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Abstract 

Stereolithography is a process based on the photopolymerization of a UV-reactive system consisting of 

ceramic particles dispersion in a curable resin. A key issue of this process is the control of the rigidity 

of green parts, which are strongly related to UV light exposure. This work is focused on the numerical 

prediction of green part stiffness according to stereolithography manufacturing parameters. A first 

macroscopic approach, based on the modelling of ceramic suspension polymerization, makes it possible 

to establish a relationship between the exposure and the Young's modulus. A second microscopic 

approach, using a periodic homogenization technique based on the strain energy, is applied to a 2D finite 

element model to evaluate the effective elastic properties. Numerical results show that macroscopic 

model is able to provide a Young’s modulus with a good level of accuracy. The modelling results from 

the microscopic model demonstrate an acceptable convergence with the experimental Young’s modulus. 
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1. Introduction 

Stereolithography has proved to be a high-performance process for manufacturing 3D technical ceramic 

parts with complex architectures, a dimensional resolution up to 30μm, a good surface finish and 

mechanical properties and sintered densities similar to those obtained by conventional methods [1]. 

Today, this additive process is used in many fields such as biomedical, electronics, aeronautics, energy, 

luxury [2-8]. Stereolithography additive manufacturing is based on the selective polymerization of a 

curable system with a layer-by-layer construction procedure. A UV laser beam is deflected to 

polymerize the desired cross-sectional pattern in each layer, according to the CAD model and suitable 

pre-defined fabrication parameters. The curable system consists in a dispersion of ceramic particles in a 

sensitive monomer/oligomer with the addition of a photoinitiator. After building, the green part is 

cleaned (removal of the non-polymerized adherent suspension), debinded (removal of the organic phase) 

and sintered. 

The mechanical properties of the green part will directly depend on the degree of polymerization of the 

curable monomer/oligomer intergranular phase, then on the fabrication parameters (i.e. laser power, 

laser speed, hatch spacing). For example, if the ceramic system receives too little exposure, it will not 

be sufficiently rigid and may break under the stress imposed by the spreading blades to deposit the thin 

layers. At the opposite, if the system receives too much exposure, it will be too rigid, and the part may 

curve during the construction (curling effect). It is also necessary to consider the shrinkage of the 

intergranular organic phase, which is dependent on the degree of polymerization, then on the exposure. 

The polymerization must therefore be homogeneous within the green part so as to avoid the creation of 

residual stresses, then of deformation or cracking during the post-treatments. 

The objective is then to adjust the printing parameters in order to obtain a homogeneous and suitable 

degree of polymerization. With the aim of reaching a more homogeneous polymerization, then to 

decrease the risk of deformation or cracking, Chartier et al. propose, for example, low scanning speed 

associated to a limited power of the laser [6]. Wu et al. [9] have performed experiments on photocurable 

resin and have combined photopolymerization reaction kinetics with Euler–Bernoulli beam theory to 

study the UV post-curing induced shape distortion of thin structures prepared by DLP 3D printing and 

to characterize the evolution of mechanical behaviour of printed samples during the post-printing 
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process. The printing parameters such as printing time and height of a single-layer, post-curing UV 

intensity and total thickness have a significant impact on the UV-induced bending phenomenon. They 

concluded that the distortion of printed object depends on both the gradient of addition degree of 

conversion in the material during the post-curing process and the stiffness of the structure. In this respect, 

it appears essential to know the influence of the fabrication parameters on the distribution of the degree 

of polymerization inside a green part built by stereolithography, then to relate this distribution to the 

mechanical properties of the green part, in particular the rigidity because the green polymerized parts 

must be, for example, sufficient rigid to be handled [1,6]. In addition, it is essential to know the stiffness 

of printed green parts as input in a process simulation framework in order to evaluate residual stresses, 

and shrinkages or to modeling the holding during the scraping operations.  

The exposure, or the density of energy, received at a specific location of the green part, is governed by 

the absorption and scattering phenomena of the UV light. These phenomena affect the cured volume of 

the part and the dimensional resolution. In addition to this geometrical consideration of the polymerized 

area, UV interaction with the concentrated curable suspension also influences the mechanical properties 

of the green part, in particular the stiffness. Indeed, the mechanical properties of the green part produced 

by stereolithography depend on the distribution of the monomer/oligomer degree of conversion inside 

the green part and therefore on the distribution of the laser exposure within the ceramic photosensitive 

system [10].  

One pertinent approach to better understanding the physical phenomena involving during 

photopolymerization of a concentrated ceramic suspension, in order to optimize the stereolithography 

process, is numerical simulation [11]. Tarabeux et al. [12] developed a 2D numerical simulation model 

for predicting the curing of alumina systems, taking into account the scattering phenomenon in the 

stereolithography process. The simulation model makes it possible to simulate easily and with accuracy 

the cure width and the cure depth. This model also allows the visualization of the energy density 

distribution provided at each point of the part, and therefore of the corresponding degree of 

polymerization. Knowledge of this distribution is essential to analyze the impact of the construction 

layer by layer, as well as the uniformity of polymerization, and the associate shrinkage, within the part 

according to the manufacturing parameters. Westbeek et al. [13] proposed a 2D model, at the micro- 
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scale, to study photopolymerization process during additive manufacturing of green parts made of 

polymer resin and a maximal ceramic inclusion fraction of 40%. Their model integrates the coupled 

effects of light propagation through the heterogeneous matter, conversion of the photopolymer, thermal 

effects and evolution of mechanical properties upon solidification. The model highlights that ceramic 

inclusions have a marked influence for each individual physical mechanism and increase the magnitude 

of residual stresses in green parts. Finally, the coupled framework provides innovative insights and 

demonstrates that is difficult to achieve homogeneous polymerization in a ceramic-filled curable resin. 

Azarmi et al. [14] proposed a predictive model, to calculate overall elastic properties and thermal 

conductivity of alumina, that accounts for variation of the microstructure during the different 

manufacturing steps of laser stereolithography process. This analytical model accounts for realistic 

irregular shapes of the pores and is based on Maxwell homogenization theory. The values of thermal 

conductivity obtained by the predictive model show a very good agreement with the experimental data 

for sintered parts, but the values calculated for printed green parts were significantly lower than the 

experimentally measured ones. Concerning the Young’s modulus, the values calculated with the model 

are in good agreement with the experimental measurements at different stages of manufacturing. This 

predictive model is a promising tool to estimate mechanical and thermal properties of ceramic parts 

manufactured by additive manufacturing. Yang et al. [15] developed two mathematical models to 

quantify the tensile strength and hardness of parts obtained with a pure photosensitive resin (without 

ceramic) used in stereolithography process. The models enable to predict the tensile strength and 

hardness, by considering the relationships between the degree of polymerization and mechanical 

properties, of both green parts and UV post-cured parts with a good accuracy. As discussed previously, 

the exposure values will directly influence the stiffness of green parts produced by stereolithography 

since the density of energy delivered will control the degree of polymerization. This degree of 

polymerization will evolve from the liquid monomer (Young’s modulus=0) to the polymer (intrinsic 

Young’s modulus), or more precisely a mixture of monomer/polymer with a degree of polymerization 

generally lower than 70-80% [10,16]. In this context, the proposed study focuses on Young’s modulus 

prediction of alumina green parts build by stereolithography according to manufacturing parameters 

(laser power, laser velocity and hatch spacing). A first approach consists to establish a relation between 



5 
 

the exposure delivered to the curable ceramic system and the Young’s modulus of printed parts. This 

macroscopic approach is based on a numerical simulation model for predicting the curing of ceramic 

systems during the stereolithography process, developed by Tarabeux et al. [12] coupled with a 

mechanical characterization using image correlation technique. A second microscopic approach, 

considering the green part as a composite material, is developed to evaluate the elastic properties. The 

unit cell, considering different arrangements of ceramic grains in the resin, is analyzed using finite 

element method and appropriate periodic homogenization method. In this second model, perfect and 

rigid matrix-inclusion interfaces are considered. 

