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Numerical investigation of relative intensity noise in
frequency-doubled multimode fiber lasers

Rodolphe Collin, Thierry Chartier, Pascal Besnard
Univ Rennes, CNRS, Institut FOTON - UMR 6082, F-22305 Lannion, France

Abstract

In this paper, we study the intensity noise performance of frequency-doubled
lasers. In particular, we investigate how the relative intensity noise (RIN) of mul-
timode fiber lasers is affected by the second harmonic generation process. We
first develop an analytical approach and show that, in contrast with a single-mode
laser, the low frequency RIN (or excess noise) of a two-mode laser can increase
of more than 6 dB after the frequency-doubling operation. This occurs when the
intensities of both modes are different and this is explained by a nonlinear cou-
pling between noise and intensity of modes. To deal with more commonly-used
multimode fiber lasers, we have extended our study to any number of modes. For
this purpose, we have developed a model to numerically simulate the dynamics of
a multimode fiber laser. This model includes noise sources and mode competition
dynamics due to spatial hole burning. It gives access to the complex amplitude of
the electric field of the laser. Using this model, we have confirmed that the excess
noise of frequency-doubled multimode fiber lasers can be more than 6 dB higher
than the excess noise of the laser before frequency-doubling.

Keywords: Multimode laser, Fiber laser, Relative intensity noise, Second
harmonic generation, Mode competition.

1. Introduction

High power visible laser sources are of great interest for many applications.
Since there is no high-power amplifier in the visible range, high-power visible
lasers are generally frequency-doubled near-infrared lasers. Yb-doped fiber lasers,
operating around 1060 nm, are good candidates to realize green lasers around
530 nm. In the past decades, high-power Yb-doped fiber lasers have known a

Preprint submitted to Optics Communications December 21, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0030401820311433
Manuscript_22cb98bcd90da44050c9d6a87c6ba315

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0030401820311433
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0030401820311433


large development [1]. Using these types of lasers, in association with second-
order nonlinear effects, high-power green lasers have been demonstrated [2, 3].
Nowadays, frequency-doubled fiber lasers are commonly used as laser sources,
delivering several tens of watts of average power in the visible range.

In the continuous-wave (CW) operating regime, good stability of the visible
laser emission is sometimes required in some applications. This has led to numer-
ous studies on the influence of nonlinear effects on the phase or intensity noise
of such lasers. For example, the ”green noise” of multimode frequency-doubled
lasers is attributed to power fluctuations between modes due to the intracavity
second-harmonic generation (SHG) process. On the other hand, nonlinear effects
can also be used to lower the intensity noise of intracavity frequency-doubled laser
sources [4, 5].

In frequency-doubled fiber lasers, the SHG process is generally performed
outside the laser cavity and the green noise cannot occur. However, in some extra-
cavity frequency-doubled lasers, an increase of the low-frequency relative inten-
sity noise (RIN), up to 10 dB, has been observed after the frequency-doubling
process [6, 7]. In Ref. [6], authors claim that it would be a consequence of the
finite acceptance of the nonlinear crystal.

In this paper, we propose a new explanation of the increase of the low-frequency
RIN of extra-cavity frequency-doubled multimode lasers. We show that there is
no need to take into account any limitation of the nonlinear crystal. We simply
take into account the multimode behavior of the laser and the squaring of the laser
field due to the SHG process. In this paper, we also propose an original model to
simulate the dynamics of multimode fiber lasers. This model consists in a set of
time-derivative equations that include both the spatial hole burning effect (leading
to mode competition) and the classical Langevin noise forces. Solving numeri-
cally these equations gives access to the complex amplitude of the electrical field
of each mode. To the best of our knowledge, such a model, including both spatial
hole burning and noise, is proposed for the first time in this paper. We apply this
model to the case of a multimode Yb-doped fiber laser in order to investigate the
effect of frequency doubling on the RIN of the laser.

The paper is organized as follows. In Section 2, we propose an analytical
study of the RIN of the laser before and after the frequency-doubling process. We
start by a single-mode laser and show that SHG always results in a 6 dB increase
of the RIN of the laser. Then, we study the case of a two-mode laser. We derive
an analytical formula that gives the conditions for which the increase of the RIN
can be higher than 6 dB. In Section 3, we present the theoretical model that allows
us to numerically study the RIN of a multimode Yb-doped fiber laser. In Section
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4, we use the model to study the RIN of the Yb-doped fiber laser before and after
SHG. The results confirm that the increase of the low-frequency RIN can be much
greater than 6 dB for standard operating conditions of a fiber laser.

2. Analytical study of RIN after frequency doubling

In this section, we present analytical expressions to calculate the increase of
the low-frequency RIN of a laser before and after a frequency-doubling process.
We start by a single-mode laser, then, we study the case of a two-mode laser. The
study of a laser with a larger number of modes will be performed numerically in
Section 3.

2.1. Single-mode laser
Let us consider the electric field Eω(t) of a single-mode CW laser at the fun-

damental frequency ω . The intensity Iω(t) of the laser is defined by the following
relation [8]

Iω(t) =
ncε0

2
|Eω(t)|2, (1)

where n is the refractive index of the medium in which light propagates, c the
speed of light in vacuum and ε0 the vacuum permittivity. We assume that the
intensity Iω(t) exhibits noise and can be written as

Iω(t) = 〈Iω〉+δ Iω(t), (2)

where 〈Iω〉 is the average value of Iω(t) and δ Iω(t) its the time-dependent fluctu-
ations around 〈Iω〉. We assume that the fluctuations are weak with respect to the
average value, i.e. δ Iω(t)� 〈Iω〉. The RIN of the laser is defined as follows [9]

RINω(ν) =
〈|δ̃ Iω(ν)|2〉
〈Iω〉2

, (3)

where δ̃ Iω(ν) is the Fourier transform of the intensity fluctuations δ Iω(t). The
quantity 〈|δ̃ Iω(ν)|2〉 is usually referred to as the power spectral density (PSD) of
the laser intensity noise.

