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Abstract—In this paper, matching networks of finite degree
are computed. Additionally the presented results are compared
with the lower fundamental bounds available in the literature.
These bounds are used to certify the optimality of the provided
matching networks in function of the attained matching toler-
ance. To illustrate the presented results, two different examples
of matching problems are presented.

Index Terms—antennas, filter synthesis, matching, bounds.

I. INTRODUCTION

Bounds for the problem of matching have been already
computed by numerous authors in the literature. These bounds
were first introduced in [1] where the problem of matching
an RC-load is considered as the design of a lowpass filtering
network where an RC-element is fixed. In [2] the problem was
extended to the case of a generic load by using the Darlington
equivalent and reformulated in [3] as a complex interpola-
tion problem. Additionally in [4] the matching problem was
solved optimally by considering the broader class of infinite
dimension functions H∞ and therefore providing hard bounds
for the matching problem in finite dimension. Nevertheless
the computation of matching networks of finite degree which
approach as closely as possible the lower bounds is still a
current issue.

In [5] a method based on convex optimisation was pre-
sented. This technique provides us, with hard lower bound
for the problem of matching when a matching load of finite
degree is considered. These bounds can be considered as an
extension of the results computed in [4] to the case of a
matching network of finite degree.

In this work we provide a study comparing the hard lower
bounds to the best matching tolerance attainable for a given
load together with the result provided by a rational matching
network of a given degree. In this context, two examples of
matching network synthesis are presented. In the first one we
consider the problem of antenna matching while in the second
one we deal with a double matching problem by designing
the input and output matching network for a LNA (low noise
amplifier).

II. THEORY

In this paper we use a novel algorithm for the computation
of matching networks which is based on the pointwise match-

ing algorithm introduced in [6]. This algorithm is implemented
as part of the matlab toolbox PUMA-HF (see [7]). The
matching problem considered in this work aims to minimise
the reflection of the power transmitted to a given load within a
specified frequency band. The load is represented as a 2-port
device L in Fig. 1. Usually the power is transmitted to the
load through a filter F that rejects out of band signals. Both
devices, the filter together with the load compose the global
system S.

A. The matching problem

In this section we state the matching problem as the
minimisation over the passband I of the magnitude of the
global reflection |S11| which is expressed as the pseudohy-
perbolic distance between F22 and L11. We have therefore the
following problem

Problem 1 (Matching problem).

Find: ψopt = min
F22

max
s∈I

∣∣∣∣ F22 − L11

1− F22L11

∣∣∣∣ (1)

Additionally we suppose that the zeros of the functions F21

and F12 are fixed as it is customary in classical filter synthesis.
Note that in [5] hard lower bounds ψmin have been provided

for the solution to Problem 1 such that

ψmin ≤ ψopt (2)

This bound ψmin are the result of a fundamental limitation
imposed by load on the global systems that can be realised.
Note for instance that in the case of a frequency invariant load
we have ψmin = 0, namely any matching level is possible.
These lower bounds can now be used to certify the optimality
of the computed matching networks.

Load
(L)

Filter
(F)

F22 L11F11 L22

S11 S22

Fig. 1. Global system composed of the cascade of the matching filter with
the load and reflection coefficients.



III. EXAMPLES

A. Small superdirective antenna

As a first and simple example, we consider the problem of
matching the small super-directive antenna presented in [8] in
the interval I defined as

I = [870, 900] MHz. (3)

The reflection L11 of this antenna is shown in fig. 2. Note
the mismatch of the reflection L11 around 870 MHz
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Fig. 2. Superdirective small antenna

In fig. 3 we show the lower bound ψmin as well as the
obtained matching level ψopt as a function of the degree K
of the matching filter from K = 1 to K = 12. These values
are also listed in table I. Note the significant improvement
of the reflection level around 870 MHz for any value of K
obtaining a matching level between −6.5 and −9 dB. It is
also interesting to remark the proximity of the obtained level
ψopt to the lower limit ψmin. Indeed in fig. 4 we plot the
extremely small optimality gap, which quickly converges
towards zero. This fact together with the local optimality of
the filter that provides the matching level ψopt certify the
obtained result.

