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Lightning-Induced Magnetic Fields Inside Grid-Like
Shields: An Improved Formula Complemented by a

Polynomial Chaos Expansion
Susana Naranjo-Villamil, Christophe Guiffaut, Member, IEEE, Julien Gazave, and Alain Reineix, Member, IEEE

Abstract—In industrial facilities, evaluating the magnetic fields
induced inside reinforced concrete buildings struck by lightning
is fundamental to define protection measures. Since carrying out
full-wave simulations is not always feasible nor practical daily,
we propose a variant of the formula given in the standard IEC
62305-4 to calculate the peak-values of the magnetic field strength
inside grid-like shields formed by the reinforcing steel bars of the
buildings. The formula is complemented by a sparse polynomial
chaos expansion (PCE) to take into account various geometrical
configurations of the grid-like shields. The PCE can be used
independently to extrapolate the peak-values from the results of
either the formula or another computational method. The error
of the formula and the PCE are estimated based on the simulation
of the reinforcement of ten full-scale buildings for the first, and
using alternative PCEs and Monte Carlo sampling for the second.

Index Terms—Lightning, magnetic field, reinforced concrete
building, sparse polynomial chaos expansion (PCE).

I. INTRODUCTION

L IGHTNING is a natural source of electromagnetic inter-
ference. The high values of the impulse lightning cur-

rents and their rapid variation, induce significant interference
signals on nearby circuits and structures. Additionally, during
a direct strike to a structure, the lightning electromagnetic
pulse (LEMP) may cause physical damage and lead to an
upset of electric installations and sensitive electronic devices.
In industrial facilities, even a momentary malfunction can have
severe consequences.

To reduce the impact of the LEMP within a structure, the
international standard IEC 62305-4 [1] recommends using the
concept of lightning protection zones (LPZs), the boundaries
of which are defined by the protection measures employed.
Basic protection measures include spatial shielding to reduce
the electromagnetic fields, and equipotential bonding by means
of surge protective devices (SPDs).

The spatial shields are often part of the natural components
of the structure. For instance, the reinforcement of a building
can be used as a part of the external Lightning Protection
System (LPS) [2], which creates an LPZ 1.

For radio-frequency applications, such as the design of
wireless communication systems, the electromagnetic proper-
ties of commonly used building materials have been studied
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extensively (e.g. [3]–[7]). Special attention has been given to
reinforced concrete, a composite material that is widely used
in modern constructions. It has been demonstrated that the
grid-like shield formed by the reinforcing steel bars (rebars)
embedded in concrete increases the through-wall attenuation
of signals in the building [8]–[11] and enhances its shield-
ing effectiveness against both High-Altitude Electromagnetic
Pulse (HEMP) [12] and lightning electromagnetic fields [13]–
[19].

The shielding characteristics of reinforced concrete, how-
ever, are different for direct and indirect lightning strikes [17]–
[20]. Even though the electromagnetic fields generated by a
direct strike are stronger inside the building, the shielding
provided during an indirect strike is better. The one thing they
have in common is that the shielding against the magnetic
field is significantly lower compared to the shielding against
the electric field. To select the most appropriate protection
measures to implement the LPZs in industrial facilities, it
is therefore essential to evaluate the magnetic fields inside
reinforced concrete buildings due to a direct lightning strike.

Nowadays, a very good estimation of the magnetic fields
generated by a direct lightning strike can be obtained using
full-wave methods. A full-wave numerical approach allows
one to consider the majority of the characteristics and compo-
nents of the electromagnetic environment; hence, the accuracy
of the results depends on the representativeness of the calcula-
tion model. Yet, when the problem is geometrically complex,
which is usually the case of full-scale reinforced concrete
buildings, the simulations may require a large amount of com-
putational resources. Alternatively, the standard IEC 62305-4
[1] suggests a simple formula to calculate the maximum value
of the magnetic field strength in single-layer grid-like shields.

In this paper, we start by analyzing the limitations of the
formula given in the standard IEC 62305-4 [1] and based on
the computation of the magnetic fields inside ten different
grid-like shields, we introduce a more precise, yet more
complex, variant. The estimated errors of the formulae are
compared to the prediction error of three Machine Learning
(ML) models trained on the same dataset. Then, the influence
of the geometrical configuration of the grid-like shields is
discussed and a sparse Polynomial Chaos Expansion (PCE)
is built from a Box-Behnken design [21]. The PCE predicts,
independently of the formulae and the ML models, the effect
of possible variations on the geometrical configuration of the
shield. From the predicted effect, a correction factor can be
calculated and applied to any existing results to adjust the
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Fig. 1. Double-layer grid-like shield embedded in concrete.

maximum value of the magnetic field strength. Finally, we
conduct a global sensitivity analysis on the configuration of
the shield and quantify the uncertainties associated with the
methodology.

All the simulations are carried out using TEMSI-FD
(Transient Electromagnetic Simulator - Finite Difference), a
full-wave solver based on the finite-difference time-domain
(FDTD) method [22]. TEMSI-FD has been developed and
constantly updated since 2002 at the XLIM Institute. It in-
cludes various techniques to represent thin-wires with oblique
trajectories [23], insulated wires [24], and coaxial cables [25],
[26], and can be used in parallel computations to reduce the
calculation time.

II. MAGNETIC FIELDS INSIDE REINFORCED CONCRETE
BUILDINGS

When a reinforced concrete building is struck by lightning,
the rebars forming the grid-like shield work as natural down-
conductors to the ground. The impulse current flows along
the lightning channel and through the reinforcement, creating
a transient electromagnetic field inside the building. Since the
concrete itself does not contribute significantly to the magnetic
shielding [19], [20], the protection provided by reinforced
concrete depends mostly on the characteristics and geometrical
configuration of the reinforcement.

