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Tacrolimus Exposure Prediction Using Machine 
Learning
Jean-Baptiste Woillard1,2,3,*, Marc Labriffe1,2,3, Jean Debord1,2,3 and Pierre Marquet1,2,3

The aim of this work is to estimate the area-under the blood concentration curve of tacrolimus (TAC) following 
b.i.d. or q.d. dosing in organ transplant patients, using Xgboost machine learning (ML) models. A total of 
4,997 and 1,452 TAC interdose area under the curves (AUCs) from patients on b.i.d. and q.d. TAC, sent to our 
Immunosuppressant Bayesian Dose Adjustment expert system (www.pharm​aco.chu-limog​es.fr/) for AUC estimation 
and dose recommendation based on TAC concentrations measured at least at 3 sampling times (predose, ~ 1 and 
3 hours after dosing) were used to develop 4 ML models based on 2 or 3 concentrations. For each model, data 
splitting was performed to obtain a training set (75%) and a test set (25%). The Xgboost models in the training 
set with the lowest root mean square error (RMSE) in a 10-fold cross-validation experiment were evaluated in the 
test set and in 6 independent full-pharmacokinetic (PK) datasets from renal, liver, and heart transplant patients. 
ML models based on two or three concentrations, differences between these concentrations, relative deviations 
from theoretical times of sampling, and four covariates (dose, type of transplantation, age, and time between 
transplantation and sampling) yielded excellent AUC estimation performance in the test datasets (relative bias 
< 5% and relative RMSE < 10%) and better performance than maximum a posteriori Bayesian estimation in the six 
independent full-PK datasets. The Xgboost ML models described allow accurate estimation of TAC interdose AUC 
and can be used for routine TAC exposure estimation and dose adjustment. They will soon be implemented in a 
dedicated web interface.

Tacrolimus is a calcineurin inhibitor largely used for the pre-
vention of rejection in solid organ transplantation.1 It is 
characterized by a narrow therapeutic range and a large inter-
individual variability rendering its therapeutic drug monitor-
ing mandatory. Two main markers are currently available to 
adjust the individual dose: the trough whole blood level (C0) 
widely used for practical and economic reasons, although it 
has been inconsistently associated with outcomes2 and the area 
under the curve (AUC), which is theoretically a better marker 
of exposure, although no formal evidence is available.1 AUC is 
more difficult to measure than C0, especially without the use 

of population pharmacokinetic (PopPK) models.3 This led us 
to launch, in 2005, the Immunosuppressant Bayesian Dose 
Adjustment (ISBA) expert system and website4 to share tools 
able to estimate the interdose AUC of immunosuppressants 
using maximum a posteriori Bayesian estimation (MAP-BE) on 
the basis of three blood samples and some patient characteris-
tics (type of graft, age, post-transplantation period, and drug 
measurement assay).5,6 With ISBA, each request posted is val-
idated in < 48 hours by a trained pharmacologist, representing 
a huge workload due to the large number of requests received 
from transplant centers worldwide (>  120,000 since 2005). 

Received September 21, 2020; accepted November 13, 2020. doi:10.1002/cpt.2123

1University of Limoges, IPPRITT, Limoges, France; 2INSERM, IPPRITT, U1248, Limoges, France; 3Department of Pharmacology and Toxicology, CHU 
Limoges, Limoges, France. *Correspondence: Jean-Baptiste Woillard (jean-baptiste.woillard@unilim.fr)

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 Tacrolimus interdose area under the curve (AUC) for indi-
vidual dose adjustment is difficult to estimate in routine patient 
care.
WHAT QUESTION DID THIS STUDY ADDRESS?
 We investigated whether machine learning (ML) models 
could estimate tacrolimus (TAC) AUC using a limited num-
ber of blood concentrations, as well as or even better than 
deterministic pharmacokinetic (PK) models with Bayesian 
estimation.