B. Double matching of a low noise amplifier

In this section, we design the input and output matching
network for a low-noise amplifier based around the transistor
infineon BFP520. We can see in Fig. 6 the ADS schematic of
the transistor with the biasing network which has been used
to simulate scattering parameters and noise parameters of the
transistor.

The schematic of the desired system is shown in Fig. 7. The
frequency band considered in this example is mainly limited
by the design of the biasing network. In this case we target
the band between 2 GHz and 4 GHz:

I = [2GHz, 4GHz]

Degree (K) ψopt dB ψmin dB

1 -6.5028 -7.0389

2 -7.4389 -7.7777

3 -7.9916 -8.1925

4 -8.3218 -8.4512

5 -8.5351 -8.6237

6 -8.6815 -8.7444

7 -8.7859 -8.8320

8 -8.8629 -8.8977

9 -8.9212 -8.9480

10 -8.9663 -8.98745

11 -9.0020 -9.0188

12 -9.0306 -9.0442
TABLE I

OBTAINED MATCHING LEVEL VS LOWER BOUND.
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Fig. 3. Bounds for the reflection level
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Fig. 4. Optimality gap.
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Fig. 5. Global response S11 and transducer gain obtained with the load in
Fig. 2

Fig. 6. Infineon transistor BFP520 with the biasing network.

1) Input matching: First we design the input matching
network of degre 1, such that the transistor input sees the
reflection coefficient Sopt which provides the optimal noise
figure for the LNA. We do this by synthesising a matching
network to match the reflection Sopt. The matching network
will show at the output the best approximation of the function
Sopt (Fig. 8). Thus we obtain a matching network matched at
the input to 50Ω and synthesizing Sopt at the output.

Fig. 7. Schematic of the global system with input and output matching
networks.

Fig. 8. Input matching network.
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Fig. 9. Output reflection of the intput matching network.

2) Output matching: Once we have the input matching
network, we compute the S22 parameter of the combination
of the input matching with the transistor and compute the
matching filter for the total network shown in Fig. 10. Note

Fig. 10. Output matching problem.

that this design approach will not work every time. It is
possible that stability issues are encountered at this stage, but
working with an unconditionally stable transistor+biasing will
resolve this issue.

Now we compute the matching network for the transistor
output by means of Problem 1. We compare in this case the
result obtained with a network of degree K from 1 to 6.
Figure 11 shows the level ψopt obtained with the computed
matching network as well as the lower hard limit ψmin, both
listed in table II. We obtain a matching level below −20dB
in any case. Similarly to the input matching network, we pick
a degree K = 1 for the output matching network, obtaining
the response shown in Fig. 12.

Degree (K) ψopt dB ψmin dB

1 -33.4608 -26.0317

2 -42.1157 -36.6857

3 -48.8488 -45.3051

4 -53.6380 -51.4173

5 -57.0200 -55.4438

6 -59.5237 -58.2677
TABLE II

OBTAINED MATCHING LEVEL VS LOWER BOUND FOR THE LNA’S OUTPUT
MATCHING.
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Fig. 11. Lower bounds and obtained reflection level for the output matching
problem.
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Fig. 12. Input reflection of the output matching network.

3) Global system: We can now use the synthesized input
and output matching networks, both of them chosen to be of
degree 1 to reconstruct the global system of the LNA shown in
Fig. 7. We obtain the schematic in Fig. 14 where the input and
output matching network have been included. Furthermore we
provide in Fig. 13 the global response of the network shown
in Fig. 14. It can be noted the obtained matching level on
the parameter S22 which is below -20dB within the the whole
band I = [2GHz, 4GHz].

IV. CONCLUSION

In this work a practical algorithm for the computation of
matching networks of finite degree is introduced and several
examples are presented. The computed matching networks are
certified by comparing the provided matching level with the
fundamental lower bounds available in the literature.
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Fig. 13. Global response of the network shown in Fig. 14.
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Fig. 14. Global schematic of the LNA with input and output matching networks.