 

2. Method 

2.1. Process and ceramic suspension  

Stereolithography process is based on the selective polymerization of a reactive system to build a green 

part, layer upon layer. The desired pattern, in each cross-sectional layer, is polymerized using the 𝑋 𝑌⁄  

deflection of a laser beam, according to the CAD file of the part with adapted fabrication parameters 

(Fig. 1). The different stages of the stereolithography process are described in detail in the Tarabeux’s 

paper [12]. 

 

 

Fig. 1. Principle of stereolithography process 
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These fabrication parameters are critical, as they will control the density of energy delivered to the 

photopolymerizable and then the degree of polymerization. The distribution of the light exposure, or 

density of energy 𝐸 ሺ𝑚𝐽 𝑐𝑚ଶ⁄ ሻ, represented in Fig. 2, is defined as the laser source radiant energy per 

surface unit. Its expression, in the vertical plan ሺ𝑦⃗, 𝑧ሻ, is [12]:  

 

𝐸ሺ𝑦, 𝑧ሻ ൌ
௉ಽ

ௐబ௏ಽ
ටଶ

గ
𝑒𝑥𝑝 ቀെ

ଶ௬²

ௐబ²
ቁ 𝑒𝑥𝑝 ൬െ𝑧

𝐷௣ൗ ൰  (1) 

 

where 𝑊଴ሺµ𝑚ሻ is the radius of the Gaussian laser beam, 𝑃௅ ሺ𝑚𝑊ሻ is the laser power and 𝑉௅ ሺ𝑚/𝑠ሻ the 

laser velocity. The parameter 𝐷௉ ሺµ𝑚ሻ represents the penetration depth coefficient, which corresponds 

to the depth where the intensity of the laser beam in the reactive system, considered as a Gaussian, is 

reduced by 1 𝑒⁄ , compared to the intensity at the surface. 

 

 

Fig. 2. Laser exposure distribution 

 

 𝐸஼  is the critical energy, corresponding to the minimal density of energy for which polymerization 

occurs. The laser power 𝑃௅, the laser velocity 𝑉௅ and the hatch spacing ℎ that is the distance between 

two lasing lines, are three varying manufacturing parameters to be taken into account. These parameters, 

associated to the photosensitivity, or reactivity, of the ceramic curable suspension (𝐸஼  and  𝐷௉), will 

determine the exposure and consequently the degree of polymerization and then, the stiffness of the 
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green parts. The influence of laser parameters, for a given alumina suspension, on the stiffness, through 

Young’s modulus measurements has been explored.  

Experimentations are carried out on green parts produced from an alumina ceramic suspension 

commercialized by 3DCeram-Sinto. This suspension contains 58 𝑣𝑜𝑙% of alumina with a grain size 

distribution: 𝐷ଵ଴ ൌ 0.5 µ𝑚, 𝐷ହ଴ ൌ 1.6 µ𝑚, 𝐷ଽ଴ ൌ 4,3 µ𝑚 and the used SLA system is a 3DCeram-Sinto 

base machine with a 355 𝑛𝑚 UV laser source (Innolas Nanio AIR 355 3 W) [17].  

The critical exposure 𝐸஼ and the penetration depth coefficient 𝐷௉ of the alumina ceramic suspension 

used have already been determined in previous simulation work [12]. The following paragraphs aim to 

predict the Young’s modulus 𝑌ெ using the simulation model developed by Tarabeux et al [12]. 

 

2.2. Design of experiments 

A design of experiments is carried out to measure the Young’s modulus 𝑌௘௫௣ on tensile samples with 

different laser powers, laser velocities and hatches spacing. The evaluation of the influence of these 

manufacturing parameters on the Young’s modulus is conducted as precisely as possible with a Greco-

Latin square design of experiments containing three factors with four laser powers, four laser velocities 

and three hatches spacing (Table 1). Finally, this design of experiments defines nine experiments with 

laser powers  𝑃௅ଵ ൏ 𝑃௅ଶ ൏ 𝑃௅ଷ ൏ 𝑃௅ସ , laser velocities 𝑉௅ଵ ൏ 𝑉௅ଶ ൏ 𝑉௅ଷ  ൏ 𝑉௅ସ   and hatches spacing ℎଵ ൏

ℎଶ ൏ ℎଷ.  

 

Table 1 

Design of experiments 

Experiment E01 E02 E03 E04 E05 E06 E07 E08 E09 

Laser power  𝑷𝑳 ሺ𝑚𝑊ሻ 
100 ൑  𝑃௅  ൑ 225 

 𝑃௅ଶ 𝑃௅ଶ 𝑃௅ଵ 𝑃௅ଷ 𝑃௅ଷ 𝑃௅ଷ  𝑃௅ସ  𝑃௅ସ 𝑃௅ସ 

Laser velocity 𝑽𝑳 ሺ𝑚/𝑠ሻ 
2500 ൑  𝑉௅  ൑ 5500 

 𝑉௅ଵ 𝑉௅ଶ 𝑉௅ସ 𝑉௅ଵ 𝑉௅ଶ 𝑉௅ଷ  𝑉௅ଵ  𝑉௅ଶ 𝑉௅ଷ 

Hatch spacing 𝒉 ሺµ𝑚ሻ 
20 ൑  ℎ ൑ 40 

ℎଵ ℎଶ ℎଵ ℎଶ ℎଷ ℎଵ ℎଷ ℎଵ ℎଶ 
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2.3. Microscopic observations 

In order to investigate the microstructure of green parts after printing, SEM micrographs have been 

observed for the nine cases of design experiment. The green parts are metallized with platinum on a 

slice perpendicular to the building direction. Only the two SEM micrographs, at different 

magnifications, corresponding to E03 experiment are presented in Fig.3 because microstructures of the 

nine SEM micrographs are very similar. A very low number of pores is observed in Fig. 3 (a). It is 

recognized that during the stereolithography process, the resin fills all the spaces between the ceramic 

particles and that the green part consists in bi-component system (i.e. ceramic particles, polymerized 

resin) without remaining porosity. The few visible pores observed in the green parts may be due to the 

bubbles initially present in the ceramic suspension. In Fig. 3 (b), the dark areas correspond to the 

polymer resin and the wider areas, surrounded by a white line, are mainly due to defects in the 

arrangement of inclusions. The observed general shape of inclusions is close to polyhedral shape. The 

SEM micrographs of the nine cases of design experiment showed that the grain size is between 0.2 and 

5 µm. No microcracks within the polymerized resin and at the inclusions-resin interface appear. The 

Fig. 3 (a) also shows a good adhesion between layers with a thickness equal to 50 µ𝑚 as no interfaces 

between layers are visible.  
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Fig. 3. SEM micrographs of green alumina parts corresponding to E03 experiment 