WHAT DOES THIS STUDY ADD TO OUR KNOW- 
LEDGE?
 We developed Xgboost ML models allowing accurate estima-
tion of TAC AUC based on two or three blood concentrations 
in kidney, liver, or heart transplant patients with excellent per-
formance, better than that of the PK approach previously used.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
 These models will be soon implemented in an expert system 
made available to the transplant community through a dedi-
cated website.
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Additionally, we recently proposed a new metrics to dose adjust 
tacrolimus (TAC) in kidney transplant recipients: the AUC/C0 
ratio, which has been shown, in contrast to Tac AUC or C0, to 
be stable in individuals along time, even in the early period after 
transplantation.6,7

Machine learning (ML) has seldom been used in pharmacol-
ogy so far.8 Extreme gradient boosting is a ML approach where 
simple regression trees are iteratively built by finding split values 
among all input variables that minimize prediction error. The 
iterative process constructs an additional regression tree of the 
same structure that minimizes the residual errors of the previous 
regression tree.9

In the context of PKs, we recently showed that these methods 
can successfully be applied to estimate iohexol clearance using a 
few blood concentrations and a number of patient features (i.e., 
demographic characteristics, laboratory test results, disease history, 
or associated medications).10

The objective of this study was to develop Xgboost models 
to estimate TAC interdose AUC, based on a limited number of 
blood concentrations (2 or 3) and predictors, and to compare 
their performance to that of MAP-BE in external validation 
datasets.

METHODS
Patients and data
The TAC AUC estimation and dose recommendation requests re-
ceived on our ISBA website since 2007, whatever the type of trans-
plantation, were extracted and cleaned using the tidyverse framework. 
We sequentially refined the dataset by selecting the requests concern-
ing the formulations Prograf (TAC b.i.d.) or Advagraf (TAC q.d.), 
where TAC blood levels were measured using high-performance liquid 
chromatography, including at least three times of sampling at trough 
(C0), and ~  60  minutes (30–100  minutes, C1) and ~ 180  minutes 
(140–220  minutes, C3) after drug intake. Actually, the 0, 60, and 
180  minutes is the optimal sampling schedule for TAC b.i.d.11 and 
TAC q.d.12 The optimal sampling times requested for Envarsus are 
0, 8, and 12 hours13 and, for this reason, this formulation was not in-
cluded in the analysis. The resulting database was split into two data-
sets according to the TAC interdose (12 hours or 24 hours) and two 
independent models were developed, one for TAC b.i.d. and one for 
the TAC q.d. The other predictors available were the morning dose of 
TAC, the time elapsed between transplantation and TAC blood sam-
pling, the type of transplant, and patient age. The code used for data 
cleaning can be provided upon request.

Plan of the study
The present study used supervised learning to predict the interdose 
AUC, whose reference value had been obtained by our ISBA expert 
system using MAP-BE and at least three concentrations. We devel-
oped four ML models, two for each formulation (to predict AUC0–12h 
and AUC0–24h, respectively), one based on two concentrations and 
the other on three. A training set was used to build the model, tune 
the hyperparameters, and evaluate model performance by cross-vali-
dation. Once the best model had been built, it was evaluated on an in-
dependent test set by measuring the root mean square error (RMSE; 
expressed in µg*h/L) between the estimated and reference AUCs. As 
the reference (BE) AUC can be considered as an imprecise and poten-
tially biased estimate of the “true” AUC, we investigated in a second 
time the performance of our Xgboost models including two or three 
concentrations on “true” AUCs obtained from full PK profiles using 

the unbiased trapezoidal method. For that, two datasets of TAC b.i.d. 
in renal transplant recipients,7,11 one in liver transplant recipients,14 
and one in heart transplant recipients,15,16 as well as a dataset of TAC 
q.d. in renal transplant recipients7 and another one in liver transplant 
recipients14 were used. The performance of the Xgboost models in 
these confirmation datasets was also compared with that of the BE 
based on the three sample limited sampling strategies available on 
ISBA.

Feature engineering
The TAC concentrations were binned into three theoretical time 
classes (concentrations at trough (C0 sampled at t  =  0  minutes), at 
1 hour (C1 sampled between 30 and 100 minutes), and at 3 hours (C3 
sampled between 140 and 220 minutes), leading to three columns per 
patient. New variables were drawn for times 1 hour and 3 hours corre-
sponding to the relative deviation with respect to the theoretical times. 
For instance, if the actual sampling time was 1.06 hours for the theo-
retical time 1 hour, the relative time difference was (1.06–1)/1 = 0.06. 
Other predictors corresponding to the differences between the con-
centrations C1–C0, C1–C3, and C3–C0 were created to add in-
formation about potentially delayed absorption peaks. The type of 
transplant was split into five categories: kidney, lung, heart, and liver, 
plus an “other” category for all the other indications (including trans-
plantation of 2 solid organs, bone marrow transplantation, or auto-im-
mune diseases). Finally, the set of features used to predict interdose 
AUCs were: the type of transplant, patient age, time elapsed between 
transplantation and TAC blood sampling, TAC morning dose, TAC 
concentrations at times 0, 1 hour, and 3 hours, relative deviation from 
the theoretical times, and differences between concentrations. For the 
models based on two concentrations (C0 and C3), the relative time 
difference for time = 1 hour and concentration differences including 
C1 were removed.