We now assume that the SHG process leads to a frequency-doubled electric
field E2ω(t). In our approach, we simply write E2ω(t) as the square of the funda-
mental electric field Eω(t) [10]

E2ω(t) = ηE2
ω(t), (4)
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where η is the efficiency of the SHG operation. Modeling the SHG operation by
simply squaring the fundamental field is quite straightforward. The underlying
assumptions are, for example, that wave planes are considered or that the phase-
matching condition is satisfied. Even if these hypothesis are not fully satisfied in
real systems, we want to focus here on the main effect of SHG, i.e. the squaring
of the fundamental electric field.

Similarly to equation (1) for the initial field, the intensity of the doubled-
frequency field writes

I2ω(t) =
ncε0

2
|E2ω(t)|2. (5)

Using relations (1), (2) and (4) in equation (5), the intensity I2ω(t) of the frequency-
doubled field can be written as

I2ω(t) = 〈Iω〉2 +2〈Iω〉δ Iω(t)+δ I2
ω(t). (6)

Since we have δ Iω(t)�〈Iω〉, we neglect the second-order term δ I2
ω(t) in equation

(6). Then, we set
I2ω(t) = 〈I2ω〉+δ I2ω(t), (7)

with 〈I2ω〉= 〈Iω〉2 and δ I2ω(t) = 2〈Iω〉δ Iω(t). The RIN of the frequency doubled
laser is defined as follows

RIN2ω(ν) =
〈|δ̃ I2ω(ν)|2〉
〈I2ω〉2

. (8)

Then, we obtain

RIN2ω(ν) = 4
〈|δ̃ Iω(ν)|2〉
〈Iω〉2

= 4RINω(ν). (9)

Relation (9) shows mathematically that the RIN of a frequency-doubled CW
single-mode laser is 6 dB higher than the RIN of the initial laser.

To illustrate this point, figure 1 plots the RIN of a typical CW single-mode
fiber laser. In this figure, two cases are considered. In the first case, the pump
power Pp is very close to the threshold Pth of the laser (Pp = 1.05Pth). In the
second case, the pump power is clearly above the threshold (Pp = 2Pth). These
curves have been obtained numerically from the model that will be detailed in
Section 3. For each case, the RIN exhibits a constant value at low frequencies,
usually referred to as the excess noise of the laser. This noise is due to the pump
noise. The pronounced peak around few tens of kHz is the relaxation frequency of
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the laser. At higher frequencies, the RIN drops down with a 40 dB/decade slope.
The electric field at ω has been squared and the RIN of the frequency-doubled
laser is also plotted in figure 1. As predicted by equation (9) we observe a 6 dB
increase of the RIN through the SHG process. We also note that the RIN of the
laser near threshold (first case) is higher than the RIN of the laser at twice the
threshold (second case). This well-known result is explained by the fact that, near
threshold, a laser exhibits more noise due to spontaneous emission.
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Figure 1: RIN of a single-mode laser before and after frequency doubling, for two pumping levels:
very close to threshold (Pp = 1.05Pth) and twice above threshold (Pp = 2Pth).

Finally, we note from figure 1 that the RIN of a typical CW single-mode fiber
laser has its main contribution essentially at low frequencies (typically below 1
MHz).

2.2. Two-mode laser
In the case of a two-mode laser, we assume that the total electric field Eω(t),

around a fundamental frequency ω , is the sum of two electric fields E1(t) and
E2(t) at different frequencies

Eω(t) = E1(t)+E2(t). (10)
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We write the electric fields E1(t) and E2(t) of each mode as follows

Eq(t) =

√
2

ncε0
Iq(t)ei[ωqt+θq(t)], (11)

where q = 1,2, Iq(t) is the intensity of each mode, ωq their angular frequency and
θq(t) their phase. In the following, we neglect the phase noise and set θq(t) = 0.
We assume that the intensity of each mode weakly fluctuates around an average
value and we set

Iq(t) = 〈Iq〉+δ Iq(t), (12)

where 〈Iq〉 represents the average value of Iq(t) and δ Iq(t) the fluctuations of Iq(t)
around its average value. Let us define the RIN of each mode independently

RINq(ν) =
〈|δ̃ Iq(ν)|2〉
〈Iq〉2

, (13)

where δ̃ Iq(ν) is the Fourier transform of δ Iq(t). We consider that the RIN of
each mode is similar to the RIN of figure 1 and expands only at low frequencies
(typically below 1 MHz).

Using the definition of equation (1) for the intensity Iω(t), we find the intensity
of the two-mode laser

Iω(t) = I1(t)+ I2(t)+2
√

I1(t)I2(t)cos[(ω1−ω2)t]. (14)

Equation (14) contains two different terms. The first term I1(t)+ I2(t) is the
sum of both intensities of each mode. In the frequency domain, this term should
only present fluctuations at low frequencies (typically below 1 MHz), similarly to
figure 1. The intensity Iω(t) also contains a beating term at the frequency differ-
ence (ω1−ω2). The mode frequencies differ from the free spectral range (FSR)
of a laser cavity and the frequency difference ∆ν = (ω1−ω2)/2π is typically of
the order of few MHz. In the frequency domain, this beating term leads to a fre-
quency peak at the FSR of the cavity and then at a frequency much higher than the
frequency range of I1(t)+ I2(t). In consequence, we decompose Iω(t) in two dis-
tinct contributions, its low-frequency contribution Iωlf(t) and its high-frequency
contribution Iωhf(t)

Iω(t) = Iωlf(t)+ Iωhf(t), (15)

with

Iωlf(t) = I1(t)+ I2(t), (16)

Iωhf(t) = 2
√

I1(t)I2(t)cos(δωt), (17)
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and δω = ω1−ω2. The low-frequency intensity Iωlf(t) can be decomposed in its
CW part 〈Iωlf〉 and its time-dependent part δ Iωlf(t)

Iωlf(t) = 〈Iωlf〉+δ Iωlf(t), (18)

with

〈Iωlf〉= 〈I1〉+ 〈I2〉, (19)
δ Iωlf(t) = δ I1(t)+δ I2(t). (20)