A. Grid-Like Shields

The geometrical configuration of the reinforcement is de-
termined by the structural strength requirements. As Fig. 1
illustrates, it usually consists of at least two interconnected
layers of reinforcing grids, where cylindrical rebars are ar-
ranged periodically to form square or rectangular meshes. To
ensure that the rebars deliver the expected tensile strength,
they are typically welded or wire-tied.

It has been observed that the magnetic field inside the
building is attenuated when the mesh size is reduced or the
radius of the rebars is increased [18]–[20]. Therefore, the
magnetic shielding improves as the percentage of steel in the
structure grows. The shielding also improves when additional
layers are added to the reinforcement [13]–[20], especially for
fast-rising currents [14], and when the distance between the
layers is enlarged [19], [20].

Fig. 2. Comparison between the peak-values of the magnetic field strength
computed with TEMSI-FD and the results presented in the standard IEC
62305-4 [1].

B. Calculations According to IEC 62305-4

The international standard IEC 62305-4 [1] suggests the
following formula to calculate the maximum magnetic field
strength, at an arbitrary point inside the safety volume of a
grid-like shield:

|H|max = k × I0 ×
wm

dw ×
√
dr
, (1)

where k is the configuration factor (typically k = 0.01), I0 is
the maximum value of the lightning current, wm is the mesh
width, dw is the shortest distance to the wall, and dr is the
shortest distance to the roof. The safety volume in which the
values are valid is defined by a safety distance ds = wm from
the shield.

The first-order approximation of the magnetic field distribu-
tion in (1) was obtained from numerical simulations in which
frequency-dependent effects and transient phenomena were
neglected. Note that the formula is limited to single-layered
shields.

Fig. 2 shows that under the same considerations and setting
the radii of the rebars to 6 mm, the simulations carried out
using TEMSI-FD lead to similar values at points A (dw =
dr = 5 m) and B (dw = dr = 3 m), inside the 10 m × 10
m × 10 m shield defined in the standard. In fact, a very good
agreement with (1) is obtained inside the safety volume of the
shield, in all the points along a straight line starting from the
striking point in the corner and ending at the center of the
volume. Important discrepancies, however, are found close to
the walls, the roof, and the ground.

According to the formula in (1), only the magnitude of
the magnetic field strength is modified when we move along
the vertical axis, and the distribution of the peak-values is
defined by the distance to the walls (see Fig. 3). The latter
contradicts the well-known current displacement phenomenon
in grid-like shields, which causes slow-rising magnetic fields.
The lightning current is not uniformly distributed in the shield;
it is diverted to the edges [14], [16]. Besides, as shown in Fig.
4 and has also been observed in [19], the distribution of the
peak-values changes with the relative position to the roof and
the foundation.



TEMC-467-2020.R2 3

(a)

(b) (c)

Fig. 3. Peak-values of the magnetic field strength calculated with the IEC
formula inside a 10 m × 10 m × 10 m single-layer grid-like shield,
considering I0 = 200 kA. (a) At 1 m from the roof. (b) At 3 m from the
roof. (c) At 5 m from the roof.

(a)

(b) (c)

Fig. 4. Peak-values of the magnetic field strength computed with TEMSI-FD
inside a 10 m × 10 m × 10 m single-layer grid-like shield, considering I0 =
200 kA. (a) At 1 m from the roof. (b) At 3 m from the roof. (c) At 5 m from
the roof.

C. Case Studies

Aiming to find a more precise variant of (1), further
simulations are carried out for ten different reinforced concrete
buildings. The buildings and their dimensions are listed in
Table I. Their external walls, roofs, and foundations are made
up of a single-layered reinforcing grid. The earth-termination
systems are limited to the meshed network of their rein-
forcement. No additional earthing electrodes, internal walls,
columns, or beams are considered. The reinforcing grids have
a squared mesh size of 10 cm × 10 cm and are embedded in 10
cm of concrete, which is modeled as a lossy dielectric material
with a conductivity of 0.0052 S/m and a relative permittivity

TABLE I
REINFORCED CONCRETE BUILDINGS CONSIDERED

Building Length [m] Width [m] Height [m]

B1 10.100 10.100 10.100
B2 10.100 10.100 20.100
B3 20.100 20.100 10.100
B4 20.100 10.100 10.100
B5 5.100 5.100 5.100
B6 20.100 20.100 20.100
B7 5.100 5.100 10.100
B8 10.100 10.100 50.100
B9 50.100 50.100 10.100
B10 50.100 20.100 10.100

Note: The dimensions of the buildings include 10 cm of plain concrete.

Fig. 5. Position of the eleven computation surfaces inside B1.

of 8.6. The concrete is added to avoid direct contact of the
foundations with the soil. The rebars forming the grids have
a radius of 1 mm and their conductivity is set to 8.33×106

S/m. They are modeled as thin wires [23]. We could consider
a reinforcing grid with more realistic characteristics; yet, we
set the variables of interest to the potential minimum values
they could take. The radius of the rebars is not included
in (1); therefore, if its effect were to be disregarded, we
assure by choosing the thinnest rebars that the results will
be on the safe side. Also, if the linearity assumed in the
IEC standard is correct, the effect of the mesh size could be
evaluated independently. Hence, we choose the smallest mesh
size, which defines the greatest safety volume.

Additionally, a single-layered grid with particular characte-
ristics can be used in full-wave simulations as a reduced repre-
sentation of a multi-layer grid-like shield, without significantly
modifying the electromagnetic fields inside the building [27].
Thus, we could infer that the distribution of the magnetic
field inside a reinforced concrete building is not strongly
affected by the configuration of the grid-like shield, i.e., only
the magnitude of the field is affected by the number of
layers, the mesh size, or the radius of the rebars. Hence, the
maximum magnetic field strength inside any grid-like shield
could be calculated from the results inside a different grid-
like shield, like the one described, by applying a correction
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factor. This single-layered shield with 10-centimeters meshes
and 1-millimeter radii is hereafter referred to as the reference
shield.