Exploratory data analyses
A correlation matrix and scatterplots were drawn to explore the cor-
relation between AUC and predictors using the GGally R package.17

Preprocessing of the data
For all the ML analyses, the tidymodels framework was used.18 No pre-
processing was applied to the data because Xgboost methods do not re-
quire normalization prior to analysis. There were no missing data in the 
predictors. Data splitting was performed by random selection of patients 
in a training set (75%) and a test set (25%).

Development of Xgboost models
The four models were tuned by searching the parameter combination 
associated with the lowest RMSE and highest r2 between estimated and 
reference AUC values, using 10-fold cross-validation (for which the 
training dataset was randomly split into 10 parts). In brief, the best com-
bination of parameters was investigated in 90% of the training dataset 
(analysis subset) and evaluated in the remaining 10% (assessment sub-
set) and this process was repeated 10 times by circular permutation. The 
parameters tuned among a grid of 30 random combinations were: the 
number of predictors randomly sampled at each split (mtry, between 
1 and 11), the minimum number of data points in a node required for 
the node to be split further (min_n between 1 and 40), the maximum 
depth of the tree (tree_depth, between 1 and 15), and the rate at which 
the boosting algorithm adapts from iteration-to-iteration (learn_rate, 
between 0 and 0.08). Once the best combination of hyperparameters 
was selected, the relative importance of the predictors was evaluated by 
random permutations and a variable importance plot was drawn. In a 
second time, the best parameter combinations were evaluated using ad-
ditional 10-fold cross-validations to assess the mean RMSE and r2 and 
their SDs in the training set and scatter plots of estimated vs. reference 
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AUC were drawn. Finally, AUC prediction was performed in the test 
set. The estimation performance was evaluated by the RMSE and r2 
and by calculation of the relative mean prediction error (MPE), relative 
RMSE, number, and proportion of estimations with an MPE value of 
the ± 20% interval. Scatter plots of predicted vs. reference AUCs and 
residual as function of reference values were drawn.

External evaluation vs. full PK profiles and comparison with 
PopPK
Concentrations at 0, 1, and 3 hours, as well as dose, sampling times, and 
time elapsed between transplantation and TAC blood sampling were ex-
tracted from the PK databases to predict the AUC using the ML models 
and the MAP-BE based on three concentrations, as used in ISBA. The 
full concentration profiles were used to calculate the “true” trapezoidal 
AUC using the PKNCA R package.19

Performances of the ML models using 2 and 3 concentrations and of 
MAP-BE based on 3 concentrations were compared to the trapezoidal 
AUC in terms of the relative MPE and relative RMSE, and the propor-
tion of bias of the ± 10 or the ± 20% interval. Additionally, scatter plot of 
predicted vs. reference AUCs and residuals as a function of the reference 
AUCs were drawn on the same graph for the different approaches for vi-
sual comparison.

The PCCP study11 included 137 PK profiles of 11 samples for TAC 
b.i.d. (0, 0.33, 0.66, 1, 1.5, 2, 3, 4, 6, 8, and 12 hours postdosing) collected 
at 7 and 14 days, and 1, 3, and 6 months after renal transplantation. The 
AADAPT study7 included 34 PK profiles of 10 samples for TAC b.i.d. (0, 
0.33, 0.66, 1, 2, 3, 4, 6, 8, and 12 hours postdosing) and 41 PK profiles of 
13 samples for TAC q.d. (0, 0.33, 0.66, 1, 2, 3, 4, 6, 8, 12, 13, 15, and 24 
hours postdosing) collected at 7 days and 3 months postrenal transplanta-
tion. In liver transplant recipients,14 our database included 68 PK profiles 

