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Wideband simulations of periodic structures by the
Hybrid Spectral FDTD/TD-VFz Method

Samuel Gaucher, Christophe Guiffaut, Member, IEEE, Alain Reineix, Member, IEEE, Olivier Cessenat,
and Geneviève Mazé-Merceur

Abstract—The Spectral FDTD (SFDTD) method is combined
with the discrete-time time-domain vector fitting algorithm (TD-
VFz) to analyze 3D periodic structures excited by oblique incident
plane waves over a wide frequency band. The time signal
reconstruction with TD-VFz produces an untruncated response
over an infinite time window allowing an accurate spectral result,
specially near the cut-off frequency separating the spectrum
propagating wave region of evanescent wave region.

Index Terms—periodic boundary condition, finite-difference
time-domain, oblique incidence, Spectral FDTD, time-domain
vector fitting.

I. INTRODUCTION

METAMATERIALS are used in many applications such
as antennas, cloaking devices or radar cross section

(RCS) reduction. Some of them are composed of periodic pat-
terns. Thus, periodic Floquet boundary conditions (PBC) are
applied in periodic directions such that only one unit cell needs
to be analyzed instead of the entire structure. Particularly,
the finite-difference time-domain (FDTD) is a good candidate
to compute the unit cell because of its simplicity, efficiency
and wideband capabilities. However when the incident angle
is fixed, time-advanced solutions are required on boundaries.
Various techniques exist to deal with this difficulty and [1]
distinguishes them into two classes: ‘direct field methods’ and
‘field-transformation methods’.

Spectral FDTD (SFDTD) [2] [3] is a direct field method
which keeps the usual electric field E and magnetic field H
unknowns. Then, all existing FDTD models and processings
can straightforwardly be adapted to the SFDTD. In this ap-
proach, the horizontal wavenumber is fixed rather than the
incident angle. Then the implementation of PBC becomes
simple because no time-advanced data are required. The best
advantage of this technique is the ability to use the standard
Yee scheme without restriction on the Courant-Friedrich-Levy
(CFL) condition, which is not angle-dependent [2]. On the
other hand, when the horizontal wavenumber is fixed, the
SFDTD scheme simultaneously excites propagating wave and
evanescent wave regions [2] which are separated by the cut-off
frequency. As a result, a resonant behavior occurs and yields
undamped oscillations in the time signal. Thus, its discrete
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Fourier transform (DFT) provides an inaccurate frequency
response. To remedy this, the SFDTD method with the ARMA
post-processing has been developed in [4]. Starting from
the same idea, we propose to combine the SFDTD scheme
with the discrete-time time-domain vector fitting (TD-VFz)
[5] extrapolation technique. This approach is very robust,
guaranteed stable poles and is a much lower model order than
ARMA [6].

The organization of this paper is as follows. The SFDTD
method and the resonance problem are explained in Section II.
In Section III, the resonance problem is solved and the eigen-
frequency is identified when consider a homogeneous layer. A
comparative study of the time signal extrapolation techniques
TD-VFz, ARMA and matrix-pencil (MP) [7] was performed to
deduce the good efficiency of the TD-VFz method. In Section
IV, the hybrid SFDTD/TD-VFz scheme is presented. First, a
simple methodology to construct the spectral response for an
arbitrary incident angle is proposed: The mapping between
the wavenumber to angle response is directly obtained by the
TD-VFz rational transfer function. Secondly, a convolution
perfectly matched layers (CPML) setting is given to avoid
late-time divergence and to improve the accuracy near the
cut-off frequency. In section V, two numerical examples are
implemented to demonstrate the hybrid method performance.
The hybrid method is compared to the Material Independent
(MI) scheme [8] for verification. MI and SFDTD simulations
are performed with the XLIM laboratory homemade Temsi-
fd solver [9] and SFDTD temporal data are extrapolated with
TD-VFz implemented in Matlab scripting.