The soil is considered homogeneous with a relative per-
mittivity of 10 and a resistivity of 100 Ωm, since the soil
texture in France is mostly loam [28] and the peak-values of
the magnetic field tend to increase when the soil resistivity
decreases [29].

The lightning channel is represented as a monopole antenna
by a 400-meters vertical lossy wire, also modeled as a thin
wire [23]. It is excited at its base by a lumped current source
and connected at the top end to a perfectly matched layer
(PML) [30], [31]. The wire is loaded by distributed series
resistance and inductance of 1 Ω/m and 4 µH/m to adjust the
propagation speed of the current along the channel to values
compatible with optical observations. Its radius is set to 1 cm.
An interesting discussion on the practical implementation of
electromagnetic models of lightning return-strokes is presented
in [32].

Aiming to conduct the first part of the study in the frequency
domain, instead of adopting the lightning current waveform
defined in the IEC standard [1], the current waveform is

defined as a Gaussian function g(t) = A0e

(
− (t−t0)2

T2

)
, where

A0 is the maximum amplitude of the pulse, e is the exponential
function, t0 is the position of the center of the pulse, and T
is width of the pulse at half maximum. To cover a frequency
range from 0 Hz to 10 MHz, t0 and T are set to 0.179 µs
and 48.3 ns, respectively. The maximum amplitude A0 is set
to 100 A. In addition, since the head of the pulse is non-zero,
an attenuation of 106 is set in t = 0 s to avoid any noise in
the response. The channel is attached to the corner of the roof
because direct strikes to the corner are known to produce the
highest magnetic fields [14].

The magnetic fields are computed in the time domain at
11 horizontal surfaces inside the buildings. The first and the
last surfaces are located 10 cm away from the roof and the
foundation. The remaining nine are distributed uniformly in
height, as shown in Fig. 5. To analyze the results in the
frequency domain, we apply a Fourier transform to all the
values and then divide them by the Fourier transform of the
Gaussian pulse. The normalized results are then independent
of the current waveform; they become transfer functions.

The volume of the analysis space varies according to the
dimensions of the buildings. All the external surfaces of the
analysis space are defined as PMLs to assume an open space,
and they are at least 10 m away from the buildings. To reduce
the calculation time, a non-uniform grid is implemented with
cells varying from 10 cm to 1 m, and the simulations are
executed in parallel in 10 CPUs. The time discretization, which
is limited by the stability criterion of the FDTD method, is
6.317 ps. Since the Gaussian pulse is short and the absorbing
layers contribute to a fast convergence, the observation time
is set to 2 µs.

III. DISTRIBUTION OF THE PEAK-VALUES

Consider a Cartesian coordinate system expressed in meters,
with the origin at the striking point and the z-axis oriented

Fig. 6. Magnetic field strength normalized to the source, computed with
TEMSI-FD inside B1.

(a) (b)

Fig. 7. Maximum magnetic field strength computed with TEMSI-FD inside
B1, considering I0 = 200 kA. (a) Along the x-axis with y = 0.1 m. (b) Along
the line x = y.

towards the foundation. Fig. 6 shows the magnetic field
strength |H| =

√
H2
x +H2

y +H2
z , at points (1,1,1), (3,3,3),

and (5,5,5) inside B1. We see that the magnetic field strength
decreases with the frequency, yet it is almost constant up to
200 kHz. A similar tendency was observed at other points
and inside different buildings. Consequently, the peak-values
of the magnetic field strength can indeed be assumed to be
proportional to the maximum value of the lightning current
(I0), at least for slow-rising currents. The results at 25 kHz
characterizing the first positive return stroke, which has the
highest peak current, are then chosen to continue with the
study. Moreover, I0 is set to 200 kA, in accordance with the
protection level I defined in [1].

A. Modified Formula

Theoretically, if the field resulting from the penetration
through the shield is neglected, the magnetic field strength can
be calculated as the superposition of all the contributions given
by the flow of a partial lightning current through each rebar
(see e.g. [33]). However, to do so, it would be necessary to esti-
mate the currents and then evaluate integrals to determine each
contribution. Since we are looking for a simple engineering
formula and we know that the rebars located in the vertical
edges carry the highest currents, we proceed as follows: we
start by supposing that a good approximation of the magnetic
field strength can be obtained by superposing the contribution
of the rebars in the vertical edges and then adding a term
(Tw) to account for the contribution of the walls, roof, and
foundation. To simplify, the superposition of the contributions
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Fig. 8. Values taken by the variables in (5) to calculate the maximum magnetic
field strength at point (6,9,3) inside B1.

is transformed into a single term (Te), which only considers the
closest vertical edge. This simplification causes a discontinuity
of the field at the points that are equidistant from two or more
vertical edges and fails to reproduce the smallest values, where
the field strength is canceled. Yet, it facilitates the development
and application of the formula.

Hence, the modified formula to calculate the maximum
magnetic field strength inside the safety volume is conceived
as

|H|max = I0 ×
(
Te
k

+ Tw

)
, (2)

where I0 is once again the maximum value of the lightning
current and k a configuration factor, but with its value depend-
ing on the closest edge. A safety distance equals to the mesh
size, here 10 cm, still must be considered for the field to be
homogenized. At a shorter distance, it fluctuates according to
the distance between the rebars.

Initially, to find the composition of the terms Te and Tw,
the values along two lines in each horizontal surface are
considered. The first along the x-axis, 10 cm away from the
wall, and the second starting from the edge and ending in the
center.