of 9 samples for TAC b.i.d. (0, 0.5, 1, 2, 3, 4, 6, 8, and 12 hours postdosing) 
and 91 PK profiles of 17 samples for TAC q.d. (0, 0.5, 1, 2, 3, 4, 6, 8, 12, 
12.5,13, 14, 15, 16, 18, 20, and 24 hours postdosing), collected at 7 days 
and 3 months post-transplantation. The Pigrec study15,16 included 47 PK 
profiles of 11 samples for TAC b.i.d. (0, 0.33, 0.66, 1, 1.5, 2, 3, 4, 6, 8, and 
12 hours postdosing), collected at 7 days, 1, 3, and 12 months after heart 
transplantation.

RESULTS
Patients and data
A total of 4,997 TAC AUC0–12h and 1,452 AUC0–24h from 2,060 
and 775 patients, respectively, were available in the cleaned data-
sets extracted from ISBA. Characteristics of the training and test 
sets are reported in Table 1. The interdose AUCs ranged between 
22 and 380  µg*h/L and between 44 and 698  µg*h/L for TAC 
b.i.d. and q.d., respectively.

Exploratory data analyses
Correlation matrices between AUC and predictors are presented 
in Figure S1a for TAC b.i.d. and Figure S1b for TAC q.d. show-
ing a strong correlation (> 0.8) between interdose AUC and C0 or 
C3h for TAC b.i.d.; C0 for TAC q.d.

Xgboost model
The best-tuned parameter values for each model are presented in 
Supplementary Table S1. Results in the training set obtained 
after 10-fold cross-validation and in the testing set are presented 

Table 1  Characteristics of the ISBA requests used for the development and validation of the models

TAC b.i.d. TAC q.d.

Train (n = 3,748) Test (n = 1,249) Train (n = 1,087) Test (n = 362)

Time between transplantation and tacroli-
mus blood concentrations, years

1.48 [0.27–5.32] 1.94 [0.27–5.59] 2.00 [0.35–5.19] 2.18 [0.40–6.00]

Interdose AUC, µg*h/La 129 [103–164] 129 [102–163] 234 [187–287] 226 [182–286]

Patient age, year 50 [31–61] 50 [30–61] 53 [42–62] 53 [41–62]

Morning dose, mg 2.5 [1.5–4.0] 2.5 [1.5–4.0] 6.0 [4.0–10.0] 6.0 [4.0–8.0]

Trough level (C0), µg/L 7.3 [5.7–9.0] 7.3 [5.7–9.0] 6.7 [5.3–8.2] 6.5 [5.1–8.1]

Concentration at 1 hour; C1, µg/L 15.1 [10.5–21.9] 15.0 [10.2–22.2] 12.6 [9.0–18.4] 12.9 [9.1–18.4]

Concentration at 3 hours; C3, µg/L 13.3 [10.3–17.4] 13.2 [10.3–17.3] 14.8 [11.1–19.2] 14.4 [11.1–18.8]

Deviation from the 1-hour theoretical time 0.00 [0.00–0.05] 0.00 [0.00–0.07] 0.00 [0.00–0.05] 0.00 [0.00–0.07]

Deviation from the 3-hour theoretical time 0.00 [0.00–0.02] 0.00 [0.00–0.02] 0.00 [0.00–0.01] 0.00 [0.00–0.02]

Concentration difference between C1 and C0 7.6 [3.3–13.4] 7.2 [3.0–13.9] 5.8 [2.4–10.7] 6.2 [2.8–11.1]

Concentration difference between C1 and C3 1.8 [−1.5 to 6.3] 1.5 [−1.5–6.6] −1.1 [−4.1 to 1.8] −1.1 [−3.6 to 2.0]

Concentration difference between C3 and C0 5.9 [3.8–8.8] 5.9 [3.8–8.7] 7.8 [5.0–11.5] 7.6 [4.8–11.3]

Transplant type

Kidney 3577 (95.4) 1192 (95.4) 1087 (100) 362 (100)

Lung 108 (2.9) 38 (3.0) 0 (0) 0 (0)

Heart 29 (0.8) 14 (1.1) 0 (0) 0 (0)

Other 19 (0.5) 3 (0.2) 0 (0) 0 (0)