(a) : low magnification and (b) : high magnification  

 

2.4. Tensile test and image correlation technique 

Digital image correlation (DIC), a non-contact optical method, is an effective tool to measure 

quantitative deformation of a planar object surface. This method provides, in a specific zone of interest, 

full-field displacements with sub-pixel accuracy and full-field strains by comparing the digital images 

of a test object surface acquired before and after deformation [18]. This technique, coupled with tensile 

tests, makes it possible to identity the law behaviour and mechanical properties of materials [19]. 
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Concerning the DIC technique, a camera placed in front of a speckled sample’s surface, takes digital 

images regularly during testing and a correlation algorithm, developed at the IRCER Institute, compares 

digital images of the reference state and of the deformed one. The speckle pattern, which deforms 

together with the specimen surface as a carrier of deformation information, is required to enable the 

algorithm to directly measure the displacement fields between images and to evaluate the deformation 𝜀 

during testing [18]. A random black speckle pattern is then printed on the white surface (13 ∗ 2 𝑚𝑚ଶ ) 

of the alumina green samples. Before testing, every sample is properly placed on the tensile testing 

fixture and is tightened with a dynamometric key. 

The tensile test was conducted using a micro-device developed by DEBEN UK Ltd with a maximum 

2 𝑘𝑁  load capability. The loading rate of the upper crosshead was set as 0.2 𝑚𝑚 𝑚𝑖𝑛⁄ . For each 

experiment of the design of experiments, four samples have been tested to insure the reproducibility.  

The tensile micro-device, the camera used (2500 pixels * 1920 pixels) and the printed samples are 

presented in Fig. 4.  

 

   

Fig. 4. Tensile micro-device and printed green parts 
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Once the data has been recorded and analyzed, the Young’s moduli have been calculated in the linear 

part of the stress-strain curves (Fig. 5). 

 

  

Fig. 5. Stress-strain curves and Young’s modulus 

 

2.5. Numerical modelling 

2.5.1. Exposure simulation 

The objective is to correlate the value of the Young’s modulus 𝑌ெ to the laser exposure 𝐸ሺ𝑦, zሻ, which 

depends on process parameters. The scattering phenomenon, due to the presence of ceramic particles in 

the photopolymerizable system, will also depend on the density of energy delivered. Scattering is 

considered by introducing a scattering factor  𝐹௦௖௔௧௧, which corresponds to an expansion of the laser 

beam radius ሺ𝑊଴௖௢௥௥ሻ [12].  

 

𝐹௦௖௔௧௧ ൌ
ௐబ೎೚ೝೝ

ௐబ
  (2) 

 

The expression for the exposure 𝐸ሺ𝑦, zሻ becomes: 

 

𝐸ሺ𝑦, 𝑧ሻ ൌ
௉ಽ

ௐబிೞ೎ೌ೟೟௏ಽ
ටଶ

గ
𝑒𝑥𝑝 ቀെ

ଶ௬²

ሺௐబிೞ೎ೌ೟೟ሻ²
ቁ 𝑒𝑥 𝑝 ൬െ𝑧

𝐷௣ൗ ൰  (3) 
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In previous work [12], a numerical model has been developed to predict the cure depth 𝐶ௗ and the cure 

width 𝐶௪ from the simulation of the laser exposure. This numerical model is based on summing up all 

the exposures received at each pixel of the reactive system for all passages of the moving laser beam. 

The overall exposure received is thereby known for every pixel and the polymerization condition 

(𝐸ሺ𝑦, zሻ ൐ 𝐸஼) is applied to determine the cured areas.  

By observing the scattering phenomenon during several previous experiments and analyzing its 

evolution, a scattering law that follows a logarithmic law and that is exposure-related (Eq. 4) has been 

proposed and validated during the simulation model development. 

 

𝐹௦௖௔௧௧ ൌ 𝑎 𝑙𝑜𝑔ሺ 𝐸ெଵ௟ሻ ൅ 𝑏      with  𝑎 ൐ 0 and 𝑏 ൏ 0                            (4)  

 

where  𝐸ெଵ௟  represents the overall maximum exposure delivered on one-layer for all the lasing lines. 

After the identification of the specific parameters of the alumina curable ceramic suspension (𝐸஼ and 

 𝐷௉) and the assessment of the scattering factor 𝐹௦௖௔௧௧  with 𝑎 and 𝑏, the simulation model has been 

validated for several laser parameters to accurately evaluate both the cure depth and the cure width [12].  

 

2.5.2. Young’s modulus prediction of green parts with macroscopic model 

The numerical model, developed to simulate the exposure distribution, is a relevant tool for predicting 

the stiffness of green parts manufactured by stereolithography. Indeed, Jacob [10] proposed a relation 

(Eq. 5) between the Young’s modulus and the maximum exposure for a pure photopolymerizable resin.  

 

𝑌ெ ൌ 𝑌ெ_௠௔௫ ൭1 െ 𝑒𝑥𝑝 ቆെ𝛽 ቀாಾ

ா಴
െ 1ቁቇ൱     with   𝛽 ൌ

௄ು.ா಴

௒ಾ_೘ೌೣ
                              (5) 

 

The maximal Young’s modulus 𝑌ெ_௠௔௫ is the maximal value deducted from experimental results. The 

parameter 𝛽  is dimensionless and depends on the critical exposure 𝐸஼, the maximal Young’s modulus 

𝑌ெ_௠௔௫ and a photomodulus coefficient 𝐾௉. This latter corresponds to the slope at the beginning of the 
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curve 𝑌ெ ൌ 𝑓ሺ𝐸ሻ  (just above zero), where 𝑌ெሺ𝐸ሻ  is zero (for  𝐸 ൏ 𝐸஼ , the non-polymerized resin 

remains liquid). 

One of issues of this work is to define a new model adapted to the ceramic systems in order to establish 

a relation between the Young’s modulus and the exposure received by the green parts. 

 

2.5.3. Elastic properties prediction of green parts with microscopic model 

Composites are generally characterized by strong heterogeneities at the microscopic scale. The classical 

computational modelling used at the macroscopic scale cannot be applied to this kind of materials 

because they are not enabled to cover the microstructural mechanisms which are essential to the 

understanding of the macroscopic behaviour. In the context of finite element simulation this requires, 

for example, extremely fine meshes to represent the corresponding geometry and kinematic. To 

overcome this problem, some analytical and numerical homogenization techniques have been 

developed. The goal of the homogenization method is to replace a real heterogeneous material by an 

equivalent fictitious homogeneous material. Concerning the case of particulate micro-composites, an 

interesting category of analytical models is the category of bounds models providing the extrema 

behaviour of the composite. The simplest ones consider parallel and serial associations of the two 

phases. Considering the elasticity, these limits are the Voigt and Reuss bounds [20], corresponding to 

rules of mixtures for stiffness and compliance components, respectively. For instance, the model 

proposed by Hashin and Shtrikman [21-23] is dedicated to isotropic and transverse-isotropic materials 

composed of a matrix and inclusions with perfect matrix-inclusion interfaces. These analytical models, 

called uniform field models, present some restrictions because they do not account for local variations 

in the strain and stress fields [24].  