As expected from the distribution of the peak-values in Fig.
4, the results show that the magnetic field strength decreases
with the distance from the edge and the distance from the wall
(see e.g. Fig. 7). Therefore, the first factors composing the
terms Te and Tw are defined as 1

f(de)
and 1

f(dw) , respectively,
where f(de) is a function of the distance to the closest vertical
edge de and f(dw) is a function of the shortest distance to the
wall dw. Since the term Tw is supposed to be constant along
the x-axis, by fitting the curves along the x-axis up to the
center, we find that f(de) can be approximated as a1 × db1e ,
where ai and bi are coefficients. However, whereas b1 remains
around the same values, a1 varies with the distance to the roof
dr. Probably because of the redistribution of the currents in
the shield. Thus a1 becomes a function of the distance to the
roof, which can be approximated as a2 × db2r . We define 1

a2
as coefficient c1, b2 as coefficient c2, and b1 as coefficient c3,
and the composition of the first term of the formula is set.

Something similar occurs when trying to find the expression
of f(dw). We fit the curves resulting from the difference
between the two lines in each surface, and we also find that
that f(dw) can be approximated as a3×db3w with a3 = a4×db4r .
We define 1

a4
as coefficient c4, b4 as coefficient c5, and b3 as

coefficient c6. Yet, c6 varies slightly with the relative position
in height. Close to the walls, it decreases as we move along the
z-axis, then increases again close to the foundation. Thus, we
introduce a new coefficient c7, and we define the dependence
on the relative position in height as

∣∣c7 − 2×dr
h

∣∣, where h is
the height of the shield and c7 = 2×dr

h indicates the point
at which the field close to the walls stops decreasing. If the
magnetic fields generated by the flow of the current through
the foundations and the roof were comparable, one could
expect a reduction of the field strength in the middle. In that
case, c7 would be equal to 1. The composition of the second
term of the formula is set, and (2) has become

|H|max = I0 ×
(

c1
k × dc2r × dc3e

(3)

+
c4

dc5r × d
c6×|c7− 2×dr

h |
w

)
,

where ci, for i = 1, . . . , n, is a coefficient to be determined.
Note that the distances are in meters and measured from the
shield, instead of the concrete surface.

If the closest vertical edge is not the one in the striking
point, its contribution actually increases with the distance to
the roof and depends on its distance to the striking point.
By fitting the ratios of the peak-values at the closest points
to the corners on each horizontal surface, we found that the
configuration factor k could be approximated as follows:

k =


1, for the edge in the striking point
1 +

dp
3×dr , for the adjacent edges

1 +
dp

6×d1.1r
, for the opposite edge

(4)

where dp is the distance from the closest edge to the edge in
the striking point.

Finally, to consider the effect of the currents flowing through
the roof, predominant in the first computed surface of each
building, we include an exponential decay in the second term.

Thus, (3) becomes

|H|max = I0 ×
(

c1
k × dc2r × dc3e

(5)

+
c4

dc5r × d
c6×|c7− 2×dr

h |
w × ec8×dn

)
,

where e is the exponential function and dn is the distance
to the vertical edge in the striking point, normalized to the
dimensions of the shield, i.e. dn =

√
( x
length )2 + ( y

width )2.
An example is shown in Fig. 8.

In a first attempt to determine the coefficients c1 to c8
using all the data, we observed that c4 and c5 vary with
the dimensions of the building. The bigger the building, the
smaller the term Tw and thus the coefficient c4. Probably Tw
decreases because the part of the current that flows through the
walls is redistributed among more parallel paths. Moreover,
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TABLE II
COEFFICIENTS IN (6)

Coefficient Optimized value

c1 1.146× 10−3

c2 0.665

c3 1.625

c04 5.795× 10−3

c05 0.585

c6 0.520

c7 1.491

c8 1.413

we tried dividing the coefficient by different functions of
the volume v and the cross-sectional area a of the shield,
i.e., c4 = c04

f(v) and c4 = c04
f(a) . We found c04 to be nearly

constant when f(v) = 3
√
v. Also, the bigger the cross-sectional

area with respect to the height of the shield, the slower Tw
decreases with the distance to the roof. Maybe as the result
of the currents taking longer to be displaced to the corners.
Thus, we tried reducing c5 as a function of

√
a
h ,
√
a instead

of a to cancel the units. The fit was decent when reducing c5
by

√
a

20×h . Therefore, a last adjustment is made to the formula
by setting c4 = c04

3
√
v

and c5 = c05 −
√
a

20×h .
In a second attempt, the coefficients are determined using an

optimization algorithm to minimize the sum of the normalized
root-mean-squared error (NRMSE) with two scales. The first
NRMSE is calculated with the formula and the computed
magnetic fields as they are, the second with the calculations
and the fields in decibels (dB). Adding the two errors helps to
prevent high deviations at low values. The algorithm searches
for the values of the coefficients c1 to c8 that lead to a local
minimum of the sum of normalized errors. The search is
conducted in a region defined by bound constraints, starting
from the middle of the region. The lower bound for all the
coefficients is set to zero. The upper bound is set to 0.01
for c1 and c04, and to 2 for the other coefficients. The step
tolerance is set to 10−14.

To avoid overfitting, the optimization is conducted ten times
as the simulations were carried out for ten different buildings.
Each time, we hold out the magnetic fields computed inside
a different building for verification. The coefficients are cal-
culated using the fields computed inside nine of the buildings
and verified using the fields computed inside the tenth. Then,
the ten different values of each coefficient ci, one from each
round of optimization, are combined. Instead of separating the
magnetic fields by building, one could split the dataset in k-
folds, where k is the number of groups, to conduct a k-fold
cross-validation [34]. The final values of the coefficient are
presented in Table II.

