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Planar faults in layered Bi-containing perovskites studied by X-ray diffraction line profile analysis

Pro®le ®tting procedures associated with integral breadth studies and Fourier analysis are applied to the study of the complex Bi-containing layered perovskite SrBi 2 Nb 2 O 9 . Strong line broadening anisotropy is evidenced. Both `size' and `strain' effects contribute to the observed width. However, `size' broadening along the [00l] direction is essentially caused by stacking faults. The coherently diffracting domain sizes are deduced from Fourier analysis of the diffraction patterns and a rough estimate of the mean distance between faults is given. Thermal annealing signi®cantly decreases the stacking fault density.

Introduction

Since the early 1990s, great attention has been paid to ferroelectric thin ®lms for non-volatile random access memory application. For this type of application, the Aurivillius compound SrBi 2 Nb 2 O 9 (SBN) is a potential candidate because of its excellent resistance to polarization fatigue (Desu & Vijay, 1989). Aurivillius compounds are a family of oxide materials composed of stacked A mÀ1 B m O 3m+1 `perovskite like' layers separated by Bi 2 O 2 slabs (Aurivillius, 1949). The `perovskite like' block can adopt various thicknesses with respect to the number m. Different stacking polytype structures have been reported with m ranging between 1 and 5. In the case of SBN, m equals 2. This regular arrangement along the [001] direction may be violated, giving rise to local changes of the m value. Such behaviour is well known in similar bismuth-containing layered perovskites (Balzar, 1993;[START_REF] Balzar | [END_REF]. The ferroelectric properties (e.g. polarization and coercive ®eld) of such compounds depend on the thickness of the perovskite layer (Du & Chen, 1998). In addition, such defects reduce the spatial extent over which diffraction is coherent, thus producing line broadening.

Broadening of X-ray diffraction lines arises on the one hand from geometrical aberrations and radiation wavelength distribution, and on the other hand from crystalline imperfections (®nite grain size, microstrains, stacking faults, etc.) [START_REF] Klug | X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials[END_REF]. In this work, we use pattern decomposition combined with line pro®le analysis to investigate the microstructure of a complex compound. The X-ray diffraction effects of stacking faults in sol±gel derived SBN powders are considered.

Experimental

Synthesis

An appropriate SBN precursor solution was prepared by dissolution of strontium 2-ethylhexanoate in 2-ethylhexanoic acid at 393 K, followed by addition of bismuth 2-ethylhexanoate, and ®nally addition of niobium ethoxide, previously dissolved in ethanol. SBN powders were obtained after conventional drying and heat treatment at 973 K for various durations (from 0.5 to 600 h). Thin ®lms were fabricated by spinning the precursor solution at 4000 r.p.m. for 30 s (using a Sulzer photoresist spinner) on single-crystalline (100) SrTiO 3 substrates. Details concerning the characteristics of the whole process have been published elsewhere [START_REF] Yi | [END_REF].

Data collection

X-ray diffraction experiments were performed on a homemade high-resolution setup [START_REF] Masson | [END_REF]. The primary linear beam was supplied by a rotating anode source. Monochromatic (Á/ = 1.4 Â 10 À4 ) and parallel (Á =12 HH )CuK 1 X-rays were obtained using a four-bounce Ge monochromator in the (220) setting. Samples were positioned on a highprecision ®ve-axis sample holder in a vacuum chamber. Sample positioning was performed by using the diffracted beams of a single-crystalline sample holder. The specimens were studied under ®xed incidence in asymmetric geometry and were continuously rotated about their surface normal during the experiment. A representative diffraction pattern of a sample annealed for 10 h at 973 K is given in Fig. 1.

At 2 angles above 10±15 , the instrumental pro®le is symmetric; it is well described by a Voigt function and the line breadth and shape can be deduced by considering only four meaningful parameters: focal spot size, equatorial divergence, wavelength spread and the transfer function of the detector [START_REF] Masson | [END_REF]. Below 10 incidence, the breadth of the instrumental pro®le, g , ranges between 0.07 and 0.11 (see also Fig. 2). Below 2 = 10±15 , the instrumental pro®le is slightly asymmetric as a result of axial divergence (Masson et al., 2001). In the present, study this effect is not considered, since no diffraction line of interest occurs in this range. Anyway, this effect is well known and may be easily accounted for by using appropriate corrections (Masson et al., 2001;Finger et al., 1994).