To overcome these restrictions, numerical homogenization techniques which not use simplifying 

assumptions are based first and foremost on the choice of “Representative Elementary Volume (RVE)” 

or “Unit Cell” which is related to the domain size of a microstructure providing a good statistical 

representation of the material properties. The size of this RVE represents an essential element to 

determine the effective properties and depends on the nature of the constituents of the material studied. 

Some definitions have been proposed for the concept of the RVE [25-31]. All the definitions agree that 
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this RVE must contain sufficient information on the microstructure while being very small compared to 

the dimensions of the structure at a macroscopic scale. Kanit et al. [29] reported that the volume of RVE 

cannot be taken as small as desired, as there is generally some influence of the RVE volume due to the 

type of boundary conditions chosen in the property estimation of the properties. Average apparent 

properties calculated on finite size domains do not match effective properties if the size of the domain 

is too small. So, a numerical procedure was proposed to determine the critical size of RVE for random 

composites [29]. This procedure includes the following first steps which are necessary to evaluate the 

critical size RVE, i) the generation of different microstructures for 4–5 different volume sizes, ii) the 

loading of each microstructure with boundary conditions, iii) the calculation of the mean value and 

variance of apparent property for the considered volume sizes and iv) the checking that the number of 

generated microstructures is sufficient for each volume. The critical size of the RVE is dependent on the 

difference of the mechanical properties between the phases constituting the material. Pelissou et al. [32] 

proposed a new method to determine the critical size of RVE for a quasi-brittle random metal matrix 

composite, for linear and non-linear properties, by applying periodic boundary conditions. This method 

is based on the classical geostatistical framework previously used by Kanit et al. [29] and on a new 

stopping criterion based on the estimation error but integrating the uncertainty due to the limited size of 

samples. Some works have been focused on the elastic behaviour of materials reinforced with hard 

spherical particles, on polymer matrix-reinforced composites and on porous materials [33-36]. The 

authors showed, for linear elastic materials, that particle size has a slight effect on the evaluation of 

effective properties and that the most important is to respect the volume fraction of inclusions. The effect 

of the spatial distribution of inclusions in a matrix with no contact between inclusions has been analyzed 

[33, 37, 38]. The results showed that the distribution of spherical inclusions does not influence 

significantly the macroscopic behaviour. 

Numerical homogenization techniques depend, in addition to the RVE size, on the choice of boundary 

conditions to be applied. Three classical boundary conditions, namely the Kinematic uniform boundary 

conditions KUBC, the Static uniform boundary conditions SUBC and the periodic boundary conditions 

are generally used. In the case of linear elasticity, the KUBC boundary conditions overestimate the 

effective properties, while the SUBC boundary conditions underestimate them. The estimation of 
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effective properties using the periodic boundary conditions then appears more accurate than using SUBC 

and KUBC conditions [29]. Other numerical studies [39-41] also confirm that periodic boundary 

conditions provide a better estimation of effective properties even if the microstructure is not perfectly 

periodic.  

A green part manufactured by stereolithography can be considered as random distribution of ceramic 

particles in a polymeric phase. It is then possible to determine the effective elastic properties of this 

particulate composite by applying the homogenization technique coupled with a finite element model. 

In order to evaluate the effective elastic properties of alumina green parts, the minimum size of RVE, 

by applying periodic boundary conditions, is firstly determined by studying the convergence of 

components of stiffness matrix in function of the size of RVE. Then, the material symmetry of the 

homogenized equivalent medium is analyzed to determine the elastic properties.  

 

2.5.3.1. Generation of microstructures: random distribution and classical arrangements 

The shape of the particles can affect the overall elastic properties of particulate composites especially 

when large particles with a high aspect ratio are oriented. In this case, the mechanical behaviour of these 

material composites is anisotropic. The shape effect might become much more significant when 

considering non-linearities (debonding of the particles, matrix plasticity or failure) due to different stress 

concentrations around these particles. In the case of 2D modelling, Gentieu et al. showed that particulate 

composites constituted of a soft matrix (3 GPa) and stiff polygonal or circular shaped inclusions 

(450 GPa) give, for volume fractions lower than 60%, close elastic properties [24]. As the shape of the 

inclusions has a small effect on the effective elastic properties, ceramic inclusions are so considered 

spherical despite a polyhedral shape observed in Fig. 3 (b). The ceramic inclusions are so ideally 

modeled by disks (2D) in order to simplify the generation of inclusions and are completely embedded 

in the RVE or elementary cell representing the cured resin. The random distribution of ceramic 

inclusions in the unit cell was obtained thanks to an internal code, developed with Python language and 

Salome-Meca software [42], by integrating the random sequential adsorption algorithm called “RSA” 

[43-45]. The disks are randomly placed in the defining cell rejecting those that overlap with previously 

placed ones, and so on until the desired volume fraction of inclusions in the matrix is achieved. No 
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contact is allowed between the inclusions themselves and between the inclusions and the edges of the 

RVE. The RVE was generated with a volume fraction of 58% ሺ 0.5 %ሻି
ା  and for reasons of simplicity, 

3 inclusion diameter sizes are chosen, i.e. equal to 1 µ𝑚, 2 µ𝑚 and 5 µ𝑚. The real alumina grain size 

distribution is not totally respected, but we have seen that the particle size does not influence the 

effective properties evaluation [33-35]. In order to simplify the numerical model, a perfect interface 

between the polymeric matrix and ceramic inclusions is supposed, which may be a strong assumption.  

Before calculating the effective elastic properties, the first step is to determine the minimum size of the 

RVE able to represent finely and correctly the macroscopic response of the composite material. The 

edges of the RVE vary from  20 µ𝑚 to  100 µ𝑚 (Fig. 6). Once the minimum size of the RVE is defined, 

the effective Young’s modulus obtained with a random distribution and classical arrangements is 

compared with experimental results. The square and hexagonal arrangements, represented in Fig. 7, are 

respectively assimilated to cubic and face-centred cubic arrangements which exhibit a cubic symmetry 

behaviour. 

 

Fig. 6. Different RVE sizes of random distribution 

 

    

Fig. 7. Modelled RVE corresponding to hexagonal (left) and square (right) arrangements 

 

The RVE is meshed with plane linear triangular elements with an average element size varying from 

RVE_edge 40⁄  to RVE_edge 200⁄  respectively for RVE size varying from 20 µ𝑚 to 100 µ𝑚. A special 
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attention, for random microstructures, has been paid to the fact that no element of meshes was distorted 

due to the small size of inclusions. 

 

2.5.3.2. Homogenization method  

2.5.3.2.1. RVE Equilibrium state  

Considering the representative volume element of microstructures (Fig. 6 and Fig. 7), the equilibrium 

equations, in absence of body forces, is defined by: 

 

𝝈𝒊𝒋 ൌ  
𝝏𝒘

𝝏𝜺𝒊𝒋
 (6) 

 

where 𝜎௜௝, 𝜀௜௝ and 𝑤 are the local stress tensor, the local strain tensor and local strain energy density, 

respectively. 

 

2.5.3.2.2. Average theory 

Averaging relations at the microscopic scale makes it possible to establish relation between the stresses 

and the strains at this microscopic scale and their equivalents at the macroscopic scale using the 

following expressions [46]:  

 

𝜎௜௝ ൌ  
ଵ

ௌ
׬  𝜎௜௝ 𝑑S ௌ  (7) 

 

𝜀௜௝ ൌ  
ଵ

ௌ
׬  𝜀௜௝ 𝑑Sௌ  (8) 

 

𝜎௜௝, 𝜀௜௝ are the actual local stress and strain tensor components in the RVE, respectively. 

