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Abstract 45 

 46 
Objectives 47 

Maximum a posteriori Bayesian estimation (MAP-BE) based on a limited sampling strategy 48 

and a population pharmacokinetic (POPPK) model is used to estimate individual 49 

pharmacokinetic parameters. Recently, we proposed a methodology that combined 50 

population pharmacokinetic and machine learning (ML) to decrease the bias and imprecision 51 

in individual iohexol clearance prediction. The aim of this study was to confirm the previous 52 

results by developing a hybrid algorithm combining POPPK, MAP-BE and ML that accurately 53 

predicts isavuconazole clearance. 54 

Methods 55 

A total of 1727 isavuconazole rich PK profiles were simulated using a POPPK model from the 56 

literature, and MAP-BE was used to estimate the clearance based on: (i) the full PK profiles 57 

(refCL); and (ii) C24h only (C24h-CL). Xgboost was trained to correct the error between refCL 58 

and C24h-CL in the training dataset (75%). C24h-CL as well as ML-corrected C24h-CL were 59 

evaluated in a testing dataset (25%) and then in a set of PK profiles simulated using another 60 

published POPPK model.  61 

Results 62 

A strong decrease in mean predictive error (MPE%), imprecision (RMSE%) and the number of 63 

profiles outside ±20% MPE% (n-out20%) was observed with the hybrid algorithm (decreased 64 

in MPE% by 95.8% and 85.6%; RMSE% by 69.5% and 69.0%; n-out20% by 97.4% and 100% in 65 

the training and testing sets, respectively. In the external validation set, the hybrid algorithm 66 

decreased MPE% by 96%, RMSE% by 68% and n-out20% by 100%. 67 

Conclusion 68 

The hybrid model proposed significantly improved isavuconazole AUC estimation over MAP-69 

BE based on the sole C24h and may improve dose adjustment. 70 

71 
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Study Highlight 72 

- What question did this study address? 73 

This study evaluated the performances of a hybrid model combining population 74 
pharmacokinetics (POPPK) and machine learning to improve individual isavuconazole 75 
clearance estimation in comparison to POPPK alone. 76 

- What does this study add to our knowledge? 77 

A decreased by about 90% and 70% of the bias and imprecision was observed in comparison 78 
to the MAP-BE alone for prediction based on trough concentration. 79 

- How might this change drug discovery, development, and/or therapeutics? 80 
 81 

The hybrid model developed may spearhead a new generation of tools for MIPD in routine 82 
practice. 83 

  84 
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1. Introduction 85 

The use of model-based precision dosing (MIPD) to individualize the dose of drugs in 86 

addition to therapeutic drug monitoring (TDM) is used in many fields such as transplantation 87 

or infectious diseases, for example [1–6]. It relies on population pharmacokinetics (POPPK) 88 

models and Bayesian estimators (MAP-BE) [7,8] based on priors and a limited sampling 89 

strategy (LSS) and allows to estimate individual pharmacokinetics parameters (e.g. 90 

distribution volume or clearance…) and/or exposure indices as the area under the curve 91 

(AUC). However, the POPPK models and MAP-BE have some limitations including a 92 

systematic deviation toward the typical parameters in the case of a few individual 93 

information called eta-shrinkage. Since recently, the use of the machine learning (ML) 94 

algorithms in medicine and particularly in pharmacology has increased [9]. Different use of 95 

ML has been proposed including a direct estimation of the drug exposure [2], estimation of 96 

PK parameters [10] or of dose proposals [5] for several drugs. Despite the high performances 97 

of ML algorithms in terms of accuracy, they also exhibited limitations (“black box”, less 98 

flexible with respect to sampling times, no possibility of carrying out simulations…). Recently, 99 

studies have proposed to combine the 2 approaches (POPPK and ML) in different ways to 100 

overcome these limitations: (i) to select pertinent covariates [11] (ii) to flat prior in some 101 

patients [12] (iii) to improve antibiotics clearance estimation after POPPK estimation with 102 

covariates [10] (iv) to correct the bias in the tacrolimus trough concentration (C0) after MAP-103 

