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Abstract: The performance of metasurfaces measured experimentally often discords with
expected values from numerical optimization. These discrepancies are attributed to the poor
tolerance of metasurface building blocks with respect to fabrication uncertainties and nanoscale
imperfections. Quantifying their efficiency drop according to geometry variation are crucial
to improve the range of application of this technology. Here, we present a novel optimization
methodology to account for the manufacturing errors related to metasurface designs. In this
approach, accurate results using probabilistic surrogate models are used to reduce the number of
costly numerical simulations. We employ our procedure to optimize the classical beam steering
metasurface made of cylindrical nanopillars. Our numerical results yield a design that is twice
more robust compared to the deterministic case.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In the past decades, we have witnessed an increased interest for metasurfaces to realize compact
optical components with exceptional wavefront engineering capabilities [1–5]. Metasurfaces
introduce highly resolved phase, amplitude, and polarization changes on the incoming wavefront
over very short propagation distances with high resolution [3–8]. Consequently, the sophisticated
nanofabrication facilities developed in the past few years, together with the exotic features of
metasurfaces, have led to peculiar optical phenomena ranging from negative refraction [9],
sub-diffraction optical microscopy [10] and broadband achromatic lenses [11,12].

Notwithstanding, the nanofabrication process incorporates stochastic disorder and systematic
fabrication errors that are usually non-negligible and that often degrade the performance
compared to the numerical simulation predictions. It appears indispensable to consider fabrication
imperfections directly during the metasurface’s optimization procedure. The most straightforward
design strategy relies on conducting brute force optimization where each individual design is
accompanied by a certain number of simulations to characterise the impact of noise in each
design parameter. The brute force approach certainly fails to get the most robust design in the
parameter space, notably when a considerable number of parameters is considered. Ideally,
optimization techniques would incorporate the fabrication imperfections to guarantee that the
designs exhibit robustness with respect to the fabrication inaccuracies.

Recent studies, which have demonstrated efficiencies beyond traditional engineering approach,
consist on coupling the simulation process to automated optimization algorithms [13–19].
However, these optimizations are usually carried out in a complete deterministic sense, i.e.,
making the assumption that the real system is perfectly described by its numerical model
Deterministic optimization neglects however all factors of inaccuracies. Among them, one
usually distinguishes errors that are clearly identified and can be controlled, to uncertainties
that are related to a lack of knowledge of the system and cannot be reduced. The combination
of uncertainties and errors affect the design process, inducing large discrepancies between the
numerically predicted performance and the reality. In the context nanophotonic designs, numerical
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errors are typically related to the simulation technique, i.e., the spatial and temporal discretization,
the convergence criterion employed, etc. If these factors can be reduced, notably following
validation procedure by performing a numerical convergence studies, they do not account for
experimental uncertainties and manufacturing tolerances. For example, the characteristics of
the incoming waves or the geometry of the nanoscale device that may deviate from nominal
conditions. As a consequence, the metasurfaces designed and optimized without accounting for
uncertainties may exhibit unexpected behaviors in real conditions, yielding a significant loss of
performance.

In the field of nanophotonics, geometric robustness has been lately studied in the gradient-based
topology optimization [20,21]. These strategies are essentially limiting the parameter space,
focusing exclusively on designs that meet fabrication restrictions. Yet, the topology-based
optimization methods generally converge to a local solution and are highly sensitive to the initial
design [22,23]. An alternative methodology for the optimization of robust metasurfaces leverages
on a concept termed Uncertainty Quantification (UQ) that has only been introduced in this field
recently [24] using a large number of Monte Carlo simulations. In [25], a global evolutionary
strategy that can take into account the design robustness has been deployed to optimize a color
filtering metasurface. The robust design process involves significant computation efforts in
comparison to the classical evolutionary algorithms, which are already inherently costly.