If we assume that the fluctuations δ I1(t) and δ I2(t) on both modes are perfectly
uncorrelated, a straightforward calculation shows that the PSD of the sum of the
modes is equal to the sum of the PSD of each mode. This assumption is common
in CW multimode fiber lasers with a large number of modes [11]. In the case of a
two-mode laser, this assumption may not be satisfied. However, our goal is here to
improve the understanding of real multimode fiber lasers with a large number of
modes. Thus, for the sake of simplicity, we keep the assumption of uncorrelated
modes, even for the particular case of a two-mode laser. Then, the low-frequency
RIN of a two-mode laser writes

RINωlf(ν) =
〈|δ̃ I1(ν)|2〉+ 〈|δ̃ I2(ν)|2〉

(〈I1〉+ 〈I2〉)2 . (21)

In order to calculate the low-frequency RIN of the frequency-doubled laser,
we now calculate the intensity by using equations (4), (10) and (11)

I2ω(t) =η

[
I2
1 (t)+ I2

2 (t)+4I1(t)I2(t)

+4I1(t)
√

I1(t)I2(t)cos(δωt)+4I2(t)
√

I1(t)I2(t)cos(δωt)

+2I1(t)I2(t)cos(2δωt)
]
. (22)

The frequency-doubled intensity exhibits two high-frequency peaks, at δω and
2δω respectively. Similarly to the single-mode case, we decompose I2ω(t) in its
low-frequency contribution I2ωlf(t) and its high-frequency contribution I2ωhf(t)

I2ωlf(t) = 〈I2ωlf〉+δ I2ωlf(t), (23)

with

I2ωlf(t) =η [I2
1 (t)+ I2

2 (t)+4I1(t)I2(t)], (24)

I2ωhf(t) =η

[
4I1(t)

√
I1(t)I2(t)cos(δωt)+4I2(t)

√
I1(t)I2(t)cos(δωt)

+2I1(t)I2(t)cos(2δωt)
]
. (25)
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Using equation (12), we decompose I2ωlf(t) in its CW part 〈I2ωlf〉 and its
time-dependent part δ I2ωlf(t). Then, after a straightforward calculation and the
assumption of uncorrelated noises, it can be shown that the low-frequency RIN of
the frequency-doubled two-mode laser can be expressed as follows

RIN2ωlf(ν) = 4
(〈I1〉+2〈I2〉)2〈|δ̃ I1(ν)|2〉+(2〈I1〉+ 〈I2〉)2〈|δ̃ I2(ν)|2〉

(〈I1〉2 + 〈I2〉2 +4〈I1〉〈I2〉)2 . (26)

The denominator of equation (26) depends only on the average intensities of the
two modes but the numerator depends on both the average intensities and the
fluctuations of the modes. Therefore, analysis of the frequency-doubled RIN is
not as simple as in the single-mode case. To compare the low-frequency RINs of
the two-mode laser before and after the frequency-doubling process, we define the
ratio Γ between both RINs

Γ =
RIN2ωlf

RINωlf
. (27)

We introduce the parameters γ and α , representing the ratio between the RINs of
each individual mode and the ratio between the average intensities of each mode,
respectively

γ =
RIN1

RIN2
, (28)

α =
〈I1〉
〈I2〉

. (29)

Using these definitions, we can express Γ as a function of α and γ

Γ = 4
[γα2(2+α)2 +(1+2α)2](1+α)2

(1+4α +α2)2(1+ γα2)
. (30)

Figure 2 shows the evolution of Γ as a function of α for different values of γ

(mentioned on the curves). First, we note that Γ is always greater than 0 dB. This
means that the SHG process always impairs the low-frequency RIN of a two-mode
laser, similarly to a single-mode laser for which we have found a 6 dB increase
of the RIN. Secondly, we see that the increase of the RIN can be, under certain
conditions, lower than 6 dB. It can also be higher than 6 dB. Let us now examine
this point in more details.

First, when α = 0 dB, the ratio Γ is 6dB, whatever the value of γ . This
means that, when both modes have the same average intensity, the increase of
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Figure 2: Evolution of the ratio Γ between the low-frequency RINs of a two mode laser, before and
after SHG, as a function of the ratio α between the average intensities of each mode, for several
values of the ratio γ between the RINs of each mode (mentioned on the curves). Points (I) and (II)
will be introduced in Section 4.
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the frequency-doubled RIN is always 6 dB, whatever the RIN of each individual
mode.

Values of Γ greater than 6 dB occur if α < 0 dB and γ > 0 dB or when α > 0
dB and γ < 0 dB. This means that the increase of the frequency-doubled RIN can
be more than 6 dB only if the weakest mode (the mode with the lowest average
intensity) exhibits the highest RIN. This conclusion may be counter-intuitive if we
expect that the weakest mode has a lower contribution to the total RIN than the
strongest mode. However, this effect can be explained by equation (26). We see,
at the numerator of this equation, that the fluctuations of one mode are multiplied
by the average power of the other mode. This amplifies the strongest RIN through
the power of the strongest mode and leads to an increase of the total RIN with a
factor higher than in the single-mode case (6 dB). We note from figure 2 that, in
these two cases ( α < 0 dB, γ > 0 dB and α > 0 dB, γ < 0 dB), the increase Γ of
the frequency-doubled RIN is not systematically higher than 6 dB. The value of
Γ depends on the relative values of α and γ . For example, for a given value of α ,
the ratio γ must be strong enough to lead to a value of Γ greater than 6 dB.

In the other cases (α < 0 dB and γ < 0 dB or α > 0 dB and γ > 0 dB), the
ratio Γ is between 5 dB and 6 dB.

In a two-mode laser, if one mode is stronger than the other one, the lowest
mode is nearer threshold than the strongest one. According to figure 1, the lowest
mode should therefore exhibit a higher RIN and we are therefore in the case α < 0
dB and γ > 0 dB or α > 0 dB and γ < 0 dB. Consequently, in a two-mode laser,
we are probably always in the situation where an increase of more than 6 dB of Γ

can be observed.
To conclude on this part, we have proposed an analytical description of the

increase of the RIN of a two-mode laser after frequency-doubling. We have shown
that the increase may be more than 6 dB. This situation occurs when the weakest
mode exhibits the highest RIN. The reason is given by equation (26) and can be
explained as follows. Through the SHG process, the nonlinear medium induces
a coupling between the fluctuations of one mode and the average power of the
other mode. This enhances the contribution of the highest RIN and may lead to
an increase of more than 6 dB of the total RIN.