II. SPECTRAL FDTD REVIEW

Let us assume a (lx, ly) periodicity in the (x, y) directions
with a z-propagation of an incident wave. Like [10], an
arbitrary azimuth angle is chosen to ϕ = ϕ0. Then, the
horizontal wavenumber depends on the angular frequency
ω = 2πf and the elevation angle θ as kh = ω sin θ/c0. c0 is
the speed of light in free space. As ϕ, kh is also fixed for one
simulation of the SFDTD method. The constant components
kx and ky of the plane wave vector k are deduced as a function
of the azimuth angle and the horizontal wavenumber

kx = kh cosϕ0, ky = kh sinϕ0. (1)

By fixing them, simple time-domain PBC are found for Ψ = E
or H

Ψ(x, y, z, t) = Ψ (x+mlx, y + nly, z, t) e
j(kxmlx+kynly),

(2)
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where m and n are any integers. Then, SFDTD scheme is
exactly the same as the FDTD one with complex E-H fields
unknowns instead of real for the latter. We deduce from
the expression θ(ω) = arcsin

kh
k0

that different frequencies

correspond to different incident angles, and for a positive real
incidence, the condition k0 ≥ kh must be verified. In other
words, this is referred to the propagating wave region if f ≥ fc
else to the evanescent wave region, where

fc =
c0kh
2π

(3)

is the cut-off frequency. Because both the propagating wave
region and the evanescent wave region are excited by the
SFDTD method, surface waves are guided along horizon-
tal directions at some frequencies called ’eigen-frequencies’.
Thus, the energy of a horizontal wave continuously re-enters
the computational domain through the PBC instead of being
absorbed by the top and bottom CPML [2]. As a result, a
resonance behavior occurs: temporal data do not converge and
an accurate spectral response cannot be obtained by DFT.

To overcome this difficulty, [2] adopts a modulated Gaussian
waveform to excite only the propagating wave region

Finc(t) = exp

[
− (t− t0)2

T 2

]
exp (j2πf0t), (4)

where t0 is the time delay, T the pulse width and the signal
magnitude at fc should be at least 40 dB lower than the
signal level at the center frequency f0. This simple approach
improves the spectral response accuracy by attenuating the
horizontal resonance. However, especially for very wideband
excitation, there are still some artifacts near the cutoff fre-
quency corresponding to high incident angles in the spectral
domain. Moreover, only the propagating wave region is deter-
mined with this technique and not the surface wave region.

III. EIGEN-FREQUENCIES IDENTIFICATION WITH TD-VFZ

Let us consider a homogeneous layer of thickness 9.375
mm and dielectric constant εr = 4. FDTD simulation runs
with kh = 50 rad/m, ϕ = 90° and a Gaussian pulse excitation.
The time domain reflected field of the fundamental mode on
the interface between the air and the layer is shown in Fig. 1.
Temporal data do not converge and oscillations are observed.

To obtain a correct spectral reflection coefficientR, the ratio
between the output (real part of the reflected field) and input
(excitation) response is decomposed with TD-VFz [5], as a
rational transfer function

R(z = exp [jω∆t]) = d+

M∑
n=1

rn
1− z−1sn

, (5)

where d is a constant, rn and sn are the complex residues
and poles respectively and ∆t is the time sample. Fig. 2
illustrates the reflection coefficient over a wideband from 0+

GHz to 25 GHz obtained by the SFDTD scheme with the
modulated Gaussian excitation (4) and a strong attenuation
Attfmax = 60 dB at fc, and by the SFDTD scheme combined
with the extrapolation technique ARMA, MP or TD-VFz
for the same M = 18 poles number (p = q = 18 for
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Fig. 1: Reflected wave in the time domain. Resonance behavior
is observed.
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Fig. 2: Reflection coefficient for the homogeneous layer.

ARMA [4]) and 5 iterations for TD-VFz poles convergence.
The FDTD spatial steps are all equal to ∆ = 0.1875 mm
and CFL = 0.99. Excellent agreement is observed between
the hybrid SFDTD/TD-VFz method and analytical reference,
especially near the cut-off frequency, on the contrary to the
alone Spectral FDTD scheme where the response is noisy.
The MP technique gives a good result but with an accuracy
loss for high frequencies. In addition, the number of poles is
insufficient for the ARMA method which does not give the
expected result. An interesting point consists in the eigen-
frequencies identification. When (5) gives poles on the unit
circle boundary, resonances occur and eigen-frequencies are
identified. For the sample kh = 50, there is only one reported
in the Table I for several extrapolation techniques and poles
number choices. For the order M = 18, the best matching
with theory is obtained with the SFDTD/TD-VFz scheme. We
note that p = q = 114 for ARMA are required to obtain
the same result as TD-VFz with M = 18. Furthermore,
M = 24 gives the same excellent result for MP and TD-
VFz but M < 24 for MP gives an inaccurate response at high
frequencies. Regarding the CPU time, ARMA (p = q = 114)
has a slightly faster calculation time than TD-VFz (M = 18)
and MP is a slower method. Also the memory usage is 30 MB
for ARMA and TD-VFz, and 100 MB for MP (M = 18).
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TABLE I: Eigen-frequency prediction. The theory gives fr =
2.0751 GHz.