We have recently illustrated in [18,19,26] that statistical learning-based optimization techniques,
specifically applied to metasurface design, can outperform most of the traditional global
optimization approaches. With respect to other deterministic optimization methods, statistical
learning is applied on meta-model, which is obtained by fitting the numerical results obtained
during the design of experiment, in order to reduce significantly the number of fullwave
simulations. In this work, we extend this statistical learning optimization methodology to reduce
the computation cost and to account for nanofabrication imperfections.

2. Problem formulation

Several formulations can be adopted in the perspective of considering uncertainties during the
early design phase. We refer the reader to the review article from Beyer & Sendhoff [27] to
build a comprehensive understanding of this field. Most approaches consider the uncertain
parameters of the system as random variables, affecting the output of the system. Consequently,
the cost function to be optimized becomes also a random quantity. One can distinguish between
two main classes of robust optimization methods to tackle this randomness: (i) Approaches
that evaluate a robustness measure (e.g., expectancy or worst value) of the cost function, using
some numerical techniques. The latter are used to formulate a fully deterministic optimization
problem. In this case, the difficulty is related to the estimation of a relevant robustness measure;
(ii) Approaches that aim at directly optimizing the noisy cost function. Here, the difficulty is
related to the minimization of a non-deterministic function. It requires using specific and usually
costly optimization methods. The choice of one of these two approaches typically depends on
the application domain.

In the context of metasurfaces design, we consider that the main source of uncertainty concerns
the manufacturing tolerances. As a consequence, our objective is to determine a metasurface
design that exhibits a high efficiency, corresponding to a low value of a cost function, accounting
for metasurface building blocks uncertainties, i.e. potential variation of the nanostructure
geometries. Adopting the first approach mentioned above, we formulate an optimization problem
based that relies on robustness measures. We consider the geometry of the metasurface denoted
by G and parameterized by a set of variables x ∈ D ⊂ Rn. These variables are optimized
according to a cost function f computed from the solution fields E. Thus the optimization
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problem without uncertainty can be written as:

Minimize x∈D f (E(G(x))) . (1)

To account for random perturbations of the geometry, we consider that the geometrical
parameters are a set of independent random variables X, which are characterized by their
probability density functions ρX . Note that if in the following, we make the assumption that the
perturbations are uniformly distributed, our methodology could be extended to other distributions,
e.g., normal or an empirical distribution of observed manufacturing errors. In the uniform case,
the random variables X are simply determined by their expectancy values µX and maximum
perturbations δX . In this non-deterministic context, x are only instances of the random variables
X and thus cannot be considered as optimization variables anymore. As a consequence, the
optimization is applied to µX . It corresponds to the nominal parameters prescribed during the
manufacturing phase, whereas δX is imposed by the accuracy of the fabrication process.

To complete the formulation, one should also choose a robustness measure for the optimization
problem. Note that, similarly to the design parameters X, the cost function itself becomes by
propagation a random quantity F. To fix the ideas, one could consider worst-case measure so
as to ensure reaching the determined efficiency level no matter which are the manufacturing
perturbations. We define the worst-case cost function as a function of the design parameters µX
in presence of uncertainty as:

WCF(µX) = max
x∈[µX−δX ;µX+δX ]

f (E(G(x))). (2)

The corresponding optimization problem can be summarized as:

Minimize µX ∈D WCF(µX). (3)

If this formulation allows to improve the worst efficiency value due to manufacturing tolerances,
it does not provide information about the distribution of the efficiency. It is therefore considered
as conservative. A second drawback is related to the fact that this problem of Min-Max type is
essentially non-differentiable.

A less conservative approach can be adopted by considering as robustness measure the
α−quantile Qα

F , i.e. the value for which the probability of F is lower than Qα
F is α:

Px∈[µX−δX ;µX+δX ]

[︁
f (E(G(x)))<Qα

F
]︁
= α. (4)

The corresponding optimization problem can be written as:

Minimize µX ∈D Qα
F (µX). (5)

For instance, by setting α = 0.9, one minimizes the cost function values obtained for 90% of
manufactured designs.