Line profile analysis

Line pro®le analysis has been carried out using integral breadth methods and Fourier analysis. The experimental pro®les were modelled with a Voigt function. The main drawback of these methods is that results are biased by rather restrictive hypotheses: the so-called Stokes & Wilson (1944) approximation for the integral breadth methods and a truncated Taylor series in the Warren±Averbach method [START_REF] Warren | X-ray Diffraction[END_REF]. Nevertheless, the classical methods are widely used (see e.g. [START_REF] Langford | Defect and Microstructure Analysis by Diffraction[END_REF][START_REF] Loue È R | Defect and Microstructure Analysis by Diffraction[END_REF] and were shown to be powerful in very similar studies (Scardi et al., 1993(Scardi et al., , 1997;;Balzar, 1993). Because of their general applicability without restriction to speci®c crystal systems, these methods are well suited to the study of complex compounds exhibiting many different microstructural features.

2.3.1. Removal of instrumental broadening. The characterization of the microstructural properties of the specimen with the above-mentioned methods requires the integral breadths f of the pro®le f(x) arising from the microstructure of the sample. The f(x) pro®le can be obtained by the inversion of the equation h(x)=f(x)*g(x), where h(x)a n d g(x) are the experimental and instrumental pro®les, respectively, and * denotes the convolution. In the case of complicated patterns showing a high degree of line overlap, this inversion is more easily carried out by making the assumption that h(x)a n dg(x) are described by a suitable analytical function [START_REF] Klug | X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials[END_REF]. Using the Voigt function, one obtains
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where the subscripts L and G denote the Lorentzian and Gaussian components, respectively. The result of a ®tting by means of a Voigt function to a cluster of two lines is shown in the inset of Fig. 1. 2.3.2. Integral breadth method. The breadths f L and f G are the Gaussian and Lorentzian breadths of the Voigt function. In the method introduced by [START_REF] Langford | [END_REF]Langford ( , 1992)), the Lorentzian and Gaussian breadths expressed in reciprocal space (*= cos /) are analysed separately as a function of the length of the diffraction vector:
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where the subscript S refers to the size contribution to line breadth. Ã S L , Ã S G and L , G are combined (Langford, 1992) and give, respectively, a measure of the volume-averaged domain size hDi V and apparent strain . However, as pointed out by Langford et al. (2000), the derived quantities used to describe microstructural properties are model dependent. Therefore, the results should often be regarded as educated guesses, unless they are con®rmed by complementary experiments (e.g. electron microscopy) or by using physically meaningful microstructural models, if available.

2.3.3. Fourier analysis. The above-mentioned method yields average values. Size and strain distribution can be computed by a Fourier analysis of the diffraction lines [START_REF] Warren | X-ray Diffraction[END_REF]. However, in its original form, this method is restricted to materials with high symmetry, because of the lack of peak overlap in such cases. In practice, this method is thus rarely usable, unless peak tails are cut or approximate. To overcome the peak overlap problem and hence to extend this method to materials with lower symmetries, many authors have combined the pro®le ®tting method with the Warren±Averbach method (Enzo et al., 1988;Scardi et al., 1991;Scardi & Leoni, 1999;Balzar, 1993;Audebrand et al., 1998Audebrand et al., , 2000)). This also enables one to use the deconvolution method described above, thus avoiding the method of Stokes (1948), which often leads to spurious effects or unstable solutions, especially when sample broadening is low. Fourier coef®cients of the physically broadened line pro®le are calculated analytically using the breadths f L and f G [START_REF] Balzar | Defect and Microstructure Analysis by Diffraction[END_REF]. The size coef®cient A S (L) and the mean squared strain he 2 (L)i can be separated by means of (Delhez & Mittemeijer 1976)
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where L is the correlation length. However, as pointed out by many authors (e.g. Langford et al., 2000), the Fourier coef®cients used in this method are those of the Voigt function representing the pro®le and not those of the pro®le itself.

Hence the shape of the calculated domain size distribution depends on the chosen pro®le (i.e. the true shape remains unknown). Nevertheless, diffraction pro®les are not very sensitive to ®ne details of the distribution, but rather to the mean and width (Rao & Houska, 1986a,b). Calculated distributions may thus provide a qualitative view of the mean and width of the domain size distribution. In any case, unreliable results are obtained if the observed pro®les are incorrectly modelled. All multiple-line methods require at least two orders of re¯ection. In the case of SBN powders, the number of observable 00l re¯ections lies between 3 and 5 over a 50 2 range, depending on the relative intensities and the degree of line overlap. Hence, even though such lines are of rather weak intensity and are often strongly overlapped, satisfactory results can be extracted.