The analytical study proposed in this section is difficult to extend to a laser
with more than two modes. In the following, we present some numerical results
to study the effect of SHG on the RIN of a multimode fiber laser.
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3. Numerical simulations of the multimode fiber laser

In the previous section, we have proposed an analytical study of the frequency-
doubled RIN in the simple case of a two-mode laser. Studying the frequency-
doubled RIN in the more general case of multimode laser (with any number of
modes), requires a model that allows to simulate the time evolution of the electric
field of each mode.

In multimode fiber lasers, modeling the dynamics of modes requires to include
the effect of the spatial hole burning to take the mode competition into account.
Such models have been developed [12, 13] but do include noise. On the other
hand, models in which noise is taken into account through Langevin forces are
commonly used in semiconductor lasers studies [14, 15] but do not include the
spatial hole burning. To address this lack, we have developed a theoretical model
to describe, as realistically as possible, the dynamics of a multimode fiber laser in
the presence of intensity noise and mode competition. Solving numerically this
model gives access to the output field Eω(t) of the laser and allows us to calculate
its RIN. Then, by taking the square of this field, we will be able to calculate the
RIN of the laser after the SHG process.

In this section, we present the model we have developed and give an example
of calculated RIN of the fundamental field of a typical multimode fiber laser. In
the next section we will use the model to study the RIN of the frequency-doubled
laser.

3.1. Equations of the model
The laser model is based on the semi-classical theory of class-B lasers [16].

For a single-mode laser, this theory leads to a set of two time-dependent first-order
differential equations, describing the time evolution of the population inversion
∆N of the amplifying medium and the photon number S of the laser radiation.
In the case of a multimode laser (with a number N + 1 of modes for example),
each mode of frequency νq (with q = −N/2, . . . ,N/2) should be described in-
dependently by its photon number Sq. In the case of fiber lasers, for a realistic
description of the dynamics of the laser, the mode competition has to be taken
into account. This is done through the spatial hole burning effect, which consists
to expand the population inversion in Fourier series ∆Nq [12, 13]. Finally, to take
noise into account, Langevin forces are added to each equation [14, 15]. The
Langevin forces added to the population inversion equations represent the pump
noise while the Langevin forces added to the photon number equations represent
the spontaneous emission noise. Then, starting from the semi-classical theory of
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the laser, and by including rigorously all the previously mentioned phenomena,
we have obtained the set of the following equations

d∆N/0(t)
dt

=
1
τ
(∆NPp−∆N/0(t))−∑

q
KqSq(t)

(
∆N/0(t)−

1
2

∆Nq(t)
)
+F∆N/0(t),

(31)
d∆Nq(t)

dt
=− 1

τ
∆Nq(t)+KqSq(t)∆N/0(t)−∑

l
KlSl(t)∆Nl(t)+F∆Nq(t), (32)

dSq(t)
dt

=− γqSq(t)+2Kq
(
Sq(t)+1

)(
∆N/0(t)−

1
2

∆Nq(t)
)
+FSq(t). (33)

The population inversion ∆N/0 is the average population inversion (common to
each mode) while ∆Nq(t) is the population inversion associated to each mode.
The time τ is the lifetime of the laser upper level transition and γq is the inverse of
this lifetime, estimated by [16]

γ
−1
q =− 2L

c ln(R1R2(νq))
, (34)

where L is the cavity length and R1 and R2 the reflection coefficients of the mirrors
of the Fabry-Perot cavity. The parameter ∆NPp is the population inversion due
to the pumping process. The coefficient Kq describes the amount of stimulated
emission coupled to the qth mode. It is defined as [16]

Kq =
ωq

ε0

κ

∆ωa

1

1+

[
2(ωq−ωa)

∆ωa

]2 , (35)

where ωa is the central frequency of the gain curve and ∆ωa the full-width at
half maximum of the gain curve. The coupling constant κ comes from the scalar
susceptibility for a homogeneously-broadened Lorentzian transition, defined by
[16]

κ =
3ελ 3ωaγrad

4π2 , (36)

where ε is the permittivity, λ = 2πc/ω the wavelength, and γrad the radiative
decay rate of the atomic transition given by [16]

γrad =
qeω2

a
6πε0mec3 , (37)
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where qe is the electron charge and me its mass.
Langevin forces F∆N/0 , F∆Nq , and FSq are added to each equation. The magni-

tude of the Langevin forces is defined as follows [17, 18]

F∆N/0(t) =

√
D∆N/0∆N/0

∆t
x∆N(t), (38)

F∆Nq(t) =

√
D∆Nq∆Nq

∆t
x∆N(t), (39)

FSq =

√
DSqSq

∆t
xSq(t), (40)

where ∆t is the sampling time used in the numerical simulation, D∆N/0∆N/0 , D∆Nq∆Nq ,
and DSqSq are the diffusion coefficients and x∆N(t) and xSq(t) are independent
Gaussian random variables with a zero mean value and a variance of unity. The
random variable x∆N(t), that appears in the inversion population equations (38)
and (39), can be attributed to pump noise while the random variable xSq(t) is due
to spontaneous emission. These stochastic terms are numerically generated by
computer random numbers. Let us precise that, in our approach, we only consider
noise sources such as pump noise and spontaneous photon emission. External
phenomena, such as acoustic vibrations for example, are not taken into account.
The diffusion coefficient D∆Nq∆Nq is related to D∆N/0∆N/0 by the following relation

D∆Nq∆Nq =

(
Kq

K0

)2

D∆N/0∆N/0. (41)

3.2. Studied fiber laser
We will know apply the previously described model to a standard fiber laser.

We consider the Yb-doped fiber laser described in figure 3. The fiber of length
L is pumped at 915 nm by a laser diode. The fiber laser cavity is formed by two
fiber Bragg gratings (FBGs) around 1064 nm. Their reflection coefficients for the
intensity are respectively R1 and R2. The output laser field Eω(t) around 1064
nm propagates in a second-order nonlinear medium (a periodically-poled lithium
niobate crystal for example) and creates a new green laser field E2ω(t) at 532 nm
through the SHG process.