Liver 15 (0.4) 2 (0.2) 0 (0) 0 (0)

Median [IQR]) are presented for continuous data and n(%) for categorical data. TAC b.i.d. is the twice daily formulation of tacrolimus, TAC q.d. the once daily 
formulation.
AUC, area under the curve; ISBA, Immunosuppressant Bayesian Dose Adjustment.
 aInterdose is 12 hours for the b.i.d. models and 24 hours for the q.d. models
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in Table 2 and show excellent results with no difference between 
them (no overfitting). The relative MPEs were close to 0 and the 
relative RMSEs were < 10% in both the training and testing sets. 
The scatter plot and residual plots obtained in the test sets are pre-
sented in Figure 1. The variable importance plot of each model is 
presented in Figure S2 and shows that concentrations at time 3 
and 0 are the most important variables.

External evaluation vs. the trapezoidal AUC and comparison 
with PopPK estimates
The results of the external evaluation are presented in Table 3 and 
show that the Xgboost model with 2 concentrations led to accept-
able results in comparison to the 3-point Xgboost model or the 
3-point MAP-BE.

Figures S3 and S4 present the scatter plots and residual plots 
of estimated vs. reference AUC for TAC b.i.d. and q.d. in the 
validation studies. Figures 2 and 3 present for each individual 
the AUC estimated using ML with 2 or 3 samples, MAP-BE 
with 3 samples, and the reference AUC, for both TAC b.i.d. 
and q.d.

DISCUSSION
In this work, we developed Xgboost ML models to estimate the 
interdose AUC of TAC in renal transplant recipients. We then 
compared the results obtained with extensive-sampling-trapezoi-
dal AUCs (reference AUCs) and to MAP-BE estimates based on a 
three-point limited sampling strategy, as used by the ISBA expert 
system.4 The performances of the ML were excellent as compared 
with the reference AUCs, even with only two concentrations, and 
were better than the MAP-BE AUCs.

Previously, we successfully applied this innovative approach to 
iohexol in patients in the intensive care unit in a proof-of-concept 
study that led us to investigate their potential for the dose adjust-
ment of immunosuppressants, using the large database of the ISBA 

website. The predictions obtained in the current work are excellent 
in comparison to the PopPK results usually obtained. Indeed, in 
a review article, Brooks et al. observed that 71% of the MAP-BE 
developed for TAC and using two or more TAC concentrations 
showed a bias ≤ 10%, but that only 39% had imprecision ≤ 10%.20 
Using ML models in external datasets, we found RMSE ≤ 10% and 
bias < 5% and a very low number of profiles out of the acceptable 
± 20% relative bias range. We did not even expect such good results 
in light of the performances obtained in our previous work on io-
hexol. This illustrates perfectly the fact that, with ML models, the 
higher the number of data, the better the predictions. However, 
beyond a certain number, the addition of redundant information 
will not improve the results, as mentioned by Max Kuhn in his 
“Applied Predictive Modeling” reference book21: “there are cases 
where adding more samples may materially improve the quality of 
predictions, but one should remember that big data may not mean 
better data.”

The expected benefits of this study are very important. Indeed, 
TAC AUC is not largely used as an exposure marker for routine 
care of transplant recipients, because the collection of three sam-
ples is difficult, expensive, and rather uncomfortable for the pa-
tients. Decreasing the number of samples without decreasing the 
estimation performance should facilitate the use of TAC AUC 
for therapeutic drug monitoring. To increase the usability of this 
marker, we also have to test, in future works, the performance of 
our ML models for AUC estimation using dried blood spot TAC 
concentrations.

It can be questioned whether ML will replace PopPK analysis, 
at least for clinical applications. Actually, the goals and possibili-
ties of PopPK and ML are very different. For example, no simula-
tion is possible using ML, which limits the use for such models to 
calculate the probability of target attainment and select the best 
dosing scenario, for instance. Contrary to PK-based approaches 
whose goal is to describe the physiological phenomena involved 

Table 2  Performances of the models in the training and testing datasets to estimate AUCs obtained from three samples 
MAP-BE from ISBA