𝜎ത௜௝ et 𝜀௜̅௝  are the macro-stress and macro-strain over the surface 𝑆 of the RVE, respectively.  
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2.5.3.2.3. Periodic boundary conditions applied to the RVE 

Since the periodic boundary conditions are applied to the RVE, the displacement field for a two-

dimensional periodic structure can be decomposed as follow: 

 

𝒖𝒊ሺ𝒙𝟏, 𝒙𝟐ሻ ൌ  𝜺ത𝒊𝒋. 𝒙𝒋 ൅ 𝒖𝒊
∗ሺ𝒙𝟏, 𝒙𝟐ሻ (9) 

 

The 1௦௧ and 2௡ௗ terms on the right of the Eq. 9 represent, respectively, a linear displacement field and 

a periodic function from one RVE to another. The latter is the periodic fluctuation of the linear 

displacement field due to the heterogeneities. From this equation, the periodic fluctuation of the 

displacement field can be deduced: 

 

𝑢௜
∗ሺ𝑥ଵ, 𝑥ଶሻ ൌ 𝑢௜ሺ𝑥ଵ, 𝑥ଶሻ  െ  𝜀௜̅௝. 𝑥௝ (10) 

 

To apply this type of condition, two neighboring cells in their deformed state must always coincide 

along their common edge without overlapping. The continuity of the stress vector 𝜎. 𝑛ሬ⃗  (𝑛ሬ⃗  is the normal 

vector at the considered edge) and the compatibility of the strain fields (no separation and no overlap of 

neighboring RVE are allowed) must be therefore ensured. The corresponding periodic boundary 

conditions are presented in a square RVE in Fig. 8. 

 

 

Fig. 8. Periodic boundary conditions on RVE 
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𝜕𝛺, 𝜕𝛺ି and 𝜕𝛺ା are the domain and opposite edges of the RVE, respectively. 

The boundaries of the RVE can be divided into pairs of opposite edges 𝜕Ωି and 𝜕Ωା. According to Eq. 

10, the displacements on the boundaries of the RVE are then defined by: 

 

𝑢௜
∗ሺ𝑥ଵ, 𝑥ଶሻି ൌ 𝑢௜ሺ𝑥ଵ, 𝑥ଶሻି  െ  𝜀௜̅௝. 𝑥௝

ି (11) 

 

and 

 

𝑢௜
∗ሺ𝑥ଵ, 𝑥ଶሻା ൌ 𝑢௜ሺ𝑥ଵ, 𝑥ଶሻା  െ  𝜀௜̅௝. 𝑥௝

ା  (12) 

 

the condition 𝑢௜
∗ሺ𝑥ଵ, 𝑥ଶሻି ൌ  𝑢௜

∗ሺ𝑥ଵ, 𝑥ଶሻା must be satisfied on the domain 𝜕Ω [47], we thus obtain: 

 

𝑢௜ሺ𝑥ଵ, 𝑥ଶሻା െ 𝑢௜ሺ𝑥ଵ, 𝑥ଶሻି ൌ  𝜀௜̅௝. ൫𝑥௝
ା െ  𝑥௝

ି൯ (13) 

 

However, this last boundary condition may not be complete or not guarantee the conditions of continuity 

of traction, which can be written: 

 

𝜎௡
ା െ 𝜎௡

ି ൌ  0     and     𝜎௧
ା െ 𝜎௧

ି ൌ  0 (14) 

 

where 𝜎௡  and 𝜎௧  are the normal and tangential stresses applied on the parallel edges of the RVE, 

respectively. 

To apply these different boundary conditions, the distribution of the nodes on two opposite edges of the 

RVE must be identical. This ensures a periodic mesh and the displacements of the corresponding nodes 

of each opposite side can thus be coupled. 
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2.5.3.2.4. Estimation of the effective stiffness tensor 

The effective stiffness tensor of the homogeneous equivalent material is determined from an energy 

analysis. The fundamental hypothesis of homogenization is the equivalence of the strain energies at the 

microscopic and macroscopic scales. 

 

ଵ

ଶ
׬ 𝜎௜௝ ௌ 𝜀௜௝ 𝑑𝑆 ൌ

ଵ

ଶ
 𝜎௜௝ 𝜀௜௝ 𝑆 (15) 

 

This requirement is expressed by Hill's condition [48], which states that the average quantities of stresses 

and strains guarantee the equivalence of strain energy between the homogeneous equivalent material 

and the original heterogeneous material.  

For linear elastic anisotropic materials, the homogenized stiffness matrix 𝐶௜௝௞௟ of the considered RVE 

is defined by the linear relation of the macroscopic stress and strain tensors: 

 

𝜎ത௜௝ ൌ  𝐶௜௝௞௟ 𝜀௞̅௟ (16) 

 

In the case of plane strains, Eq. 16 can be written, in Voigt notation: 

 

൭
𝜎തଵ
𝜎തଶ
𝜎ത଺

൱ ൌ  ൭
𝐶ଵଵ 𝐶ଵଶ 𝐶ଵ଺
𝐶ଵଶ 𝐶ଶଶ 𝐶ଶ଺
𝐶ଵ଺ 𝐶ଶ଺ 𝐶଺଺

൱ ൭
𝜀ଵ̅
𝜀ଶ̅
𝜀଺̅

൱  (17) 

 

Where 𝜎ത  and 𝜀̅  are the stresses and strains tensors, respectively.  𝐶௜௝  are the components, in the 

contracted form, of stiffness tensor. 

The total strain energy stored in the homogenized RVE is defined by: 

 

𝑈 ൌ
ଵ

ଶ
 𝜎௜௝ 𝜀௜௝ 𝑆 (18) 

or 
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𝑈 ൌ
ௌ

ଶ
 𝐶௜௝௞௟ 𝜀௜௝ 𝜀௞௟ (19) 

 

In practice and for linear elastic materials, the strain energy is obtained by finite element calculations 

for different states of imposed strain, allowing to activate only certain components of the stiffness tensor. 

The stiffness matrix at the macroscopic scale can be therefore identified, with its 9 constants in the 2D 

case. For example,  

 

𝜀̅ ൌ  ൭
1 0 0
0 0 0
0 0 0

൱  (20) 

 

the elastic strain energy calculated on the RVE is equal to: 

 

𝑈 ൌ  
ଵ

ଶ
 𝑆 𝐶ଵଵ  (21) 

 

from which  𝐶ଵଵ is calculated. 

The other components of the stiffness matrix at the macroscopic scale are calculated in a similar way by 

imposing the state of corresponding strain. 