The reflectivity R1 of the input FBG is assumed to be 100 % over a large
bandwidth. In the following, we will have to consider the frequency dependence
of the reflectivity R2 of the output FBG. For simplicity, we assume a Gaussian
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Figure 3: Schematic representation of the studied Yb-doped fiber laser.

shape

R2(ν) = R2Maxe
−
(ν−ν0)

2

∆ν2 , (42)

where R2Max is the maximum reflectivity of the grating, ν0 its central frequency
(its corresponding central wavelength is λ0 = c/ν0) and ∆ν its half-width at 1/e
of the maximum reflectivity.

3.3. Numerical simulations
The model (31)–(33), applied to the previous fiber laser, is numerically solved

in order to obtain the time evolution of the number of photons Sq(t) of each mode.
From Sq(t), the field Eq(t) of each mode is calculated as follows

Eq(t) =
√

Sq(t)eiωqt . (43)

The total laser field is the sum of each individual field

Eω(t) =
N/2

∑
q=−N/2

Eq(t). (44)

The total intensity Iω(t) of the multimode fiber laser and the intensity Iq(t)
of each mode are calculated from Eω(t) and Eq(t), respectively, using equation
(1). It is numerically straightforward to decompose Iω(t) in its average value
〈Iω〉 and in its time-dependent fluctuations δ Iω(t) similarly to equation (2). The
RIN of the multimode laser is then calculated using equation (3). Similarly, the
intensity Iq(t) of each mode is decomposed in its average value 〈Iq〉 and in its
time-dependent fluctuations δ Iq(t). We can therefore calculate the noise of each
mode by calculating its PSD 〈| ˜δ Iq(ν)|2〉. However, instead of dividing the PSDs
by the square of the average intensity 〈Iq〉2 of each mode (which would gives
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the RIN of each mode), we divide all the individual PSDs by the same quantity,
namely the square of the total average intensity 〈Iω〉2. This leads to what we call
the normalized power spectral density PSDq(ν) of each mode

PSDq(ν) =
〈| ˜δ Iq(ν)|2〉
〈Iω〉2

. (45)

This quantity is more convenient to compare between themselves the fluctuations
of each mode.

Using these definitions we are able to plot the RIN of the multimode laser
and the normalized PSDs of each mode. The parameters we used in the model
are summarized in table 1. The model is solved using Matlab and a 4th-order
Runge–Kutta method. The fast Fourier transform algorithm is used to plot the
PSDs from the time evolution of the intensities. The pump power is set to 100
mW and the output laser power is around 5 mW.

Parameter Symbol Value Unit
Cavity length L 5 m

Front mirror reflectivity R1 1
Output mirror reflectivity at central wavelength R2Max 0.8

Mode effective index n 1.47
Ion concentration Nt 1023 m−3

Central wavelength λ0 1064 nm
Free spectral range δν 20 MHz
Gain spectral width ∆νa 10 THz

Lifetime of the upper level transition τ 840 µs
Spectral width of the output FBG ∆ν 2 GHz

Diffusion coefficient of
the normalized population inversion ∆N/0

D∆N/0∆N/0 10−6

Diffusion coefficient of
the qth photons number Sq

DSqSq 10−9

Table 1: Values of the parameters used in the model.

The numerical resolution of the model is quite time and memory consuming,
in particular if we consider a large number of modes and a broad frequency range
for the RIN. In the following, and with no loss of generality, we will limit our
simulation to a laser with 9 modes and to a frequency range of 1kHz-100MHz.
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Figure 4 shows the RIN spectrum of the 9-mode fiber laser (black curve). The
normalized PSDs of the 9 modes are also plotted (color curves). The total RIN of
the 9-mode laser exhibits an excess noise just above −120 dB/Hz at low frequen-
cies, a relaxation frequency peak at 50 kHz and several high-frequency peaks.
These high-frequency peaks correspond to the beating frequency at the FSR δν

of the cavity and its harmonics. They are due to the cross products generated
when the modulus of the sum of the fields [equation (44)] is squared in order to
calculate the total intensity. Since the number of modes considered in this exam-
ple is 9, we have 8 beating frequencies in figure 4. Note that the simulated total
RIN presented in 4 is similar to the RINs that can be measured experimentally in
standard multimode fiber lasers.
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Figure 4: Laser RIN of a 9-mode fiber laser (in black) and normalized PSDs of each mode (in
colors).

The normalized PSDs are also reported in figure 4 for each mode and have a
different behavior. First, they do not exhibit the beating high frequencies visible
on the total RIN. Since these beating frequencies are due to the cross products
generated by the calculus of the total intensity, they cannot appear for individual
modes. Secondly, if the relaxation frequency peak at 50 kHz is still visible on
each normalized PSD, a new peak at 15 kHz occurs. This peak is due to the
antiphase dynamics of the mode competition. This phenomenon is well-known in
multimode lasers [13, 19, 20]. This peak corresponds to the frequency at which
modes exchange energy due to cross-saturation dynamics. This peak is visible
on the noise spectrum of each individual mode. When the mode intensities are
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similar, the antiphase dynamics of mode competition leads to the cancellation of
the fluctuations when the total RIN is considered [13]. Note that this occurs only
if the intensities of modes are similar.

We also note that all individual PSDs have approximately the same level of
noise. Indeed, with a spacing between modes of 20 MHz and a bandwidth of the
output FBG of 2 GHz (see table 1), all the modes have approximately the same
losses and, consequently, the same noise.

To conclude on this part, we have established the model (31)–(33) to describe
the dynamics of a multimode fiber laser with intensity noise. The numerical res-
olution of the model has allowed us to plot the PSDs of individual modes and the
total RIN of the laser. This model is, at the best of our knowledge, an original
model including spatial hole burning (to take mode competition into account) and
Langevin forces (to take noise into account). It allows to simulate the complex
amplitude of each mode to calculate both the individual RINs and the total RIN
of the laser. In the following, we will apply this model to study the RIN of a
frequency-doubled multimode fiber laser.