B. Estimated Error

To summarize, we propose the following formula as a more
precise variant of the formula given by the standard IEC

62305-4 [1]:

|H|max = I0 ×
(

c1
k × dc2r × dc3e

(6)

+

c04
3
√
v

d
c05−

√
a

20×h
r × dc6×|c7−

2×dr
h |

w × ec8×dn

+ ε

I0 : Maximum value of the lightning current
k : Configuration factor in (4)
dr : Distance to the roof
de : Distance to the closest vertical edge
dw : Shortest distance to the wall
dn : Normalized distance to the edge in the striking point
v : Volume of the grid-like shield
a : Cross-sectional area of the grid-like shield
h : Height of the grid-like shield
ci : Coefficients given in Table II
ε : Estimated error

Note that the formula is valid for buildings with a rein-
forcement that corresponds to the reference shield described
in the previous section (wm = 10 cm). Proceeding on the
assumptions of the IEC formula in (1), other mesh sizes
could be considered by multiplying the formula by wm

10 cm.
Nevertheless, since we already know from the results in Fig.
2 that the effect of the mesh size is not always linear, a
more precise way to account for variations on the shield is
introduced in the following section.

The histogram of the residuals obtained from the calculated
peak-values in the case studies are presented in Fig. 9. All
the points at the 11 horizontal surfaces inside each of the 10
buildings are considered. There are around 5.3 million points
in total. The distribution of the residuals in Fig. 9b shows
that the error of the modified formula can be assumed to be
normally distributed ε ∼ N (µ, σ2), whereas a generalized ex-
treme value distribution provides a better fit to the probability
density function (PDF) of the residuals obtained with the IEC
formula. The normal distribution fitted to the residuals of the
modified formula has a mean µ = 0.588 dB and a standard
deviation σ = 3.941 dB.

The accuracy of the proposed formula over the IEC formula
is shown by the fact that the mean of the generalized distribu-
tion (7.824 dB) is almost as big as the 95.45% confidence
interval of the normal distribution (7.882 dB ∼ factor of
2.478). Its main advantage is that it gives a good idea of the
distribution of the peak-values inside grid-like shields (see Fig.
10 with respect to Fig. 4), even if the values themselves are
not always precise.

One could argue that the IEC standard considers the same
probability of attachment to any of the corners, i.e. the distri-
bution of the peak-values is identical in the four quadrants.
Thus, we could only compare the results rightfully in the
first quadrant (x ≤ length

2 , y ≤ width
2 ) and the high error we

present comes from the other quadrants. Yet, Fig. 11 shows
that even in the first quadrant, the IEC formula is still far on
the safe side, tending mostly to overestimate the field.
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(a)

(b)

Fig. 9. Residuals obtained from the difference between the peak-values of the
magnetic field strength computed in the case studies and the values calculated
with the formulae. (a) Considering the first positive stroke (I0 = 200 kA).
(b) Initially converting the peak-values into decibels.

(a)

(b) (c)

Fig. 10. Peak-values of the magnetic field strength calculated with the
modified formula inside B1, considering I0 = 200 kA. (a) At 1 m from
the roof. (b) At 3 m from the roof. (c) At 5 m from the roof.

C. Machine Learning Approach

A formula with a reasonable error is an acceptable alter-
native to full-wave simulations. Yet, one could adopt a more
sophisticated approach to improve the degree of accuracy and
still gain in terms of computational resources.

(a)

(b)

Fig. 11. Scatter plot of the peak-values of the magnetic field strength
computed in the case studies vs. the values calculated with the formulae,
considering I0 = 200 kA. (a) IEC formula. (b) Modified formula.

For example, since even a formula as elaborated as (6)
involves an important error, an ML algorithm to predict the
peak-values could be more reliable. To illustrate, three simple
machine learning algorithms are trained considering the inputs
as the variables defined in (6): a feed-forward neural network,
a fine regression tree, and a bagged tree.

The dataset is built exclusively from the computed fields
in the case studies, with the values in dB, and split into five
groups to conduct a five-fold cross-validation [34]. The results
are shown in Fig. 12 and a comparison of the root mean
squared errors (RMSE) is presented in Table III. The RMSE of
the algorithms is evaluated as the combination of the prediction
errors over the five rounds of the five-fold cross-validation. The
error is therefore slightly higher than the RMSE one could
obtain by comparing the outputs of the trained algorithms to
the training set.

The superiority of an ML approach is evident; other algo-
rithms or a bigger dataset could lead to even lower errors.
Perhaps a drawback for industrial applications is that the final
user may require a specific system configuration to make
predictions, and in some cases need the training dataset. The
best approach to estimate the magnetic field strength inside
grid-like shields may then depend on the available resources,
as well as on the indicator used to measure the performance.

IV. CORRECTION FACTOR

Once the peak-value of the magnetic field strength is
calculated at an arbitrary point inside a grid-like shield, either
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(a)

(b) (c)

Fig. 12. Scatter plot of the peak-values of the magnetic field strength
computed in the case studies vs. the values predicted with ML models,
considering I0 = 200 kA. (a) Feed-forward neural network. (b) Regression
tree. (c) Bagged tree.

TABLE III
EVALUATED ERROR FOR THE FORMULAE AND THE ML ALGORITHMS

CONSIDERED

Model RMSE [dBA/m]

IEC formula 15.264

Modified formula 3.984

Feed-forward neural network
• 3 hidden layers

1.684

Bagged tree
• Minimum leaf size: 8
• Learners: 30

1.036

Regression tree
• Minimum leaf size: 4

0.818

with the IEC formula, the modified formula, an ML algorithm
or a full-wave method, the effect of any modification made on
the geometrical configuration of the shield could be considered
by applying a correction factor.