Results

Generalities

All peaks of the pattern shown in Fig. 1 can be indexed in the orthorhombic phase of SBN. The orthorhombic distortion is very small since a/b equals 1.00063 (space group A2 1 am, JCPDS card No. 86-1190). The 2 difference between the (h00) and (0k0) lines is smaller than 0.001 . These lines can hence be modelled with one single pro®le (Balzar, 1993;[START_REF] Balzar | [END_REF]. A comparison of the breadth of the observed pro®le and the instrumental pro®le is presented in Fig. 2. It is clear from this ®gure that the sample contribution to line broadening is signi®cant. Moreover, the strong scatter of experimental data indicates a marked hkl dependence of the f(x) pro®le.

Williamson±Hall plot

To ascertain that the line breadths effectively depend on the diffraction vector, we plotted f as a function of d à in a Williamson±Hall plot [START_REF] Williamson | [END_REF] for the 00l and h00 re¯ections of the sample that had been annealed for 10 h at 973 K (see Fig. 3). The f line for the 00l re¯ection has non-zero intercept and slope, indicating a marked size effect (i.e. order-independent broadening) and the presence of microstrains (order-dependent broadening). For the h00 line, the intercept is almost nil (i.e. no size broadening) and the slope is non-zero. Since stacking faults occur along the [00l] direction, the h00 re¯ections are not affected. For those lines, the zero intercept indicates rather coarse domains. On the other hand, the 00l lines are directly affected by faulting, as attested by the signi®cant size effect.

Line shape

The shape factors ' f (= FWHM f / f ) together with the data of the two above-cited groups of re¯ections are given in Table 1. Firstly, all ' data lie between the Lorentzian (0.636) and the Gaussian (0.939) limits. Secondly, it appears that the 00l lines exhibit a purely Lorentzian line shape, whereas the h00 re¯ections have a greater Gaussian component. As will be seen below, this is in good agreement with the presence of faults along the [00l] direction.

Discussion

Stacking faults

Defects consisting of coherently diffracting domains shifted with respect to one another (which in SBN corresponds to a local variation of the m value) have been described by [START_REF] Van Berkum | [END_REF] as highly localized strain ®elds. The corresponding line pro®les exhibit slowly decaying tails (i.e. strong Lorentzian character) and strong `order-independent' broadening. However, a contribution to microstrains is not excluded since pure `order-independent' broadening is Williamson±Hall plot for the 00l and h00 lines. Size broadening is much more pronounced along the c axis than along the a axis. The powder has been annealed for 10 h at 973 K.

Table 1

Breadth and shape factor data for several re¯ections.

The breadths are given in degrees. In the c direction, the pro®les are Lorentzian, whereas a Voigtian line shape is observed along directions in the ab plane. obtained for the extreme case of in®nitely narrow strain ®elds. Several authors have observed the same tendency for analogous defects (Balzar, 1993;[START_REF] Balzar | [END_REF]Scardi et al., 1993Scardi et al., , 1997)). They related the apparent domain size D to the contribution of stacking faults D F using the equation derived by [START_REF] Warren | X-ray Diffraction[END_REF] for in-plane translation stacking faults, in the case of low fault percentage:

( )

hkl f G f L f ' 28 
1=hDi S 1=hD C i S 1=hD F i S ; 4 
where h FFFi S designates an area average and D C is the real crystal size (limited by the surface of the grains). In general, the observed size pro®le is the convolution of the pro®le f S (x) arising from the crystallite size and f SF (x) resulting from stacking faults:

f xf S xÃf SF x: 5 
For the sample annealed for 10 h at 973 K, the calculation of the domain size using Langford's method yields 182 (56) and 33 (2) nm in the [h00] and [00l] directions, respectively. This con®rms the high anisotropy deduced from the Williamson± Hall plot. The same treatment was performed for other directions ([111], [113], [115], [117]). The behaviour of the apparent size could not be related to a simple crystal shape [START_REF] Langford | [END_REF]. The observed size anisotropy was hence attributed to the presence of faults perpendicular to the c axis.