Prediction (GHz) Error (%) CPU time (s)
ARMA (p=q=18) 2.2614 8.978 0.06
MP (M=18) 2.0758 0.034 3.3
TD-VFz (M=18) 2.0746 0.024 1.38
MP (M=24) 2.0752 0.005 3.11
TD-VFz (M=24) 2.0752 0.005 1.64
ARMA (p=q=114) 2.0746 0.024 1.2

IV. HYBRID SPECTRAL-FDTD/TD-VFZ

A. Mapping R(0 < kh, f) to R(0 < θ, f)

The normal incidence case θ = 0° is trivial and corresponds
to kh = 0. To deal with the oblique incident angles for the
frequency band [0 < fmin, fmax] and incident angle range
[0 < θmin, θmax] of interest, we first calculate the extremum
horizontal wavenumber as

khmax =
2πfmax

c0
sin θmax, khmin =

2πfmin

c0
sin θmin. (6)

To compute the reflection coefficient as a function of the
incident angle, we run the FDTD simulation for the N samples
of kih with the fixed azimuth angle ϕ = ϕ0

kih = khmin + i
khmax

− khmin

N − 1
, i = 0, . . . , N − 1, (7)

by using (1) to determine the phase values in the PBC
formulation (2). Then, each response with sample kih is
extrapolated by the M-order TD-VFz algorithm to obtain the
M residues rin and poles sin, and the constant di. After that,
an incident angle-reconstruction is applied. For a given angle
θmin ≤ θj ≤ θmax, we compute the N frequencies

f i =
ckih

2π sin θj
, i = 0, . . . , N − 1. (8)

The reflection coefficient R evaluated at angle θj is calculated
with the transfer function (5) for all frequencies f i

R(f i, θj) = di +

M∑
n=1

rin
1− exp [−j2πf i∆t]sin

. (9)

As frequencies are imposed by the formula (8), the Lagrange
interpolation is used to obtain the reflection coefficient at the
desired frequencies. Assuming a desired frequency f i ≤ f̃ ≤
f i+1, the reflection coefficient for the angle θj and frequency
f̃ is given by

R(f̃ , θj) =
f i+1 − f̃
f i+1 − f i

R(f i, θj) +
f̃ − f i

f i+1 − f i
R(f i+1, θj).

(10)

B. CPML setting

The stretched-coordinate metrics sz of the complex fre-
quency shifted CPML (CFS-CPML) approach [11] is defined
in the z-direction as

sz = κz +
σz

αz + jωε0
, (11)

where σz is the conductivity depending of the z-depth layer
of the CPML to provide absorption for propagating waves.
Parameters κz and αz better attenuate the evanescent waves
at low frequencies, by stretching the FDTD spatial step with
sz as can be seen by taking the limit ω → 0. In this paper,
the parameter αz is constant with the PML cut-off frequency
defined by

fPML
c =

αz

2πε0
. (12)

The condition fPML
c < fc is a good compromise for absorb-

ing propagative waves without neglecting the absorption of
evanescent waves. Then, we propose

fPML
c = νfc, (13)

where ν should be a real between 0.15 and 0.75 according to
our numerical experiences. The constant αz profile in CPML
is found by using (3)