 

3. Results  

3.1. Experimental results 

The Fig. 9 represents the average values and the standard deviations of the Young’s modulus 

experimentally measured for each experiment presented in Table 1. The measured values of the Young's 

modulus are between 0,97 GPa  and 1,58 GPa , which means that the green parts printed by the 

stereolithography process are not very rigid. The prediction of the Young's modulus is therefore essential 

to ensure the mechanical strength of the part during printing and therefore the feasibility of 

manufacturing, but also the handling of green parts during the cleaning step. Then a first conclusion is 

that values of Young’s modulus vary by a factor of 1.5, which depends on the manufacturing parameters. 
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Fig. 9. Experimental Young’s modulus of printed green parts with standard deviations  

 

3.2. Macroscopic modelling 

3.2.1. Young’s modulus prediction of green parts  

One objective of this study is to offer a macroscopic model that establishes a relation between the 

exposure received during the manufacturing and the Young’s modulus of green parts. The evolution of 

experimentally measured Young’s modulus compared to overall maximum exposure computed with the 

numerical model developed by Tarabeux et al. [12] is represented in Fig. 10. A quasi-linear evolution 

on a logarithmic scale of the experimental Young's modulus as a function of overall maximum exposure 

for 10 layers  𝐸ெଵ଴௟, assimilated to the maximal exposure  𝐸ெ, can be observed. A logarithmic law is 

therefore appropriate to describe the evolution of Young's modulus of ceramic green parts as a function 

of the exposure. The curve cut the horizontal axis for 20 𝑚𝐽 𝑐𝑚ଶ⁄ , corresponding to the Young’s 

modulus equal to zero, which is very close to the critical exposure value of alumina system equal to 

17 𝑚𝐽 𝑐𝑚ଶ⁄  [12]. When the value of the exposure is lower than the critical exposure  𝐸஼ , the 

photosensitive system is not cured (liquid monomer/oligomer) and therefore does not exhibit mechanical 

resistance. The relation between the Young’s modulus 𝑌ெ and the overall maximum exposure 𝐸ெ can be 

written:  
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𝑌ெ ൌ 𝐹௦௧௜௙௙ lnሺ𝐸ெ 𝐸஼⁄ ሻ  (22) 

 

𝐹௦௧௜௙௙  represents the rigidity factor and corresponds to the slope of the 𝑌ெ ൌ 𝑓ሺ𝑙𝑛𝐸ெሻ curve. This 

rigidity factor can be considered as a “specific mechanical property” of the green part and is equal to 

0,476 GPa in our case. This relation is different than this one proposed by Jacob (Eq. 5). It can be 

explained by the presence of ceramic particles in the polymeric phase.  

 

 

 

Fig. 10. Experimental Young’s modulus of printed green parts according to overall maximum 

exposure for 10 layers  𝐸ெଵ଴௟ 

 

A very good agreement is observed between the experimental Young’s modulus and calculated values 

using the macroscopic model with a maximal relative error equal to 6%  corresponding to E07 

experiment (Fig. 11). 
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Fig. 11. Comparison between experimental and simulated Young’s moduli according to 

manufacturing parameters 

 

3.2.2. Young’s modulus prediction of resin  

Another objective of this study is to propose a microscopic model that determine the elastic properties 

of ceramic green parts manufactured by stereolithography by applying the homogenization technique. 

In this case, the knowledge of mechanical properties of the resin is necessary for the microscopic model. 

Mechanical properties of the resin will depend on the degree of conversion and vary therefore according 

to manufacturing parameters. The tensile test coupled to the DIC technique is also used for the pure 

resin, as for the green parts, to measure the Young’s modulus of the matrix and to identify the coefficient 

 𝐾௉ (Eq. 5). Three new experiments (ER01, ER02, ER03), corresponding to manufacturing parameters 

for which the resin parts are rigid, are conducted. Four samples have been tested for each experiment. 

The Fig. 12 represents the evolution of Young’s modulus, for the three news experiments, with standard 

deviations according to overall maximum exposure for ten layers  𝐸ெଵ଴௟ . The "photomodulus” 

coefficient  𝐾௉ of the resin, equal to 6. 10ହ 𝑚ିଵ, corresponds to the initial increase rate of the Young’s 

modulus. The photomodulus coefficients of resins reported by Jacob’s [10] are between 1,6 . 10ହ 𝑚ିଵ 

and 8,7. 10ହ 𝑚ିଵ. A high value of  𝐾௉ accounts for, during the polymerization, strong and numerous 

bonds making the polymer structure more rigid. The value of exposure, for a null Young’s modulus, is 
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30 𝑚𝑗 𝑐𝑚ଶ⁄ . This value agrees with the value of the critical exposure of the unloaded system reported, 

i.e 38,3 𝑚𝐽 𝑐𝑚ଶ⁄  [49].  

 

 

Fig. 12. Evolution of Young’s modulus pure resin according to overall maximum exposure for 10 

layers  𝐸ெଵ଴௟ and identification of the coefficient  𝐾௉ 

 

The determination of Young’s modulus values of the pure resin, according to manufacturing parameters 

of ceramic green parts (Table 1), was performed by using the matching curve of the Young's modulus 

function of the overall maximum exposure for 10 layers  𝐸ெଵ଴௟ plotted in Fig. 12. This method, for the 

E01, E02, E03, E06 and E08 manufacturing conditions, is presented in Fig. 13 (the plotting of the other 

experiments is not presented to have a readable figure). The overall maximum exposure for 10 layers 

 𝐸ெଵ଴௟ according to manufacturing parameters and the corresponding Young’s modulus values of the 

pure resin are listed in the Table 2. These results highlight the effect of the exposure on the Young’s 

modulus. Over the measuring range, the higher the exposure, the stiffer the ceramic green parts. 
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Fig. 13. Evolution of the Young’s modulus of pure resin according to overall maximum exposure for 

10 layers  𝐸ெଵ଴௟ 

 

Table 2  

 Young’s modulus of the pure resin according to manufacturing parameters of green ceramic parts  

Experiment E01 E02 E03 E04 E05 E06 E07 E08 E09 

Laser power  𝑷𝑳 ሺ𝑚𝑊ሻ  𝑃௅ଶ 𝑃௅ଶ 𝑃௅ଵ 𝑃௅ଷ 𝑃௅ଷ 𝑃௅ଷ  𝑃௅ସ  𝑃௅ସ 𝑃௅ସ 

Laser velocity 𝑽𝑳 ሺ𝑚/𝑠ሻ  𝑉௅ଵ 𝑉௅ଶ 𝑉௅ସ 𝑉௅ଵ 𝑉௅ଶ 𝑉௅ଷ  𝑉௅ଵ  𝑉௅ଶ 𝑉௅ଷ 

Hatch spacing 𝒉 ሺµ𝑚ሻ ℎଵ ℎଶ ℎଵ ℎଶ ℎଷ ℎଵ ℎଷ ℎଵ ℎଶ 

Overall maximum exposure  
for 10 layers  𝑬𝑴𝟏𝟎𝒍 (𝑚𝑗 𝑐𝑚ଶ⁄ ሻ 

466 222 173 435 239 362 419 599 310 

Young’s modulus of  
pure resin (GPa) 

0,43 0,32 0,28 0,42 0,325 0,395 0,415 0,47 0,37 

 

 

3.3. Microscopic modelling 

The generated RVE and the computing of effective elastic properties of the green parts printed by 

stereolithography have been performed in the plane ሺ 𝑥ଵሬሬሬሬ⃗ , 𝑥ଶሬሬሬሬ⃗  ሻ, perpendicular to printing direction (Fig. 

14). The useful mechanical properties of the resin matrix and of the alumina inclusions, are listed in 

Table 3. For the resin matrix, the Young's modulus and the Poisson’s ratio are from our experimental 
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results and from the literature [13,50] respectively. Concerning alumina inclusion, the mechanical 

properties are from 3DCeram-Sinto [17].  