An alternative robustness measure is to consider the characteristics of the probability density
function of the efficiency. Typically, one can minimize the expectancy value of the cost function
µF to improve the average efficiency of the metasurface. However, this does not prevent from a
large degradation of the performance for some geometry perturbations. Therefore, one often
takes into account a second measure based on the variance of the cost function σ2

F, to reduce
the dispersion of efficiency values as most as possible. It results in a bi-objective optimization
problem:

Minimize µX ∈D

⎧⎪⎪⎨⎪⎪⎩
µF(µX) =

∫ µX+δX

µX−δX
f (E(G(x))) ρX(x) dx

σ2
F(µX) =

∫ µX+δX

µX−δX
(f (E(G(x))) − µF)

2 ρX(x) dx
(6)

This problem does not exhibit any loss of regularity, contrarily to the problem based on the
worst-case measure. However, a multi-objective optimization algorithm is required to solve
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the problem, relying on the Pareto front representing all possible compromises between the
two criteria (we refer to our Ref. [28] for more details about the multiobjective optimization).
With this approach, it is possible to obtain relatively high efficiency while avoiding a large
dispersion. Consequently, we will adopt this formulation in the following of this work. Note that
the robustness measures can also be included in the problem as constraints, meaning that one
may minimize the expectancy of F subject to a constraint on its α−quantiles.

2.1. Estimation of efficiency measures

To solve the optimization problem (6), we first estimate the different robustness measures, in
particular the expectancy of the cost function µF and its variance σ2

F. These integrals could
be evaluated by using high-dimensional numerical quadratures, like Gauss-Legendre rules or
sparse-grids methods, but the computational cost would increase quickly with the dimension of
the problem n. An alternate and easy approach is to employ Monte-Carlo estimators:

µ̂F(µX) =
1

NMC

NMC∑︂
i=1

f (E(G(xi))),

σ̂2
F(µX) =

1
NMC − 1

NMC∑︂
i=1
(f (E(G(xi))) − µ̂F(µX))

2 ,

(7)

where the instances xi are generated according to the probability density function ρX . However,
this approach is not computationally tractable when high-fidelity simulations are used for the
evaluation of E(xi), because of the low convergence rate of such estimators. Therefore, our
choice is to use a low-cost surrogate model f̃ (x), instead of the expensive high-fidelity model
f (E(G(x))). We detail below the construction of Gaussian Process models, that will be used for
both estimation of robustness measures and global multi-objective optimization.

2.2. Gaussian processes

Gaussian process regression models rely on the idea that designs that are close in the design
space share similar performance values. This intuition is encoded in the covariance function
k : X × X ↦→ R defining a Gaussian process (GP). The covariance function needs to be positive
semi-definite, such as the Gaussian or Matérn families. Here we use the Matérn-5/2 kernel,

that writes: k(x, x′) = σ2 ∏︁d
i=1

(︃
1 +

√
5 |xi−x′i |
θi

+
5(xi−x′i)

2

3θ2
i

)︃
exp

(︃
−

√
5 |xi−x′i |
θi

)︃
with σ2 the process

variance and θi>0 the length-scale for variable i. It corresponds to the assumption that the
underlying unknown black-box is twice differentiable. From this zero-mean GP prior Y(x),
given observations yn := (y1, . . . , yn) at a design of experiments x1:n := (x1, . . . , xn)

⊤, often
constructed via a Maximin Latin hypercube sample, the posterior distribution is still a GP,
Y(x)|x1:n, yn ∼ N(mn(x), s2

n(x)) where the corresponding predictive mean and variance are:

mn(x) = kn(x)⊤K−1
n yn; (8)

s2
n(x) = k(x, x) − kn(x)⊤K−1

n kn(x); (9)
where Kn = (k(xi, xj)1≤i,j≤n and kn(x) = (k(x, xi)1≤i≤n. Inferring the values of the hyperparame-
ters θ and σ2 is generally performed via maximum likelihood estimation. For more details, the
interested reader is referred to [29–31]. This ability to provide uncertainty on predictions is one
of the key features of GPs, especially for optimization.