TAC b.i.d. 2 samples TAC b.i.d. 3 samples TAC q.d. 2 samples TAC q.d. 3 samples

Training

RMSE ± SD, µg*h/La 12.4 ± 0.38 7.66 ± 0.54 21.4 ± 1.36 20.3 ± 1.26

R2 ± SDa 0.938 ± 0.003 0.976 ± 0.002 0.930 ± 0.005 0.937 ± 0.006

Relative MPE, % 0.7 0.3 0.8 0.7

Relative RMSE, % 8.7 5.1 9.2 8.8

Testing

RMSE, µg*h/L 11.5 6.6 24.2 23.0

R2 0.941 0.980 0.907 0.916

Relative MPE, % 1.1 0.5 −0.1 0.03

Relative RMSE, % 8.6 5.0 8.1 7.8

Number of MPE of 
the ± 20% interval n

34 (2.7%) 8 (0.6%) 14 (3.9%) 12 (3.3%)

AUC, area under the curve; ISBA, Immunosuppressant Bayesian Dose Adjustment; MAP-BE, maximum a posteriori Bayesian estimation; MPE, mean prediction 
error; RMSE, root mean square error.
 aValues and SDs obtained after 10-fold cross-validation. TAC b.i.d. is the twice daily formulation of tacrolimus, TAC q.d. the once daily formulation. Interdose is 
12 hours for the b.i.d. models and 24 hours for the q.d. models.
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in drug handling by the body and in its variability using a mod-
eling approach, the goal of ML models is accuracy-centered 
whatever the number and types of covariates. Thus, ML models 
can be successfully used as estimators (and probably give better 
results than PopPK combined to MAP-BE) but with the trade-
off of no interpretability. Indeed, no visual representation is pro-
vided with the estimated AUC. Finally, the mathematics behind 
each method are very different with no PK parameter estimation 
for ML.

We acknowledge that developing our ML model, using as ref-
erence TAC AUCs estimated by our ISBA expert system with 
MAP-BE and three samples, was suboptimal because the “refer-
ence” used is itself an estimation of the true AUC. However, it 
allowed us to access several thousand cases as compared with only 
a few hundred if we had chosen the full PK profiles with trape-
zoidal AUCs as the references. Actually, we chose to keep the full 
profiles as independent datasets to best evaluate the performance 
of our models. Moreover, as in ISBA, several PopPK models and 

Figure 1  Scatter plots and residual plots of machine learning predicted vs. reference interdose AUCs in the test set, for TAC b.i.d. and q.d. 
using two or three tacrolimus blood concentrations. AUC, area under the curve; AUC0–12h, area under the curve from 0 to 12 hours; AUC0–24h, 
area under the curve from 0 to 24 hours; TAC, tacrolimus.
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MAP-BEs are used (for early or late post-transplant periods, dif-
ferent types of transplants, etc…), we wanted to check whether 
a single ML model taking into account the type of transplant as 
a covariate, but developed in a database containing mostly renal 
transplant patients (> 95%) could be applied successfully to other 
types of transplants. The results were above our expectations, with 
performances in heart or liver transplant recipients as excellent as 
in kidney transplant recipients, whatever the post-transplantation 
period.

Concerning the ML approach, we observed that the performances 
were very similar in the test set and in the training set (showing no 
overfitting) thanks to the resampling and cross-validation process 
that we used. Nevertheless, some PK profiles in the external dataset 

were poorly predicted, but, in most cases, the MAP-BE predictions 
were unsatisfactory too. Visual inspection often showed unexpected, 
not to say unlikely profiles, for instance with C0 higher than the other 
concentrations or much higher concentrations at 4 or 6 hours than in 
the first 3 hours postdose, or nonsteady-state PK profiles with C24 
hours much higher than C0. Fortunately, the number and percent-
age of poor predictions (i.e., of ± 20% of the reference) were quite 
low, indicating that these ML models, for which a patent application 
has been filed, can be used for routine AUC estimation. They will 
soon be made available to the transplant community through a web 
interface. In the meantime, a temporary shiny application (https://
jbwoi​llard.shiny​apps.io/App-6_tacro_ml/) has been built to test the 
models (for research purposes only).