4. RIN of the frequency-doubled multimode laser

In this part, we use our model to numerically calculate the total electric field
of a multimode fiber laser. By raising this field to the power of 2, we will obtain
the electric field of the frequency-doubled laser. Then, we will be able to compare
the RIN of the laser before and after the frequency-doubling operation. In order
to compare the results with the analytical study of Section 2, we start with a two-
mode laser. Then, we will investigate a laser with a larger number of modes.

4.1. Two-mode laser
We first consider the set of equations (31)–(33) with only two modes at two

different frequencies. The physical parameters of the laser are the same than in
table 1 (except for the spectral width of the output FBG, as we will see below).
The optical frequency of one mode coincides with the central frequency of the
output FBG, the other frequency is up-shifted by the FSR value (20 MHz in our
case).

Two different values of the output FBG bandwidth are considered in the fol-
lowing. Figure 5 plots the reflectivity of both FBGs as a function of the optical
frequency, assuming a Gaussian shape [equation (42)]. One value of the band-
width is 2 GHz. With this value, we can consider that both modes lie in the
vicinity of the maximum reflectivity of the grating (see figure 5) and experience
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Figure 5: Reflectivities of the two output FBGs considered in our study.

approximately the same losses. In this case, both modes have the same average
intensity (α = 0 dB) and the same RIN (γ = 0 dB). This case corresponds to point
(I) in figure 2. The second case corresponds to a bandwidth of the output FBG of
20 MHz. Although this small value is not achievable for real FBGs, it allows us to
take into account different reflectivities, i.e. different losses, for both modes. As
a consequence, they have different average intensities and different RINs. In this
case, the ratio between the average intensities of both modes is α = −6 dB and
the ratio between their RIN is γ = 20 dB. This case corresponds to point (II) in
figure 2. Note that these values of α and γ have been obtained after having solved
numerically the model and confirm that we are in the case where the mode with
the lowest intensity exhibits the highest RIN.

Figure 6(a) shows the calculated RINs of the two-mode laser before (black
curve) and after (green curve) frequency-doubling in the case of point (I) of figure
2. According to the analytical study of Section 2, we confirm a 6 dB increase
of the low-frequency RIN. In the following, we will define the low-frequency
RIN as the RIN over a frequency range below the relaxation peak [50 kHz in the
case of figure 6(a)]. We also observe that, according to equation (14), the RIN at
frequency ω exhibits only one frequency peak at the FSR while the RIN at 2ω

exhibits, according to equation (22), two frequency peaks: one at the FSR and the
second one at twice the FSR. Finally, we note that no low-frequency peak due to
the mode competition is visible on both RINs. Indeed, as mentioned in Section
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3.3, the antiphase behavior of the dynamics of both individual modes leads to the
cancellation of this peak on the total RIN, especially when the modes have the
same intensity.
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Figure 6: Numerical simulation of RINs of a two-mode fiber laser before and after frequency
doubling. (a) α = 1 et γ = 0 dB [point (I) of figure 2] ; (b) α = 0,25 et γ = 20 dB [point (II) of
figure 2].

Figure 6(b) shows the calculated RIN spectra, before and after frequency dou-
bling, when the average intensities of both modes are different, corresponding
to point (II) of figure 2. We immediately observe that the increase of the low-
frequency RIN is 8.3 dB, instead of 6 dB, like in the previous case. This value
is in perfect accordance with the value of Γ obtained from figure 2 at point (II).
These observations confirm the validity of both the analytical approach presented
in Section 2.2 and the multimode laser model we have presented in Section 3.1.

The main result here is that the frequency doubling operation can lead to an
increase of the RIN of more than 6 dB at low frequencies for a two-mode laser,
unlike a single-mode laser for which the increase is only 6 dB. This situation
occurs when the mode with the lowest intensity exhibits the highest RIN, which
is the case for this two-mode laser.

We also observe in figure 6(b) that the antiphase peak is visible at 40 kHz on
both the RIN before and the RIN after frequency doubling. Let us recall that this
peak, visible on each individual RIN, is due do energy exchanges between modes.
When modes have the same intensity, the peak vanishes when the total RIN is
plotted, because of the antiphase dynamics [13]. Here, modes have different in-
tensities and their sum does not compensate the antiphase dynamics. Therefore,
an oscillation remains on both the total RIN and the frequency-doubled RIN.

Let us now consider a fiber laser with a larger number of modes.
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4.2. 15-mode laser
In this part, we numerically solve our model with 15 modes. This number of

modes is much below the number of modes of a real fiber laser, which could be
of the order of one thousand for example. Here, we deliberately limit the number
of modes to save computational time and memory, with no loss of generality. The
parameters used in the simulation are the same than in table 1. Similarly to the
previous section, we consider two different values of the output FBG bandwidth.
This allows us to simulate two cases. In the first case, with a large FBG bandwidth
of 2 GHz, all the modes have approximately the same intensity. In the second one,
with a narrower FBG bandwidth of 40 MHz, the modes experience different losses
and have different output intensities.

Figure 7(a) plots the calculated RIN before and after frequency doubling in
the first case (same intensity for all modes) and figure 7(b) plots the RINs in the
second case (different intensities for the modes).
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Figure 7: Numerical simulation of RINs of a 15-modes laser before and after frequency doubling.
(a) Case of 15 modes with the same average intensity and the same RIN ; (b) case of 15 modes
with the different average intensities and RINs.

In figure 7(a), we observe that the increase of the RIN, due to frequency dou-
bling, is 6 dB at low-frequency. This is in accordance with the analytical two-
mode-laser study of Section 2 where we have shown that the increase of the low-
frequency RIN is 6 dB when the mode intensities are the same. We note in this
figure the larger number of beating frequencies at the FSR and its harmonics, due
to the larger number of modes considered in this study.