BE estimation [13]. In a previous study, we propose an hybrid algorithm that use combine a 104 

POPPK model and a machine learning algorithm [14]. Briefly, based on simulations from a 105 

literature POPPK model of iohexol [4], a ML algorithm was trained to predict the bias 106 

between the CL obtained from simulated full PK profiles and the CL obtained after MAP-BE 107 

based on a three-points LSS. Then the CL obtained by the LSS in an external set were 108 

corrected by the ML algorithm leading to a decrease in bias and imprecision by 40.5% and 109 

23.8% respectively in comparison to the MAP-BE & LSS alone. To confirm the results 110 

previously obtained, we selected a new case study for isavuconazole. Isavuconazole (ISA) is a 111 

second-generation triazole antifungal agent, indicated for the treatment of invasive fungal 112 

infections such as aspergillosis and mucormycosis [15]. ISA is a substrate and moderate 113 

inhibitor of cytochrome 3A4/3A5 and is subject to numerous drug-drug interactions [16]. It is 114 

considered to exhibit stable pharmacokinetics [17,18] and to be equally effective as, but 115 
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safer than, other triazole antifungal agents (less hepatotoxicity, neurotoxicity and cardiac 116 

toxicity) [19]. However, the relationship between ISA exposure and toxicity is still the subject 117 

of debate and conflicting studies [20,21]. But in routine care, C0 was used to monitor the 118 

isavuconazole exposition. 119 

The aim of this work was to develop a hybrid model based on POPPK and ML algorithm to 120 

correct the CL estimation bias in the MAP-BE & LSS based on 1 sample (and the 121 

isavuconazole estimation of exposure). 122 

2. Material & Methods 123 

2.1. Population Pharmacokinetic 124 

2.1.1. Data simulation and estimation of clearance using MAP-BE 125 
 126 
The population parameters and relevant covariates of the POPPK model developed by Wu et 127 

al. [22] using 471 samples from 79 solid organ transplant patients were used to simulate 128 

2000 rich PK profiles at steady-state for a typical dose of 200 mg once daily administered by 129 

intravenous infusion over one hour. Each profile was made up of 49 concentration-time 130 

points between 0 and 24h (one every 30 minutes) simulated using the ‘mrgsolve’ R package 131 

[23]. The sex ratio was 50/50 and the body mass index (BMI) was simulated based on a 132 

truncated normal distribution using the data of the original article (mean ± SD [min to max] = 133 

25.4 ± 5.96 [14.6 to 45.2] (as no information was provided in the original article about the 134 

correlation between sex and BMI, the same BMI range was used for both men and women). 135 

Briefly, the model consisted of a 2-compartment model with inter-individual variability on 136 

the apparent clearance (CL) and peripheral volume of distribution (V2), 2 covariates (sex and 137 

BMI) and a proportional residual error. ISA clearance (CL) was almost twice higher in men 138 

than in women and the V2 increased with BMI. Filters were applied to the simulated PK 139 

profiles by removing those with CL and V2 below the 1st and above the 99th percentiles, to 140 

eliminate extreme outliers. 141 

The MAPBAYR package, was then used to estimate the individual PK parameters and 142 

individual concentrations using MAP-BE based on: (i) the simulated full PK profiles to derive 143 

the reference clearance values (refCL) and (ii) the simulated trough concentrations to derive 144 

C24h-CL (the degraded estimates to be corrected using the hybrid strategy). The simulated 145 
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full PK profiles that failed to be processed by MAPBAYR were removed (in these patient 146 

typical population parameters values are given by the program). 147 

2.2. Machine Learning  148 

2.2.1. Preparation of the Data and Feature Engineering 149 

The raw estimation error between refCL and C24h-CL was calculated using the following 150 

formula: 151 

                        

This error was considered as the outcome to be predicted by ML (regression problem). The 152 

variables used as predictors were: (i) the PK parameters (CL and V2) obtained using the 153 