 

Table 3  

Useful mechanical properties of each phase composing printed green parts 

Phase Mechanical symmetry Young's modulus E Poisson's ratio ν 

Polymer resin matrix Isotropic 0,4 GPa 0,40 

Alumina inclusion Isotropic 350 GPa 0,25 

 

 

 

Fig. 14. Printing layer direction and 2D generated RVE 

 

3.3.1. Determination of the minimum size of RVE and its mechanical symmetry 

The evolutions, according to RVE size, of the following ratios of the stiffness matrix 

components 𝐶ଶଶ 𝐶ଵଵ⁄ , 2 𝐶ଶ଺ ሺ𝐶ଵଵ െ⁄ 𝐶ଵଶሻ,  𝐶ଶ଺ 𝐶ଵଵ⁄  and  𝐶ଵ଺ 𝐶ଵଵ⁄   are analyzed in order to determine 

the minimum size of RVE and to evaluate the material symmetries of the homogenized equivalent 

medium. For an isotropic elastic material, the first two ratios must be equal to one while the last two 

must be null [36]. For the seven different RVE sizes, ten random microstructures are generated. The 
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average, for each of the ten microstructures, and corresponding standard deviations are presented in Fig. 

15 and Fig. 16. 

 

 

Fig. 15. Variation of the ratios  𝐶ଶଶ 𝐶ଵଵ⁄  (a) and 2. 𝐶ଶ଺ ሺ𝐶ଵଵ െ ⁄ 𝐶ଵଶሻ (b) with standard deviations 

according to the RVE size 

 

 

Fig. 16. Variation of the ratios  𝐶ଵ଺ 𝐶ଵଵ⁄  (a) and  𝐶ଶ଺ 𝐶ଵଵ⁄  (b) with standard deviations according to the 

RVE size 

 

The value of the  𝐶ଶଶ 𝐶ଵଵ⁄   ratio converges to 1 from a size equal to 50 µ𝑚 with a maximum variation 

of 2% . The same trend is observed for the  𝐶ଵ଺ 𝐶ଵଵ⁄  and  𝐶ଶ଺ 𝐶ଵଵ⁄  ratios which converge to zero with a 

maximum variation of 0,5% . The components 𝐶ଵ଺  and 𝐶ଶ଺ are very weak or even null in comparison 

to 𝐶ଵଵ and 𝐶ଶଶ. To evaluate the isotropy of the composite, the 2 𝐶଺଺ ሺ𝐶ଵଵ െ ⁄ 𝐶ଵଶሻ ratio, named the Zener 

anisotropy index [51], must be equal to 1. This ratio increases with the RVE size and converges to an 

average value between 0.95 and 0.99 for RVE sizes between 50 µ𝑚 and 80 µ𝑚 (Fig. 15-b). However, 
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for a size equal to 100 µ𝑚, the ratio increases quite significantly and becomes greater than 1. The 

composite can then be considered not perfectly isotropic and shows a slight cubic behaviour. This 

behaviour was also observed by Gentieux et al. [24] for composite materials made of very soft matrix 

(3 GPa) and stiff particles (450 GPa) with a volume fraction of 40% and by Catapano et al. [36] for 

particulate-polymer composites made of epoxy matrix and glass particles. The isotropic and cubic 

stiffness tensors are characterized by 2 and 3 elastic constants, respectively. A VER with an edge equal 

to 50 µm seems to be acceptable to represent the microstructure of printed green parts. An isotropic or 

a weak cubic elastic material, in the following of this study, can be considered. The stiffness matrix can 

be reduced, in case of plane strains and for an isotropic material, as: 

 

𝐶௜௝ ൌ ൭
𝐶ଵଵ 𝐶ଵଶ 0
𝐶ଵଶ 𝐶ଵଵ 0
0 0 𝐶଺଺

൱ ൌ
ா

ሺଵା జሻ ሺଵିଶఔሻ
 ቌ

1 െ  𝜈 𝜈 0
𝜈 1 െ  𝜈 0
0 0

ଵି ଶఔ

ଶ

ቍ (23) 

 

From Eq. 23, the homogenized Young’s modulus 𝐸 , Poisson’s ratio 𝜈  and shear modulus 𝐺  for an 

isotropic material, can be expressed as: 

 

𝐸 ൌ  
ሺ஼భభା ଶ ஼భమሻ ሺ஼భభି ஼భమሻ

஼భభା ஼భమ
     (24) 

 

𝜈 ൌ  ஼భమ

஼భభା ஼భమ
   (25) 

 

𝐺 ൌ  𝐶଺଺ ൌ  
ா

ଶ.ሺଵା ఔሻ
  (26) 

 

For an elastic cubic material, the shear modulus  𝐺 is equal to 𝐶଺଺ and does not depend upon the Young’s 

modulus and Poisson’s ratio. 
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The variation of  𝐸 according to the RVE size is plotted in Fig. 17-a. The average value of 𝐸 is equal to 

1,65 𝐺𝑃𝑎 from a VER size of 50 µ𝑚 with a maximum variation less than 5% for the ten generated 

microstructures (Fig.17-b).  

 

 

Fig. 17. Evolutions of 𝐸 according to the RVE size with standard deviations (a) and the random 

microstructures for a RVE size equal to 50 µ𝑚 (b) 

 

3.3.2. Elastic properties prediction from the microscopic model and comparison with analytical 

homogenization models - experimental results 

The developed microscopic model is applied to the design of experiments in order to evaluate the elastic 

properties of green parts for the various manufacturing parameters tested. Concerning the Young’s 

modulus, the numerical results, obtained for random microstructures and the square and hexagonal 

arrangements, with a ceramic inclusions volume fraction of 58%, are compared to experimental data 

and to those from analytical models. The size of square and hexagonal arrangements is identical to the 

RVE size with a random distribution i.e. 50 µ𝑚. 

The Fig. 18 represents the evolution of the Young’s modulus, for the various manufacturing parameters 

tested, obtained from the analytical homogenization (Reuss and Hashin–Shtrikman lower (HS-) 

bounds), the homogenization model (random distribution, square and hexagonal arrangements) and 

experimental data. 
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Fig. 18. Comparison between experimental, numerical and analytical Young’s modulus results 

according to manufacturing parameters 

 

The analytical models of Voigt and Hashin–Shtrikman higher (HS+) bounds are not studied in this 

section because the Young’s modulus values obtained for printed green parts are very high (about 

140 GPa for HS+ limit and about 200 GPa for Reuss limit). These analytical models are not suitable for 

composite materials with phases with a strong contrast in mechanical properties [24]. 

