symbolic Computation

Software. URL: http://drops.dagstuhl.de/opus/volltexte/2006/776.
[47] Strassen, V., 1969. Gaussian elimination is not optimal. Numer. Math. 13, 354–356. doi:10.1007/BF02165411.
[48] The FFLAS-FFPACK Group, 2019. FFLAS-FFPACK: Finite Field Linear Algebra Subroutines / Package, version

2.4.3. http://github.com/linbox-team/fflas-ffpack.
[49] The LinBox Group, 2019. Linbox: Linear algebra over black-box matrices, version 1.6.3. https://github.

com/linbox-team/linbox/.
[50] Toom, A.L., 1963. The complexity of a scheme of functional elements realizing the multiplication of integers.

Soviet Mathematics Doklady 3, 714–716.
[51] Van Barel, M., Bultheel, A., 1992. A general module theoretic framework for vector M-Padé and matrix rational

interpolation. Numer. Algorithms 3, 451–462. doi:10.1007/BF02141952.
[52] Wolovich, W.A., 1974. Linear Multivariable Systems. volume 11 of Applied Mathematical Sciences. Springer-

Verlag New-York. doi:10.1007/978-1-4612-6392-0.
[53] Zhou, W., 2012. Fast Order Basis and Kernel Basis Computation and Related Problems. Ph.D. thesis. University

of Waterloo. URL: http://hdl.handle.net/10012/7326.
[54] Zhou, W., Labahn, G., 2009. Efficient computation of order bases, in: ISSAC’09, ACM. pp. 375–382. doi:10.

1145/1576702.1576753.
[55] Zhou, W., Labahn, G., 2012. Efficient algorithms for order basis computation. J. Symbolic Comput. 47, 793–819.

doi:10.1016/j.jsc.2011.12.009.
[56] Zhou, W., Labahn, G., 2013. Computing column bases of polynomial matrices, in: ISSAC’13, ACM. pp. 379–386.

doi:10.1145/2465506.2465947.
[57] Zhou, W., Labahn, G., 2014. Unimodular completion of polynomial matrices, in: ISSAC’14, ACM. pp. 413–420.

doi:10.1145/2608628.2608640.
[58] Zhou, W., Labahn, G., Storjohann, A., 2012. Computing minimal nullspace bases, in: ISSAC’12, ACM. pp.

366–373. doi:10.1145/2442829.2442881.

38

http://dx.doi.org/10.1109/SFCS.2001.959911
http://dx.doi.org/10.1016/S0747-7171(03)00097-X
http://dx.doi.org/10.1016/S0747-7171(03)00097-X
http://drops.dagstuhl.de/opus/volltexte/2006/776
http://dx.doi.org/10.1007/BF02165411
http://github.com/linbox-team/fflas-ffpack
https://github.com/linbox-team/linbox/
https://github.com/linbox-team/linbox/
http://dx.doi.org/10.1007/BF02141952
http://dx.doi.org/10.1007/978-1-4612-6392-0
http://hdl.handle.net/10012/7326
http://dx.doi.org/10.1145/1576702.1576753
http://dx.doi.org/10.1145/1576702.1576753
http://dx.doi.org/10.1016/j.jsc.2011.12.009
http://dx.doi.org/10.1145/2465506.2465947
http://dx.doi.org/10.1145/2608628.2608640
http://dx.doi.org/10.1145/2442829.2442881

	Introduction
	Framework for complexity bounds
	Previous work
	A more general result: determinant of reduced polynomial matrices
	Approach, and existing tools
	New tools, and ensuring reduced form in recursive calls
	Perspectives

	Preliminaries on polynomial matrices
	Notation
	Bases of modules, kernel bases and approximant bases
	Leading matrices and reduced forms of polynomial matrices
	Pivots and weak Popov forms of polynomial matrices
	Basic subroutines and their complexity

	Determinant algorithm for reduced matrices
	Two properties of determinants of reduced matrices
	Algorithm and correctness
	Complexity analysis

	Shifted forms: from reduced to weak Popov
	Shifted forms: from weak Popov to Popov
	Normalization via kernel basis computation
	Reducing to the case of balanced pivot degree
	Reducing to the case of a balanced order
	Computing kernel bases with known pivot degree
	Proof of Theorem 1.4

	