A. Experimental Design

In this paper we consider modifications within the ranges
in Table IV. The distances are given as a multiple of the mesh
size because of the proportionality that has been observed in
[20]. The latter means that when x4 is equal to 0.5, the actual
distance between the layers is equal to half the mesh size
(0.5x1), and when x5 is equal to 1, the distance between the
hoops interconnecting the layers is equal to the mesh size (x1).
One could define the distances differently and continue with
the same line of reasoning.

Aiming to quantify the effect of the modifications on the
peak-values of the magnetic field strength, a Box-Behnken
design is defined with a single central point. A Box-Behnken
design is an experimental design formed by combining a
full factorial design and an incomplete block design [21]. It
requires three levels of each factor. The number of blocks

TABLE IV
RANGES WITHIN THE CHARACTERISTICS OF THE GRID-LIKE SHIELD

ARE VARIED

Variable Range

Mesh size x1 0.1 m − 1 m
Radius of the rebars x2 1 mm − 10 mm
Number of layers x3 1 − 3
Distance between the layers as a
multiple of the mesh size x4 0.5 − 2

Distance between the hoops as a
multiple of the mesh size x5 1 − 8

Note: The distances vary within the given ranges when there are at
least two layers, otherwise they are set to zero.

and the number of factors varying in each block depend on
the number of variables involved in the design. A design for
five variables results in ten blocks with two factors varying
simultaneously, for a total of 41 combinations, including the
central point. While two of the factors are varied through
the four combinations of the upper and the lower limits,
the other factors are set to a central value. In the design
defined for the study, the distance between the layers (x4)
and between the hoops (x5) is set to 0 m when there is a
single layer. Consequently, experiments number 5, 6, 29, and
30 become the same, which reduces the number of runs from
41 to 38. The full-wave simulation of each of the 38 resulting
runs is carried out using TEMSI-FD in buildings B1 to B4,
for a total of 152 simulations. The numerical model of the
electromagnetic environment remains as described in section
II-C. Then, for each run, the peak-values of the magnetic
field strength computed on the surfaces inside each building
are divided by the peak-values of the magnetic field strength
computed on the same surfaces, but with the reference shield.
Moreover, for 38 variations on the grid-like shield, we obtain
the effect it produces on the peak-values with respect to the
reference shield on 44 surfaces (11 surfaces in each building).
From the surfaces, we only take the values at points inside the
safety volume of the shield, at a distance from the inner layer
superior to the mesh size, we convert them into dB and regroup
them by run. Note that choosing a reference is necessary to
calculate the effect; nevertheless, one can use the polynomial
described in the following subsection to estimate a correction
factor for a different grid-like shield if its characteristics are
within the ranges defined in Table IV.

Although, hypothetically, the variation of the values by run
should be minimal, it is hardly ever lower than 1 dB, not
even when observing the results by building (see e.g. Fig. 13).
Since it cannot be neglected, a normal distribution is fitted to
the quantified effect by run. The means of the distributions are
used to build a sparse PCE, after which the standard deviations
are considered to estimate the uncertainty.

B. Sparse Polynomial Chaos Expansion (PCE)

The 38 different combinations of the factors in the experi-
mental design correspond to 38 variations on the geometrical
configuration of the grid-like shield. Considering the factors as
input random variables, the variations on the shield can be rep-
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(a)

(b) (c)

(d) (e)

Fig. 13. Effect on the peak-values of the magnetic field strength calculated
in the first run of the experimental design with x1 = 10 cm, x2 = 1 mm,
x3 = 2, x4 = x1, and x5 = 4x1. (a) Regrouped results and their fitted
normal distribution. (b) Results in B1. (c) Results in B2. (d) Results in B3.
(e) Results in B4.

resented by an input random vector X = {x1, . . . , xM}. Each
variation changes the maximum values of the magnetic field
strength computed inside the grid-like shield. The calculated
effect on the peak-values, which is the quantity of interest, can
then be considered the response M(X).

Let Y =M(X) be the output random variable. Assuming
that Y belongs to the Hilbert space of second-moment random
variables, it can be represented by an infinite series expansion
[35]:

Y =
∑
α∈NM

yα ×Ψα(X), (7)

where yα are coefficients to be computed and Ψα(X) is a
basis of multivariate orthogonal polynomials.

The input variables are assumed to be independent and
uniformly distributed. Therefore, the basis of multivariate
polynomials is built up from the Legendre polynomials Pα(x).
The family of orthogonal polynomials used to build up the
base depends on the type of variable, e.g., Legendre polyno-
mials for variables with a uniform distribution and Hermite
polynomials for variables with a Gaussian distribution. The
family of Legendre polynomials is obtained when X has
a uniform distribution over [−1, 1], thus an isoprobabilistic
transform X = T (ξ) is necessary to reduce the input variables:

xi =
ai + bi

2
+
bi − ai

2
× ξi, ξi ∼ U(−1, 1), (8)

where ai and bi are the lower and the upper limit, respectively,
defined for each input variable in Table IV. However, to
transform x4 and x5 into standard uniform variables, their
lower limit is set to 0 because the distances are non-existent
when x3 = 1. Thus, ξ4 = x4 − 1 and ξ5 = 2x5−8

8 .
Accordingly, a multivariate polynomial of the basis reads:

Ψα(ξ1, . . . , ξM ) =

M∏
i=1

P̃αi
(ξi), (9a)

P̃αi
(ξi) =

√
2αi + 1× Pαi

(ξi), (9b)

where Pαi
is the univariate Legendre polynomial of degree αi

and |α| =
∑M
i=1 αi is the degree of the multivariate polyno-

mial. In practice, the infinite series expansion is truncated to
limit the number of coefficients to be computed. The number
of multivariate polynomials forming the basis depends on the
truncation scheme and the number of input variables M . For
example, if we consider the variables in Table IV (M = 5)
and a third-order standard truncation scheme (p = 3), the basis
will be formed by (M+p)!