We also observe a new phenomenon in figure 7(a). An antiphase peak at 10
kHz is visible on the frequency-doubled RIN while it does not appear on the initial
RIN. As explained in more details in Appendix A, this new phenomenon starts
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to be visible when the number of modes is greater than two. This is due to new
cross products in the frequency-doubled intensity that avoid the antiphase low-
frequency peak to be cancelled out. Let us point out that the observation of this
new phenomenon is made possible because our model takes into account the mode
competition in the fiber laser.

In figure 7(b), when the 15 modes have different average intensities and RINs,
the increase of the low-frequency RIN is 10 dB. Similarly to the two-mode case
described in Section 4.1, this increase of more than 6 dB is attributed to a transfer
of noise from modes with higher RINs to modes with higher intensities, accord-
ingly with our analytical study of Section 2.

In figure 7(b), we also observe that the number of high-frequency peaks at
the FSR and its harmonics is smaller than in figure 7(a). Indeed, with a narrower
output FBG, some modes have less intensity than the others and some modes
(farthest away from the central frequency of the FBG) are even below threshold.
In this case, the number of modes that really contribute to the laser field is less
than 15.

Finally, we observe in figure 7(b) that an antiphase peak at 30 kHz remains vis-
ible even on the initial RIN. As already discussed in Section 4.1, this is explained
by the fact that, when mode intensities are different in a multimode laser, the an-
tiphase behavior cannot be cancelled out on the total intensity. The frequency at
which energy exchange occurs, remains therefore visible on the RIN spectrum of
the laser.

In this section, we have presented numerical simulations of the model de-
scribed Section 3 to study the RIN evolution of a multimode fiber laser before
and after a frequency-doubling operation. We have investigated two cases: a
two-mode laser and a 15-mode laser. In both cases, the numerical results have
confirmed the theoretical prediction of Section 2: after frequency-doubling, an
increase of the RIN of more than 6 dB is obtained if the modes experience differ-
ent intensities and, consequently, different RINs. We have limited our study to a
maximum of 15 modes to limit the computational time but this approach may be,
in principle, extended to a larger number of modes.

5. Conclusion

In this work we have proposed a theoretical explanation of a phenomenon
that has already been experimentally observed in frequency-doubled lasers: an in-
crease of more that 6 dB of the low-frequency RIN after the frequency-doubling
operation. Our approach has been very simple. We have just considered the SHG
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as the squaring of a multimode electric field. We have started our study with a
two-mode laser and have been able to propose an analytical formula proving that
an increase of more tan 6 dB is possible when the two-mode laser is frequency
doubled. We have shown that this only occurs if both modes have different in-
tensities and if the mode with the lowest intensity has the highest RIN. This is
explained by the coupling, trough the nonlinear medium, between the fluctuations
of the nosiest mode with the intensity of the highest mode.

Since this analytical approach is not easily transposable to a larger number
of modes, we have developed a theoretical model to describe the dynamics of a
multimode fiber laser with noise. To properly described the multimode fiber laser,
the model includes noise sources (through Langevin forces) but also the spatial
hole burning effect which plays a major role in the dynamics of multimode fiber
lasers.

By solving numerically this model, we have been able to square the electric
field of the multimode fiber laser and study the evolution of the RIN before and
after frequency doubling. We have first numerically simulate a two-mode laser
to compare the results with our analytical study. Then we have studied a 15-
mode laser. Our numerical results have confirmed that an increase of the low-
frequency RIN is obtained when the modes have different intensities while an
increase of only 6 dB is obtained when all mode intensities are equal, according
to our analytical prediction.

In multimode fiber lasers, and more generally in any multimode lasers, the
modes that experience more losses than the others are nearer threshold and ex-
perience a higher RIN. As a consequence, and according to the theory we have
developed in this paper, a frequency-doubled multimode laser will always exhibit
a low-frequency RIN 6 dB higher than the RIN of the laser at the fundamental
frequency. This result could explain the increase of the excess noise observed
experimentally in some frequency-doubled laser architectures.

This paper has also been the occasion to present an original model to study the
dynamics of a multimode fiber laser with noise. This model has been successfully
used to study a frequency-doubled laser. It has also highlighted the possibility
to study some behaviors of the laser related to the antiphase dynamics of mode
competition. This model may also be of great interest for dynamical studies of
multimode fiber lasers outside the scope of SHG.

Let us now point out some possible perspectives of this work. First, extend-
ing this work to more realistic systems with larger numbers of modes would be
very relevant. This would require computational powers that are relatively easily
achievable today. The model we have developed and presented in this paper does
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not take the phase noise into account. It could be judicious to add an equation
for the phase into the model to study the possible coupling between phase and
intensity noise through the nonlinear medium. Our approach should be valid for
any kind of fiber lasers and it would be interesting to theoretically study the influ-
ence of different parameters of laser systems, such as laser output power, length of
doped fiber, FBG bandwidths, parameters of SHG crystals, etc. Finally, it would
be very interesting to compare these theoretical results to experimental ones. It
would allow to test the validity of the different hypothesis we made to develop our
approach.
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Appendix A. Intensity calculation of a frequency-doubled 3-mode laser

The aim of this appendix is to understand the presence of the antiphase low-
frequency peak on the RIN of the frequency-doubled 15-mode laser in figure 7(a).
To this end, we provide details of the calculation of the intensity of a 3-mode laser
after frequency doubling. We will show that, from a number of modes equal to 3,
new terms in the frequency-doubled intensity are responsible for the presence of
the antiphase peak.