2.3. Bayesian optimization under input uncertainty

The principle of Bayesian optimization (BO) is to replace the expensive black-box by a probabilistic
surrogate model,which is much cheaper to run [32]. This surrogate is used to select forthcoming
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evaluation parameter, relying on an acquisition function. Gaussian processes are the most
common surrogate model, and there are a variety of acquisition functions available, for more
details, see e.g., [33]. Here we solve (6), exploiting the fact that the numerical simulation can be
evaluated exactly at x to construct directly a surrogate f̃ of f . This f̃ is used instead of f in (2.1) at
the design points, enabling the fit of GPs for the mean and variance, µ̃F and σ̃F. Notice that by
doing so, the error related to the Monte Carlo estimation and surrogate modeling is ignored. For
some input noise distributions, such as the uniform or Gaussian ones, analytical approximations
of such errors are given in [34,35]. For the resulting bi-objective optimization problem, we
rely on the Expected Hypervolume Improvement (EHI) acquisition function [36]. Based on a
current estimation of the Pareto front, it corresponds to the expectation over the GP prediction of
the added volume to the current set of non-dominated solutions (i.e. solutions that belong to
the Pareto front). The resulting procedure, starting with a Maximin Latin hypercube sample as
design of experiments is implemented with the R packages DiceKriging [30] and GPareto
[37]. The procedure is summarized in Algorithm 1.

Algorithm 1: Bayesian Optimization of mean vs. variance for input noise
1 Input: f , n← n0, nmax, NMC
2 Generate an initial design of experiments of size n0, x1:n0 = {x1, x2, . . . , xn0 };
3 Evaluate yn0 ←

{︁
f (x1), f (x2), . . . , f (xn0 )

}︁
;

4 Train a surrogate model f̃ on (x1:n0yn0 );
5 while n < nmax do
6 Evaluate mean and standard deviation with (7) on f̃ at x1:n;
7 Train surrogate models of µ̃F and σ̃F;
8 Maximize EHI based on µ̃F and σ̃F to find xn+1;
9 y1:n+1 ← y1:n ∪ f (xn+1); x1:n+1 ← x1:n ∪ xn+1; n← n + 1;

10 Re-train the surrogate model f̃ on (x1:n, y1:n

3. Numerical results

In this section, we present a numerical illustration of our methodology outlined above. We
consider one of the most popular metasurface configurations (beam deflector) and compare the
performance in terms of robustness without and with the UQ analysis as stated in Eq. (1) and
Eq. (6), respectively. The main goal of this section is to illustrate the essential and significant
role of the UQ analysis in achieving robust design with respect to the fabrication uncertainties.
In other words, we present the optimization results for both the deterministic case and the UQ
optimization case and compare the robustness performance of the optimized designs with respect
to the fabrication imperfections.

In Fig. 1(a), we study a phase gradient metasurface made of periodic repetition of deflecting
unit cells composed of four cylindrical GaN nanopillars (green regions) placed over a semi-infinite
substrate of Al2O3 represented by the yellow region. We consider a normal incident plane wave
with an electric field polarized in the y-direction (from the substrate), and we aim at maximizing
the diffraction efficiency of the first-order mode η(0,−1) (i.e., by deflecting light in the y− z plane,
which is the plane of incidence) at the wavelength λ = 600 nm. To circumvent the undesired
diffraction inside the substrate, we consider a subwavelength period in the x-direction (300
nm) and we fix the unit cell deflecting period along y-direction as 1500 nm. Furthermore, the
height of nanopillars is fixed at h = 1000 nm during the optimization process. The considered
configuration involves seven optimization parameters as depicted in Fig. 1(a). The distances
between the four cylinders referred to as ρi ∀i ∈ {1, 2, 3}, as well as the diameters of the four
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cylinders Di ∀i ∈ {1, 2, 3, 4}. It is worth mentioning that the smallest feature size is fixed as 90
nm and the maximum distance between ridges can reach 222 nm. In this work, we consider only
the uncertainty associated with the diameter values, i.e., the four parameters Di ∀i ∈ {1, 2, 3, 4}.
Despite the fact that our methodology is general, to account for any other sort of noise, we
consider here a uniform noise distribution. In addition, the incertitude on the diameter values is
set to ±12 nm.