Lorentzian-shaped pro®les have been frequently observed in stacking-fault-containing crystals, though this is not a general rule [START_REF] Ustinov | Defect and Microstructure Analysis by Diffraction[END_REF]. Wilson (1961) calculated the line pro®le of stacking-fault-containing crystals. In the case of close-packed structures, the pro®les are approximately Lorentzian. This has been con®rmed by [START_REF] Langford | [END_REF] for ex-oxalate ZnO. The same trend has been observed for stacking faults analogous to those expected in SBN. Balzar (1993) and [START_REF] Balzar | [END_REF] studied a Bi±Cu±O superconductor that possessed a very similar structure to that of SBN (perovskite units separated by Bi 2 O 2 slabs). They showed that such compounds may contain stacking faults that give rise to `order-independent' broadening. Although they did not give the values of the shape factors, they always obtained a Lorentzian width that was much greater than the Gaussian width. It is possible to calculate the shape factor on the basis of the Lorentzian and Gaussian components (de Keijser et al., 1982;Delhez et al., 1982); the calculation yields 0.641, 0.717 and 0.677 depending on the composition. These values are very close to the Lorentzian limit of the shape factor (0.636), attesting that such stacking faults also yield a Lorentzian shape. Simulation of X-ray diffraction diagrams leads to the same conclusions (Nuttall & Day, 1999). Hence, both line shape and width anisotropy show the presence of planar faults perpendicular to the [00l] direction.

Effect of thermal annealing

SBN powders were further annealed at 973 K. Results of the line pro®le analysis are given in Table 2. For the sake of briefness, we present the results of the Fourier analysis only. The value of the root-mean-square strain is taken at hDi S /2 [START_REF] Klug | X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials[END_REF]. It can be seen that increasing the thermal annealing time results in a signi®cant lowering of sample imperfections. In particular, the coherently diffracting domain size increases markedly. The volume-weighted domain size is twice the surface-weighted domain size, which corresponds to the Lorentzian limiting case [START_REF] Balzar | Defect and Microstructure Analysis by Diffraction[END_REF]. Line overlap is here too severe to measure subtle variations of the shape factor in the [00l] direction. However, similar experiments have been performed on epitaxial layers (Boulle et al., 2001). In such cases, the diffraction lines were well separated and reductions of the Lorentzian content were detected. The domain size distributions are given in Fig. 4. The maximum of the distribution is shifted towards high L values and the distribution becomes much broader.

Since the pro®les are purely Lorentzian, equation ( 5) may be rewritten as 1=hDi

V 1=hD C i V 1=hD F i V : 6 
Hence, knowing the crystal size hD C i V , it should be possible to calculate the mean distance between stacking faults.

According to the high cell-parameter anisotropy, the shape of the crystal is unlikely to be isotropic. Consequently, the value of the apparent domain size in the [h00] direction cannot be

Volume-weighted domain size distribution for several annealing conditions.

Table 2 Results of Fourier analysis.

The subscripts S and V refer to surface and volume weights, respectively. The root-mean-square strain is taken at hDi S /2. hD F i V is the calculated mean distance between faults. used as a measure of the real crystal size in the [00l] direction. We shall therefore assume that all grains are faulted. The maximum L value (say, corresponding to 99% of the cumulative distribution) may thus be regarded as the crystal size. The calculation is now straightforward; results are given in Table 2. The stacking fault density is lowered as heat treatment time is increased. The rather unrealistic values obtained after long duration seem to indicate that the specimens are almost free of faults. The stacking sequence has reached its equilibrium con®guration.

Annealing duration
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Conclusion

X-ray diffraction line pro®le analysis methods have been applied to the study of a complex compound exhibiting stacking disorder. Pro®le ®tting procedures associated with integral breadth analysis revealed strong anisotropic line broadening. This broadening contains both `size' and `strain' contributions. In the [00l] direction, `size' broadening is mainly the result of stacking faults. Pro®le ®tting techniques associated with Fourier analysis enabled the computation of the domain size distributions in this direction. When SBN powders are thermally annealed, the stacking fault density is lowered. Prolonged annealing (e.g. 600 h) results in specimens that are almost free of faulting.
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 1 Figure1X-ray diffraction diagram of an SBN powder annealed for 10 h at 973 K. Inset: ®t of a cluster of two lines using Voigt functions (GoF = 1.11, R p = 3.53%).
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 2 Figure 2Plot of the observed integral breadth h (+) and the breadth of the instrumental pro®le (Ð) versus the diffraction angle. A signi®cant sample contribution to line broadening is observed.
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