αz = ν
kh
Z0
, (14)

where Z0 ≈ 376.730 Ω is the impedance in free space. It is
important to have αz > 0 to avoid late-time divergence. The
real part of the time domain reflected field for the same case as
section III and during a long time simulation of 20 ns is shown
in Fig. 3 for two αz values. Time domain signal diverges
when αz = 0 but the setting (14) with ν = 0.75 efficiently
corrects the problem. On the other hand, the conductivity
grows geometrically in CPML because it is the best profile
for lowering the reflection of the evanescent waves [12].
Moreover, it is very interesting to enhance the absorption of
the waves at grazing incidence since they are close to the
cut-off frequency and therefore disturbed by the resonance
frequencies. Consequently for a CPML of 12 cells in thickness,
we adopt the optimum geometrical expansion g = 1.9 with the
theoretical normal incidence reflection coefficient expected at
the interface between air and CPML equals to R(0) = 10−14.
Theses setting are obtained from the PML theoretical reflection
of [13]. Therefore PML outperforms for grazing incidence
wave absorption. The counterpart can be a lesser absorption
for normal incidence or weak incidence angle waves but
the reflection coefficient remains below -50 dB. Besides this
behaviour is stable with the frequency.
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Fig. 3: Time domain signal for two values of α (kh = 50).
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V. NUMERICAL RESULTS

For the two numerical examples of this section, periodic
solvers run with a 2 ns simulation time and TD-VFz with
M = 40 poles and 15 iterations for the poles convergence.
The setting (14) with ν = 0.35 is chosen for all simulations.

A. Pattern composed of two homogeneous lossy layers

Let us consider a stratified media composed of two arbitrary
homogeneous layers. The geometry, dimensions and parame-
ters of the layers are plotted in Fig. 4 (a). The model is sim-
ulated by using the proposed method for N = 100 horizontal
wavenumber samples with fmax = 10 GHz, θmax = 80°,
∆ = 0.2 mm and CFL = 0.99. The numerical reflection
coefficient and phase magnitude for the TE mode with a
constant azimuth angle ϕ = 90° is compared to the theory
[14] as shown in Fig. 5 and Fig. 6 respectively. A very good
agreement with theoretical data is observed for many incident
angles. Note that the accuracy is less good at high incidence
angles 60° and 80° for low frequencies (8) below 0.5 GHz
approximatively due to the strong proximity of them with the
cut-off frequency.

y

z

x

kθ

ϕ
CPML

CPML

Excitation

2 mm

4 mm

µr “ 2
σh “ 104 Ω{m

εr “ 25
σ “ 0.2 S{m

(a) lx “ 6 mm

l y
“

6
m

m 2 mm

0.5 mm

CPML

CPML

Excitation

2
m

m

0.
62
5

m
m

2
m

mAir

Lossy media

Lossy media

(b)

Fig. 4: Unit cell geometry. (a) two homogeneous layers, (yOz)
plane. (b) JCFSS, left: (xOy) plane, right: (yOz) plane.

B. Jerusalem Cross FSS with anisotropic and lossy media

The Jerusalem cross [8] is a perfect electromagnetic conduc-
tor (PEC) between two anisotropic and lossy FSS media with
relative permittivity and conductivity diagonal tensors given
by εr = diag (2.2, 1.1, 1.5) and σ = diag (0.05, 0.03, 0.01).
Pattern geometry is plotted in Fig. 4 (b). The model is
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Fig. 5: Reflection coefficient magnitude for the two layers.
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simulated by using the proposed method for N = 100
horizontal wavenumber samples over a wideband from 5 GHz
to 25 GHz with θmax = 80°, ∆ = 0.125 mm and CFL =
0.99. Considering the TM mode and a constant azimuth angle
ϕ = 90°, very good agreement between the hybrid and MI
scheme is observed in Fig. 7 for various incident angles. Note
that the CFL condition of the MI field transformation method
is c0
√

3∆t ≤ ∆(1−sin θ). Thus, the simulation time becomes
prohibitively long at high incidence. The best advantage of the
hybrid method is that the CFL condition is the same for each
horizontal wavenumver sample kh as c0

√
3∆t ≤ ∆ [2].

VI. CONCLUSION

The Spectral FDTD scheme combined with the TD-VFz de-
composition is an efficient hybrid approach to analyze periodic
structures excited by oblique incident plane waves without
reducing the CFL stability criterion of the FDTD method. The
VF-poles perfectly fit the response resonant modes allowing
the hybrid method to deal with high incident angles. CFS-
PML is successfully used to avoid late time instabilities with
a simple setting of the low-frequency stretching coefficient
α from the cut-off frequency of the PBC. In addition, the
PML conductivity profile is optimized for grazing incident
angle increasing the accuracy computation of the reflection
coefficient.
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