Fig. 1. (a): Schematic view of the metasurface unitary deflecting unit-cell geometry. The
cylindrical nanopillars have diameters Di ∀i ∈ {1, 2, 3, 4}. The distances between the four
cylinders are given by ρi ∀i ∈ {1, 2, 3}. The period along x and y are fixed as 300 nm, and
1500 nm, respectively. (b): Sketch of the optimization circumstances with and without UQ
analysis. The outer boarder Dmin = 90 nm and Dmax = 210 nm represent the diameter
limits in our configuration. The white box boarders are Dmin = 90 + 12 = 102 nm and
Dmin = 210 − 12 = 198 nm indicate the limits for the deterministic case (see X1Det and
X2Det for possible design parameters in this case). The UQ optimization is performed as
well in the white box, where the diameter values are perturbed using a uniform distribution
with ±12 nm as indicated by the grey box around X1UQ and X2UQ. In the UQ case, the
perturbations might be located in the blue zones. See the text for more details.

Fullwave simulations are based on a high order Discontinuous Galerkin Time-Domain (DGTD)
solver from the DIOGENeS [38] software suite using high order polynomial adaptation [18,19,39].

In Fig. 1(b), we present a sketch of the optimization setup. The distances between the cylinders
are not included in the figure as we are considering mainly the UQ on the diameter values.
Figure 1(b) represents only a schematic view of the diameter space that will be considered
according to the dimension of the parameter space (4D for four diameters). In our design, the
diameter values are varying between the minimum feature size Dmin = 90 nm and the maximum
diameter value Dmax = 210 nm (which is a sufficient value to achieve 2π phase shift as we
demonstrated in Ref. [18]). The limitation are depicted by the blue borders in Fig. 1(b). To avoid
optimization of nanostructure diameter values close to the borders and thus risking exceeding the
limit (between Dmin and Dmax) after adding the noise ±12 nm, we perform the optimization for
the deterministic case (see Eq. (1)) in the white box, bounded between Dmin + δd = 90+12 = 102
nm and Dmax − δd = 210 − 12 = 198 nm (Fig. 1(b)). In other words, during the optimization
iterations, the diameters for the deterministic case are allowed to vary only in the white box (see
X1Det and X2Det). After determining the optimized design (maximum deflection efficiency), a
uniform distributed noise ±12 nm is added to the optimized diameters to study the robustness.

For the UQ optimization, our objective is different from the one defined in the deterministic
case. In the UQ optimization, we seek an optimized design with high efficiency in the presence
of fabrication errors, see Eq. (6). However, the deterministic case finds best optimized design
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(highest efficiency), while not considering the robustness, which is usually performed as a
sequence step by perturbing the optimized diameters. For the UQ case, we perturb the diameters
during the optimization iterations with a uniform noise between ±12 nm (see the grey boxes
around X1UQ and X2UQ), seeking for designs highest mean deflection efficiency and the smallest
standard deviation with respect to the associated noise Eq. (6). In the UQ optimization, it is then
allowed to have designs at the borders between the white and the blue regions in Fig. 1(b), with
perturbation noise lying partially in the blue region (see X∗UQ2 for instance).