Table 3  Performances of ML models and MAP-BE based on three samples of LSS to estimate reference AUCs obtained from 
full PK profiles using the trapezoidal rule

Study Method Relative MPE, % Relative RMSE, %
Bias out of ± 20% 

n (%)
Bias out of ± 10% 

n (%)

TAC b.i.d. kidney 1 11 
(n = 137)

Xgboost 
2 concentrations

−0.6 9.0 3 (2.2) 42 (30.6)

Xgboost 
3 concentrations

2.9 8.1 2 (1.4) 26 (19.0)

MAP-BE 
3 concentrations

5.1 9.6 6 (4.4) 37 (27.0)

TAC b.i.d. kidney 2 7 
(n = 34)

Xgboost 
2 concentrations

−1.0 9.1 2 (5.9) 9 (26.5)

Xgboost 
3 concentrations

−0.1 7.3 0 (0) 7 (20.6)

MAP-BE 
3 concentrations

2.8 9.1 1 (2.9) 9 (26.5)

TAC q.d. kidney7 (n = 41) Xgboost 
2 concentrations

−0.6 10.8 3 (7.3) 14 (34.1)

Xgboost 
3 concentrations

−2.0 11.1 3 (7.3) 14 (34.1)

MAP-BE 
3 concentrations

2.1 13.2 6 (14.6) 16 (39.0)

TAC b.i.d. liver14 (n = 68) Xgboost 
2 concentrations

3.3 12.9 7 (10.3) 30 (44.1)

Xgboost 
3 concentrations

4.1 9.9 3 (4.4) 14 (20.6)

MAP-BE 
3 concentrations

−3.4 11.2 6 (8.8) 18 (26.5)

TAC q.d. liver14 (n = 91) Xgboost 
2 concentrations

−0.4 12.3 10 (11.0) 35 (38.5)

Xgboost 
3 concentrations

−0.9 11.5 10 (11.0) 31 (34.1)

MAP-BE 
3 concentrations

−3.5 15.7 17 (18.7) 49 (53.8)

TAC BID heart15,16 
(n = 47)

Xgboost 
2 concentrations

−0.4 9.7 2 (4.2) 13 (27.7)

Xgboost 
3 concentrations

5.4 10.8 3 (6.4) 18 (38.3)

MAP-BE 
3 concentrations

−0.7 9.1 1 (2.1) 13 (27.7)

AUC, area under the curve; LSS, limited sampling strategy; MAP-BE, maximum a posteriori Bayesian estimation; ML, machine learning; MPE, mean prediction 
error; PK, pharmacokinetic; RMSE, root mean square error; TAC, tacrolimus.
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The recent results showing the stability of the AUC/C0 ratio 
within the post graft period6,7 should further increase their use, in 
order to define a C0 target for each patient depending on the in-
dividual AUC/C0 ratio, post-transplant period and intended use 
(minimization, standard, or intensification strategy).

The fair correlation (r > 0.8) observed between AUC and C0 in 
our large dataset is not different from the literature results. Indeed, 
in the present study, we reported the correlation coefficient 
(Supplementary Figure S1a,b), whereas most of the studies in the 
literature reported the determination coefficient (r2). For example, 
the weighted average of the determination coefficients reported 
for TAC q.d. at three periods post-transplantation in Marquet et 
al.22 (including some of the patients used in the present paper) is 

r2 = 0.71, corresponding to r = 0.84, which is similar to the value 
found in the present study.

Following the publication of a recent PopPK model for everoli-
mus AUC estimation, integrating previous exposure,23 we checked 
whether taking into account anteriorities could improve AUC 
estimation. For this, we selected the patients with at least two re-
quests (data not shown). However, probably due to the lower num-
ber of profiles available for the development of the ML models, the 
performances were much poorer than those reported above.

In conclusion, we developed Xgboost ML models allowing the 
accurate estimation of TAC interdose AUC and validated them 
in independent groups of kidney, liver, or heart transplant recip-
ients. Similar models using the same approach are being built for 

Figure 2  Comparison of the different methods of AUC estimation for TAC b.i.d. in the external validation studies. MAP-BE based on 
the 0, 1, and 3-hour limited sampling strategy and the parametric PopPK models available in ISBA. AUC, area under the curve; ISBA, 
Immunosuppressant Bayesian Dose Adjustment; MAP-BE, maximum a posteriori Bayesian estimation; PopPK, population pharmacokinetic; 
TAC, tacrolimus.
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the other immunosuppressants and will soon be implemented in a 
dedicated web interface.

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
Pharmacology & Therapeutics website (www.cpt-journal.com).
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