M !×p! = 8!
5!×3! = 56 terms and we would

need at least 112 runs to compute the associated coefficients.
The number of runs must be at least twice the number of
coefficients.

Since we only have 38 runs, we could expand the ex-
perimental design, choose a different truncation scheme, or
find a sparse expansion. We continue with the last option, as
proposed in [36]. Therefore, we apply an adaptive algorithm
based on least angle regression (LARS) using UQLAB [37]
to identify the optimal basis from a fourth-order truncation
scheme and compute the coefficients. The significant terms
of the basis and their associated coefficients are presented in
Table V.

Hence, the correction factor to be applied to the peak-values
of the magnetic field strength can be calculated as follows:

CF = 10
Ỹ
20 , (10a)

Ỹ = MPC(ξ1, ξ2, ξ3, ξ4, ξ5) =

17∑
j=0

yj ×Ψj (10b)

= 0.261 + . . .+ 1.971
(
5ξ31 × ξ3 − 3ξ1 × ξ3

)
.

The effect the variations on the shield on the peak-values is
approximated by a 18-term polynomial series expansion. The
performance of the sparse PCE is illustrated in Fig. 14.

C. Global Sensitivity Analysis
The Sobol’ indices can be calculated analytically from the

coefficients of the PCE by reordering the terms. Fig. 15 shows
that the variance of the quantified effects is mostly influenced
by the mesh size and, in accordance with [16] and [20], the
influence of the number of hoops interconnecting the layers is
minor.

Since the first-order indices account for most of the contri-
butions to the total variance, a fair estimation of the correction
factor could be calculated from the contribution of each
variable separately, disregarding the effect of the interactions.
Nevertheless, considering the higher-order terms may be es-
sential in some cases. It can be observed from the PCE pre-
dicted effects in Fig. 16 that the influence of the radii becomes
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TABLE V
BASE AND COEFFICIENTS OF THE SPARSE PCE IN (10)

j α yα ≡ yj Ψα ≡ Ψj

0 [0,0,0,0,0] 0.261 1
1 [0,0,0,1,0] -0.666

√
3× ξ4

2 [0,0,1,0,0] -2.212
√

3× ξ3
3 [0,1,0,0,0] -2.259

√
3× ξ2

4 [1,0,0,0,0] 6.282
√

3× ξ1
5 [2,0,0,0,0] -1.691

√
5

2

(
3ξ21 − 1

)
6 [1,1,0,0,0] 1.297 3ξ1 × ξ2
7 [0,0,3,0,0] -3.379

√
7

2

(
5ξ33 − 3ξ3

)
8 [0,3,0,0,0] -0.466

√
7

2

(
5ξ32 − 3ξ2

)
9 [3,0,0,0,0] 3.077

√
7

2

(
5ξ31 − 3ξ1

)
10 [0,1,0,0,2] 0.369

√
15
2

(
3ξ2 × ξ25 − ξ2

)
11 [0,1,0,2,0] 0.240

√
15
2

(
3ξ2 × ξ24 − ξ2

)
12 [1,2,0,0,0] 0.281

√
15
2

(
3ξ1 × ξ22 − ξ1

)
13 [2,1,0,0,0] -0.836

√
15
2

(
3ξ21 × ξ2 − ξ2

)
14 [0,0,0,4,0] -0.900

√
9

8

(
35ξ44 − 30ξ24 + 3

)
15 [4,0,0,0,0] -0.977

√
9

8

(
35ξ41 − 30ξ21 + 3

)
16 [1,3,0,0,0] 0.385

√
21
2

(
5ξ1 × ξ32 − 3ξ1 × ξ2

)
17 [3,0,1,0,0] 0.860

√
21
2

(
5ξ31 × ξ3 − 3ξ1 × ξ3

)

Fig. 14. Scatter plot of the quantified effects on the peak-values of the
magnetic field strength vs. the effects predicted with the sparse PCE.

Fig. 15. Sobol’ indices calculated from the sparse PCE.

significant with the decrease of the mesh size, whereas the
influence of an extra layer and the distance between layers
are not strongly correlated to the other variables.

(a)

(b)

(c)

Fig. 16. Effect on the peak-values of the magnetic field strength predicted
by the sparse PCE for different modification on the geometrical configuration
of the shield. (a) x3 = 1, x4 = x5 = 0. (b) x3 = 2, x4 = x1, x5 = 4x1.
(c) x2 = 1 cm, x4 = x5 = 0 if x3 = 1, x5 = 4x1 if x3 > 1.

D. Uncertainty Quantification

Although the RMSE and the leave-one-out error (ELOO)
shown in Fig.14 are relatively small, there could be an
important error on the predicted effect (Ỹ ) and thus on the
correction factor (CF ) at an arbitrary point. First, there are
the uncertainties in the input variables which come from the
computation model with respect to the real building. Those are
not considered in this paper. Second, there are the uncertainties
we created ourselves by disregarding the dependence of the
effect of modifying the configuration of the shield, on the
dimensions of the building and the position of the point of
interest.

The sparse PCE was built from the mean of the effect
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Fig. 17. Residuals obtained from the difference between values predicted by
the original PCE and the values predicted by the 200 alternative PCEs.

Fig. 18. Estimated error of the original PCE when considering the variation
of the calculated effects.

computed for each of the 38 runs in the experimental design.
Hence, there is a local error in the PCE predictions associated
with the deviation of each effect from its mean.

Aiming to estimate a confidence interval for the predictions
and based on the Bootstrap-PCE technique in [38], we start
by generating a set of alternative results to the variations of
the shield considered in the experimental design. We draw
200 samples from each of the 38 fitted normal distributions
using a Monte Carlo method. The combination of the 200 sam-
ples from each distribution creates a set of slightly different
computed effects for the runs. With the set of 200 alternative
results, we build 200 different sparse PCEs, all of them with
the basis of the original PCE. One could reduce the number
of samples; the authors in [38] used 100 samples and found
their algorithm to be weakly dependent on the number of
bootstrap replications, as far as a minimum of 20 samples was
provided. We drew 200 samples to be sure of the accuracy of
the estimation.