3.1. Deterministic case

For the deterministic case, the optimization process relies on EGO and no noise is applied to the
diameters (see Eq. (1)). The grey region in Fig. 2(a) refers to the DoEs phase where we considered
only 75 designs during the learning process. In the second phase, we performed 150 iterations
where an optimized design achieves an efficiency of 85% (in our optimization framework we
minimize 1 − η, i.e., we maximize η). The next step is to check the robustness of the optimized
design to the fabrication incertitude (for the diameter values only). For this purpose, we perturb
the optimized diameters with 100 uniform noise between ±12 nm, the results are presented in
Fig. 2(b). The black point at iteration 18 refers to the best design in Fig. 2(a) without noise. One
can directly notice that the average efficiency deteriorates to 75% (1 − η = 0.25) as denoted by
the horizontal brown line. Moreover, the points are not located around the mean value, indicating
that the variance of the noise is relatively high, the standard deviation (STD) is estimated as
0.075. These results indicate that the optimized design in the deterministic case is not robust to
the given noise and the efficiency is highly sensitive to the diameter values.

Fig. 2. (a): Optimization results for the deterministic case (without UQ analysis). The
optimization is performed in the domain delimited by the white box in Fig. 1(b), where the
diameter values vary between 110 nm and 204 nm. (b): Perturbation of the best design
obtained in the deterministic case in (a). The study is performed by considering 100 different
uniform perturbations of ±12 nm ((diameters only) of this reference design. The horizontal
line represents the mean value. The black star point at iteration 18 denotes the best design
from (a), in absence of added noise.

3.2. UQ optimization case

In the UQ optimization, we used the same DoEs as in the deterministic case, yet, since we are
solving a bi-objective optimization problem (see Eq. (6)), two metamodels are created [28]: one
for the mean and one for the standard deviation. These two metamodels are used to predict the
next design to be simulated. In the optimization phase, we have performed 259 iterations, the
results are presented in Fig. 3(a). The black points denote the objective values in the mean-STD
space predicted by the metamodels. The yellow points represent the set of non-dominated designs
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(Pareto front). Along the Pareto front, we refer to the three designs X∗UQ1, X∗UQ2, and X∗UQ3. The
performance of the two metamodels are demonstrated in Figs. 3(b) and (c), respectively. In
these figures, we present leave-one-out estimation of the exact values of the objective functions
from the metamodels versus these observed values. Specifically, the models use all observations
except one to predict this remaining value (without re-estimating the hyperparameters), see, e.g.,
[40] for the expressions and [41] for generalization to multiple-folds. In other words, when all the
points lie along the straight line, it means that the prediction is accurate. As it can be seen, the
metamodel for the mean shown in Fig. 3(c) is quite accurate compared to the metamodel for the
standard deviation exhibited in Fig. 3(d). The blue, red, and green color vertical lines correspond
to the values of the mean and the STD of the three points in Fig. 3(a), respectively. The prediction
of the red point X∗UQ2 is accurate for both the mean and the STD (the black points are matching
the black line in Figs. 3(b) and (c) at the the corresponding values). Furthermore, for the blue,
and green points, the prediction of the mean are accurate as depicted in Fig. 3(b). Nevertheless,
for these points, the prediction of the STD, are not fully accurate as it is demonstrated in Fig. 3(c).
In order to validate these results, we extracted the designs corresponding to the three color
points X∗UQ1, X∗UQ2, and X∗UQ3 and test the efficiency for 100 design with uniform noise on the
dimater values (as Fig. 2(b)). The results are depicted in Figs. 3(d)-(f), respectively. As expected,
the exact calculation of the mean matches exactly the predicted values from the metamodels,