Using the same method than in Section 2.2, we write the total electric field
Eω(t) as the sum of 3 electric fields E1(t), E2(t) and E3(t) at three adjacent fre-
quencies of the Fabry-Perot cavity

Eω(t) = E1(t)+E2(t)+E2(t). (A.1)

The electric field of each mode is expressed as in equation (11). To calculate
the frequency-doubled intensity I2ω(t), we first square the electric field Eω(t) to
obtain the frequency-doubled field E2ω(t) [equation (4)]. Then, by taking the
modulus square of E2ω(t) [equation (5)], we obtain I2ω(t)
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I2ω(t) =η

[
I2
1 (t)+ I2

2 (t)+ I2
3 (t)+4I1(t)I2(t)+4I1(t)I3(t)+4I2(t)I3(t)

+4I2(t)
√

I1(t)I3(t)

+4I1(t)
√

I1(t)I2(t)cos(δωt)+8I1(t)
√

I2(t)I3(t)cos(δωt)

+4I2(t)
√

I1(t)I2(t)cos(δωt)+8I3(t)
√

I1(t)I2(t)cos(δωt)

+4I2(t)
√

I2(t)I3(t)cos(δωt)+4I3(t)
√

I2(t)I3(t)cos(δωt)

+4I1(t)
√

I1(t)I3(t)cos(2δωt)+2I1(t)I2(t)cos(2δωt)

+8I2(t)
√

I1(t)I3(t)cos(2δωt)+4I3(t)
√

I1(t)I3(t)cos(2δωt)
+2I2(t)I3(t)cos(2δωt)

+4I1(t)
√

I2(t)I3(t)cos(3δωt)+4I3(t)
√

I1(t)I2(t)cos(3δωt)

+2I1(t)I3(t)cos(4δωt)
]
, (A.2)

where I1(t), I2(t) and I3(t) are the intensities of each mode and δω the FSR of
the cavity. We suppose that the RIN of each mode is similar to the RIN of a
single-mode laser, as shown in figure 1 for example.

In expression (A.2), we can define three different contributions: I2ωlf at low-
frequency, I2ωhf at high-frequency, and I2ωcp for a new term, corresponding to a
new cross product. These contributions write

I2ωlf(t) =η [I2
1 (t)+ I2

2 (t)+ I2
3 (t)+4I1(t)I2(t)+4I1(t)I3(t)+4I2(t)I3(t)], (A.3)

I2ωhf(t) =η

[
4I1(t)

√
I1(t)I2(t)cos(δωt)+8I1(t)

√
I2(t)I3(t)cos(δωt)

+4I2(t)
√

I1(t)I2(t)cos(δωt)+8I3(t)
√

I1(t)I2(t)cos(δωt)

+4I2(t)
√

I2(t)I3(t)cos(δωt)+4I3(t)
√

I2(t)I3(t)cos(δωt)

+4I1(t)
√

I1(t)I3(t)cos(2δωt)+2I1(t)I2(t)cos(2δωt)

+8I2(t)
√

I1(t)I3(t)cos(2δωt)+4I3(t)
√

I1(t)I3(t)cos(2δωt)
+2I2(t)I3(t)cos(2δωt)

+4I1(t)
√

I2(t)I3(t)cos(3δωt)+4I3(t)
√

I1(t)I2(t)cos(3δωt)

+2I1(t)I3(t)cos(4δωt)
]
, (A.4)

I2ωcp =4I2(t)
√

I1(t)I3(t). (A.5)
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As stated previously in Section 2 for two modes, the low-frequency term I2ωlf
has it main contribution on the total RIN at low frequencies (typically below 1
MHz). The contribution of the high-frequency term I2ωhf on the total RIN consists
in high-frequency peaks at the FSR and its harmonics (until 4δω in the present
case). The cross-product term I2ωcp has also its contribution on the total RIN
at low frequencies because it depends only on the three intensities and does not
include any beating terms. However, this term writes quite differently than the
terms in I2ωlf and will be treated separately.

Using our numerical model for three modes, we have been able to reconstruct
the three contributions I2ωlf, I2ωhf and I2ωcp. In the model we have considered
three modes with the same intensity. Figure A.8 plots the RIN of these three terms
together with the RIN of the total intensity I2ω . We clearly see that the RIN of
I2ωlf is similar to the RIN of a single-mode laser exhibiting an excess noise floor at
low frequencies and a relaxation peak at 70 kHz. On the RIN of I2ωhf, we observe
the high-frequency peaks at the FSR and its harmonics, as expected from equation
(A.4). The interesting phenomenon comes from the RIN contribution of I2ωcp. On
this RIN, we observe a new peak at 24 kHz, corresponding to the antiphase peak
due to mode competition. Actually, this peak is visible on the individual RIN of
each fundamental intensity Ii(t) (with i = 1,2,3) and each frequency-doubled in-
tensity I2

i (t) (not plotted in figure A.8). This peak corresponds to the frequency
at which the three modes exchange energy due to the mode competition. In the
time domain, this leads to an oscillation of the intensity of each mode. Because
of its antiphase nature, and only if the mode intensities are of the same order of
magnitude, this oscillation disappears when the sum of the fundamental intensi-
ties I1(t)+ I2(t)+ I2(t) is considered, as already pointed out in Section 3 (figure
4) and Section 4 (figure 6). We see from figure A.8 that the oscillation also van-
ishes on the low-frequency contribution I2ωlf of the frequency-doubled intensity.
This is explained by the fact that, in the expression (A.3) of I2ωlf, all the individ-
ual intensities have the same weight. The oscillations on each individual mode
can therefore compensate each other. With three modes, the frequency-doubled
intensity I2ω of the laser reveals the new contribution I2ωcp. This term has not
a mathematical form allowing the antiphase oscillations of modes to compensate
each other. Thus, the antiphase peak is clearly visible on the RIN of I2ωcp in figure
A.8 and, then, on the RIN of the total intensity I2ω .

To summary this part, we have shown that the antiphase peak cannot disappear
on the RIN of a the frequency-doubled 3-mode laser, even if the intensities of the
modes are equal. This is due to the additional low-frequency contribution I2ωcp.
This term is generated by the nonlinear coupling between three modes due to
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Figure A.8: Numerical simulation of the RIN of a frequency-doubled 3-modes laser and its de-
composition in different intensity contributions.

SHG. From a number of modes equal or greater than three, this term is always
present and its complexity increases with the number of modes. For example, for
a 4-mode laser, this term is equal to

I4modes
2ωcp = 4I2(t)

√
I1(t)I3(t)+4I3(t)

√
I2(t)I4(t)+8

√
I1(t)I2(t)I3(t)I4(t). (A.6)

In this appendix, we have shown that, in a frequency-doubled multimode laser
(from a number of modes ≥ 3), due to the SHG process, the low-frequency con-
tribution of mode competition systematically appears on the RIN of the laser.
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