Then, again using a Monte Carlo method, we draw 1000
samples from the input variables within the ranges defined in
Table IV, making sure that x3 is an integer and x4 = x5 = 0
when x3 = 1. The combination of the 1000 values of each
input variable creates 1000 input vectors, different from the
ones considered in the experimental design, which correspond
to 1000 alternative variations of the grid-like shield. Finally,
the original PCE and the 200 alternative PCEs are evaluated
at the 1000 input vectors. Generally, a few hundred samples

are sufficient to estimate the basic shape of a PDF [39]. To
estimate the local error, the predictions of the original PCE are
considered as the reference and subtracted from the predictions
of the alternative PCEs.

A histogram of the resulting set of residuals is shown in
Fig. 17. These residuals give us an idea of the deviation we
could obtain from the predictions of the original PCE. Since
the predictions of the original PCE, however, are not exact, we
add the deviation to each of the residuals of the original PCE,
i.e., we add the set of residuals to each of the 38 residuals
calculated from the difference between the prediction of the
original PCE and the data used to build it. This approach leads
us to the histogram in Fig. 18, from which we can approximate
the PDF of the error as a normal distribution with mean µ =
-0.164 dB and standard deviation σ = 1.894 dB.

Note that the error is estimated for a prediction of the effect
with respect to the reference shield, i.e. when the existing
results of the peak-values come from a point inside a grid-like
shield as described in section II-C. Yet, the PCE can be used
to predict a correction factor to be applied to a different shield,
by considering the difference between the predictions with the
configuration of the initial shield and the configuration of the
shield of interest. Nevertheless, in that case the error within
the building may increase.

For example, one could use the formula in (6) to calculate
the peak-values of the magnetic field inside the full-scale
building described in [19], considering its reinforcement to
have the configuration of the reference shield. Then, correct
the values using the sparse PCE. At point (1.28, 1.28, 2.52),
defined in the [19] as point A, the peak-value calculated
with the formula for the first stroke is 71.795 A/m. For the
configuration of the reinforcement defined as case B-5 in
[19]: a simple-layered grid with meshes of 0.4 m and rebars
with radii of 9.6 mm, the sparse PCE predicts an increase of
7.958 dB + ε ∼ N (−0.164, 1.8942). The corrected value at
point (1.28, 1.28, 2.52) is then 71.795 A/m × 2.453 = 176.113
A/m and the 95% confidence interval is (114.872, 269.949),
excluding the error of the formula. The peak-value computed
by the authors in [19] at point A was 167 A/m. Their model
included the columns, beams, and floors of the building.

Also, instead of using the modified formula to start from
the reference shield, one could calculate a correction factor
to be applied to available results. If we take the cases B1
and B3 considered in [18]: a single-layer and a double-layer
grid-like shields with meshes of 30 cm and rebars with radii
of 1.4 mm, the sparse PCE will predict 12.335 dB + ε ∼
N (−0.164, 1.8942) and 6.481 dB + ε ∼ N (−0.164, 1.8942),
respectively. Thus, the peak-values of the magnetic field,
measured or computed, inside the single-layered shield could
be corrected to take into account the second layer by adding
−5.854 dB + ε ∼ N (0, 2.6792), which is in good agreement
with the authors’ findings in [18]. They had initially computed
that the second layer enhances the magnetic shielding by 7.3
dB and then observed experimentally that it improves by 4.9
dB.

Similarly, if we take the cases AI and AIII considered
in [14]: a single-layer and a double-layer grid-like shields
with meshes of 15 cm and rebars with radii of 3 mm, the
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sparse PCE will predict −0.053 dB+ε ∼ N (−0.164, 1.8942)
and −12.021 dB + ε ∼ N (−0.164, 1.8942), respectively.
Thus, one could expect the second layer to improve the
shielding by 11.968 dB + ε ∼ N (0, 2.6792). The authors in
[14] measured an improvement of 3-7 dB and later in [16]
computed an average factor of about 2.6(∼ 8.3 dB). In both
the experimental setup in [14] and the computation model in
[16], the ground was a highly conducting plane, which may
explain the difference.

V. CONCLUSION

Based on the results of full-wave simulations carried out
using TEMSI-FD, this paper presented two novel formulae
to calculate the peak-values of the magnetic field strength
generated by a direct lightning strike inside grid-like shields.

The first formula was introduced as a variant of the formula
given by the international standard IEC 62305-4, to determine
the distribution of the peak-values inside a single-layer grid-
like shield with fixed squared meshes, formed by rebars whose
radius is set to 1 mm. Certainly, it is more complex; yet,
still sufficiently straightforward for engineering applications.
Although it provides an important accuracy improvement
compared to the IEC formula, its error is high compared to
the prediction error of an ML model.

The second formula is a sparse PCE with 18 terms, which
predicts the effect of any modification on the geometrical
configuration of the grid-like shield. It allows for extrapolation
from the results of either the first proposed formula or another
computational method, to account for variations on the mesh
size, the radius of the rebars, the number of layers, the
distance between the layers, and the distance between the
interconnecting hoops. The global sensitivity analysis showed
that in the case of a direct strike to the corner of the roof,
the number of the hoops is insignificant, and the mesh size
is the most influential parameter when it comes to improving
the magnetic shielding. However, the number of layers must
be considered to calculate the shielding effectiveness provided
by reinforced concrete. Disregarding an extra layer could lead
to overestimating the field by a factor up to 6, which may
result in costly protection measures.
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