The same trend is observed between experimental results and those obtained from analytical and 

numerical models. The analytical Reuss model and the numerical model with hexagonal arrangement 

underestimate the value of Young’s modulus. In contrary, the analytical HS- model and the numerical 

model with square arrangement and random distribution of inclusions overestimate the value of Young’s 

modulus. The value of Young’s modulus obtained for each model is compared to experimental results 

with corresponding relative error listed in Table 4. The numerical models with square and hexagonal 

arrangements which exhibit a cubic symmetric behaviour and the Reuss bound model seem not adapted 

for the evaluation of the Young’s modulus of our polymer/ceramic green parts. The analytical HS- model 

seems to be the best to predict the Young’s modulus with a maximal relative error equal to 17,7 % (E08 

experiment). Values obtained from the numerical model with a random distribution are close to those 



32 
 

calculated with HS- bound model. This observation highlights that the ceramic green parts printed by 

stereolithography can be considered isotropic. The periodic homogenization method, with a random 

distribution of ceramic particles in the organic matrix, remains an interesting tool to predict the Young's 

modulus despite significant deviations from experimental measurements and a large relative error with 

a maximum of 22,8 % (E08 experiment). Infrared spectroscopy measurements ሺ400 െ 3400 𝑐𝑚ିଵሻ 

performed on a green alumina part, a pure polymerized resin part, a photosensitive alumina paste and a 

photosensitive resin, showed that polymerization does not bring any additional peak to the spectra that 

could account for the creation of new strong bonds between the cured resin and the surface of the 

alumina inclusions. Only the weak polymer-alumina interactions, present in the photosensitive alumina 

paste, remain visible. So perfectly bonded interfaces assumption is not really appropriate to study the 

overall elastic properties of alumina green parts printed by stereolithography process. 

 

Table 4  

Comparison between experimental, numerical and analytical Young’s modulus results and 

corresponding relative error between experimental and modelling results according to manufacturing 

parameters 

        Homogenization models  Analytical models 

Experiment Experimental 
data 

Random  
distribution 

Square 
 arrangement 

Hexagonal  
arrangement 

Reuss 
bound 

HS- 
bound 

   E  
(GPa) 

Relative  
error (%) 

E  
(GPa) 

Relative 
error (%) 

E  
(GPa) 

Relative 
error (%) 

E  
(GPa) 

Relative  
error (%) 

E  
(GPa) 

Relative 
error (%) 

E01  1,52  1,77 16,45 2,42 37,13 1,13 25,92  1,02 32,89 1,70 11,84 

E02  1,15  1,32 14,78 1,80 36,22 0,84 27,09  0,76 33,91 1,27 10,43 

E03  0,97  1,16 19,59 1,58 38,57 0,73 24,35  0,67 30,93 1,11 14,43 

E04  1,47  1,73 17,69 2,36 37,76 1,10 25,18  1,00 31,97 1,66 12,93 

E05  1,19  1,34 12,42 1,83 34,90 0,85 28,56  0,77 35,40 1,29 8,22 

E06  1,41  1,63 15,60 2,22 36,56 1,03 26,63  0,94 33,33 1,57 11,35 

E07  1,40  1,71 22,49 2,33 40,19 1,09 22,15  0,99 29,08 1,64 17,48 

E08  1,58  1,94 22,78 2,64 40,17 1,23 22,12  1,12 29,11 1,86 17,72 

E09   1,31   1,53 16,97 2,08 37,20 0,97 25,90  0,88 32,72 1,47 12,39 
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Concerning the Poisson’s ratio (Table 5), we have noticed that it is not dependent of the manufacturing 

parameters whatever the model. The homogenization model with a random distribution and the 

analytical HS- bound model predict the same value. The both models (homogenization with a hexagonal 

arrangement and Reuss bound) seem to overestimate the Poisson’s ratio while the homogenization 

model with a square arrangement underestimates it.  

 

Table 5  

Comparison between numerical and analytical Poisson’s ratio results  

       Homogenization models  Analytical models 

   Experimental 
data 

  Random  
distribution

Square  
arrangement

Hexagonal 
arrangement

 Reuss  
bound 

HS-  
bound 

Poisson's ratio  -   0,35 0,26 0,4  0,4 0,35 

      

From the previous analysis of effective Young’s modulus and Poisson’s ratio, the ceramics green parts 

behave like isotropic materials. To confirm this hypothesis, the shear modulus obtained with the 

numerical model with a random distribution and the HS- analytical model is compared and listed in 

Table 6. The values obtained from numerical model, considering an isotropic or cubic elastic symmetry, 

and analytical model are close and confirm that the ceramic green parts exhibit an isotropic elastic 

behaviour in the printing plane. 
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Table 6 

Comparison between numerical (random distribution) and analytical (HS-) shear modulus results 

according to manufacturing parameters 

Experiment   E01 E02 E03 E04 E05 E06 E07 E08 E09 

G (GPa)  
Analytical model 
HS- bound 
 

 0,628 0,468 0,410 0,613 0,475 0,577 0,606 0,686 0,541

G (GPa) 
Numerical model 
Random 
distribution 

Isotropic symmetry 
G = E/(2(1+ν)) 
 

0,658 0,491 0,430 0,644 0,499 0,605 0,636 0,720 0,568

Elastic cubic symmetry
G = C66 

 
0,652 0,487 0,426 0,638 0,494 0,599 0,630 0,713 0,562

 

4. Conclusion and perspectives 

Predicting the rigidity of green parts, according to manufacturing parameters, is one of key points to 

optimize the stereolithography process to produce ceramic parts. The objective of this study was to 

examine the possibility to predict elastic properties and in particular the Young’s modulus of green parts 

manufactured by stereolithography, by developing two numerical models at macroscopic and 

microscopic scales.  

The first developed model consists to establish a relation between the exposure received during the UV 

insolation and the Young's modulus of the manufactured green parts. The coupling of exposure 

numerical simulations, which compute the global maximum exposure with the experimental 

determination of the Young’s modulus, has enabled the determination of the variation of the rigidity by 

identification of a stiffness factor, specific to the ceramic curable system. This model is able to provide 

Young’s modulus with a good level of accuracy and may be extended to 3D to reach a better prediction. 

A second approach, at a microscopic scale, was to consider the ceramic green part like a 

polymer/ceramic composite and to evaluate the elastic properties by applying the periodic 

homogenization technique to a 2D finite element model. After determining the minimum size of the 

RVE, three arrangements (random distribution, square and hexagonal) have been analyzed in the 

printing plane. The numerical model with a random distribution of inclusions leads to a good prediction 

of the Young’s modulus despite an overestimation (relative error ൏ 23%). An analyze of effective 
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elastic properties highlights that a green part containing 58 vol. % alumina particles, with a random 

distribution, behaves as an equivalent homogeneous material that shows an isotropic response. So, the 

two independent elastic properties (Young's modulus and Poisson's ratio) are sufficient to characterize 

the ceramic green parts, in the case of linear elastic behaviour.  

Although the HS- analytical model gives better elastic properties than the numerical model with a 

random distribution, the latter has several advantages for predicting the overall elastic properties of 

green ceramic parts printed by stereolithography process and remains a promising numerical tool. This 

2D model can be improved to take account an imperfect interface between each inclusion and the matrix 

as a thin interphase consisting of a single homogeneous layer, with properties that are different from the 

properties of ceramic inclusions and polymer matrix. In this case, the green part will be considered like 

a three-phase composite. A numerical optimization stage will be necessary to determine the thickness 

and the rigidity of the thin interphase in order to correlate the experimental and numerical results. The 

2D digital model can be extended to 3D which will permit, first of all, to represent the real shape of the 

inclusions and not to consider the hypothesis of a plane deformation. Moreover, since the lower layers 

receive more energy than the upper layers during construction, the conversion rate is not uniform across 

the thickness of the parts. This leads to a stiffness gradient depending on the thickness of the part. In 

this latter context and at a mesoscopic scale, the 3D RVE can be built with several layers as a laminated 

composite, each with its own mechanical properties in order to predict the overall elastic properties and 

analyze the anisotropy of the printed parts. 
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