Fig. 3. (a): Multiobjective optimization results for the mean and standard deviation of
the deflection efficiency for the UQ optimization case (see Eq. (6)). The optimization is
performed in the white box depicted in Fig. 1(b), where the diameter values vary between
102 nm and 204 nm, however, it is possible that the noise extends into the blue region (see
X2UQ in Fig. 1(b)). Grey points refer to the optimization data (prediction from the two
metamodels), the yellow points indicate the set of non-dominated designs (Pareto Front).
The color points refer to three designs along the PF that will be examined below. (b-c):
The leave-one-out error for the mean and STD metamodels, respectively. The color vertical
lines correspond to the values of the mean and the STD for the three color points in (a),
respectively. (d-f): Perturbations of three color points along the Pareto front indicated by
X∗UQ1, X∗UQ2, and X∗UQ3 in (a). The mean values estimated from (a) are represented by the
black points in (d-f), respectively. The study is performed using the same 100 uniform noise
utilised in the deterministic case shown in Fig. 2(b). The horizontal line represents the mean
value, the values of the STD are also given in the legend of each figure, respectively. The
black points in (d-f) refer to the mean values predicted by the metamodel from (a).
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horizontal line in Figs. 3(d)-(f) and black points. In addition, the exact value of the STD for
the red design is exactly the same as the predicted value (the two metamodels are accurate for
this design). However, the STD predictions for the blue and green designs do not fit the exact
values in Fig. 3(d) and Fig. 3(f) respectively. This was to be anticipated given that their STD
metamodels are not fully accurate at their corresponding values.

The two metamodels are able to predict the standard deviation and the mean without performing
additional simulations at each iteration. Moreover, we performed only 334 iterations, including
the DoEs. In fact, without the metamodeling procedure here, one has to perform classical brute
force search, simply by applying 100 uniform noise on 100 designs (for instance), which yields at
least 10 000 simulations. Furthermore, it is not evident that we would converge to the global set
of solutions. To summarize, we believe that the metamodeling methodology presented here is
the most suitable approach for studying the UQ analysis, despite some error associated to the
metamodeling. Yet, one has to find the best compromise between the number of simulations and
the prediction.

Interestingly, the best compromise between the two objectives is given by the design X∗UQ2.
The seven optimized parameters for the deterministic case and for the design X∗UQ2 are exhibited
in Table 1. Actually, the results depicted in Fig. 3(e) yield that the average mean efficiency is
approximately 73% (1-η(mean)=0.27) for the design X∗UQ2 when a 100 uniform noise distribution
is applied to the diameter values. This mean value is very close to the one obtained for the
deterministic design (see Fig. 3(b)). Nevertheless, in the UQ optimization, and unlike the
deterministic case, all the 100 designs are allocated around the mean value, meaning that the
standard deviation is remarkably small; in this case it is estimated as 0.03307. This value of

Fig. 4. Comparison between the performance of the best design obtained in the deterministic
case and the design X∗UQ2. The parameters are given in Table 1. (a) for the deterministic case
and (b) for the design X∗UQ2. In each case we plot the design without any noise (blue curves
in each case) and trace the performance when adding ±12 nm to the optimized diameters.
The optimized geometry in each case is shown in the insets.
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standard deviation is two times smaller than the one obtained for the deterministic design (under
the same noise). We have demonstrated that UQ optimization provides robust design with respect
to the fabrication errors as it is illustrated in Fig. 4.

Table 1. Optimization parameters for the best designs obtained from the deterministic case
(second column) and the best design obtained from the UQ optimization (third column).

Parameters Deterministic X∗UQ2

D1 198.00 181.96

D2 170.14 133.37

D3 127.15 126.34

D4 118.72 109.30

ρ1 216.6 90.00

ρ2 123.52 90.00

ρ3 134.83 183.63

4. Conclusion

In this article, we have presented a novel optimization framework to account for the manufacturing
errors of simple metasurface with classical cylindrical nanopillar geometry. Our procedure
relies on a global statistical learning based optimization method that substitutes the resource
intensive simulations with a surrogate model. Our numerical results reveal that incorporating
the UQ analysis in the optimization scheme is crucial in achieving robust design. Our approach
necessitates resolving a bi-objective optimization problem that accounts for the mean and the
variance change of the efficiency under the given noise. With the UQ analysis, we obtained
designs that are twice more robust than the analogous one in the deterministic case. Our
discovery enriches the field of metasurface inverse design with solution to rigorously consider
the manufacturing issues. Aside from the device reproducibility, the optimization of metasurface
designs in the presence of small manufacturing errors is a necessary step to address one of the
main cause of the performance deterioration between the simulation and the manufacturing
phase.
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