MAP-BE on C24h, (ii) the simulated C24h (SC24h), (iii) the MAP-BE estimated C24h (EC24h), (iv) 154 

the simulated sex and BMI and (v) the  of MAP-BE CL and V2 (corresponding to the 155 

estimated deviation (in %) relative to the typical population CL and V2). Additionally, as in 156 

previous papers [14] some features were engineered to add information: (i) the differences 157 

between SC24h and EC24h; (ii) the ratio between SC24h and EC24h; (iii) the relative ratio 158 

between SC24h and EC24h. Finally, a total of 12 features were available for training the ML 159 

algorithm. 160 

2.2.2. Training the machine learning algorithm 161 

Simulations were split into training (75%) and testing (25%) datasets, which were compared 162 

using the Wilcoxon test (p < 0.05). An Xgboost algorithm was trained to predict the errors of 163 

C24h-CL as compared to refCL, using the Tidymodels framework in R [25]. Briefly, a ten-fold 164 

cross-validation was applied to the training dataset to tune the hyperparameters and 165 

evaluate the model performances based on the r2. A variable importance plot was drawn to 166 

evaluate the relative influence of the variables on the error. The predicted error was added 167 

to C24h-CL to obtain the corrected CL (corCL): 168 

                                          

2.2.3. Xgboost performance in the training and testing datasets 169 

The performances of the Xgboost algorithm developed to correct ISA CL in another 10-fold 170 

cross-validation set from the training set (to check out overfitting) and in the testing dataset 171 

were evaluated using the MPE%, the relative RMSE% and the percentage of profiles with 172 
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MPE% out of the ± 20% MPE interval between corCL and refCL. The unexplained error 173 

between the refCL and C24h-CL or corCL was plotted as a function of CL to check the 174 

dispersion over the CL range. 175 

2.2.4. Evaluation of the shrinkage before and after correction 176 

The shrinkage of C24h-CL and hybrid model was estimated in the training and testing 177 

datasets using the formula proposed by Monolix [26]: 178 

               
         

   
  

Where   is the method used,      is the random effect of the parameter and    
  is the 179 

variance of the parameter estimate. 180 

2.2.5. External evaluation with simulated patients using another POPPK model 181 

For external validation of our hybrid algorithm, another set of simulations was obtained 182 

using another ISA POPPK model developed from pooled data of phase 1 and phase 3 studies, 183 

corresponding to 421 individuals and 6363 drug concentrations [27]. The same methodology 184 

as above (including simulations, filtering out of outliers and MAP-BE using MAPBAYR) was 185 

applied to draw 200 simulated PK profiles receiving 200 mg/24h by intravenous infusion 186 

over one hour. The simulations were performed for non-healthy & caucasian subjects, only 187 

using BMI as a covariate on V2 (simulated following the publication data (median[min to 188 

max] = 23.6[13.9 to 41.1]). The unexplained errors of each method (MAP-BE and hybrid 189 

model) were graphically compared. 190 
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3. Results 191 

3.1. Simulated Data 192 

After excluding the 1% extreme percentiles in CL and V2 (n=233) and thirty-five PK profiles 193 

that failed to be estimated by MAPBAYR, 1727 (out of the 2000) simulated profiles 194 

remained. The description of the simulated data and features tested as predictors is 195 

presented in Supplemental Table 1. No predictors were significantly different between the 196 

training and testing datasets. The correlation matrix between the features and predictors is 197 

presented in Supplemental Figure 1. 198 

3.2. Bayesian estimation of ISA clearance based on full PK profiles or post-dose 199 

trough plasma concentrations 200 

The refCL and C24h-CL were (mean ± SD [min-max]) 4.9 ± 3.3[1.0-19.2] L/h and 4.4 ± 2.5[1.1-201 

14.8], respectively. The density plot of the error between refCL and C24h-CL was skewed 202 

towards high values (log-normal distribution) (Figure 1). Actually, C24h-CL showed a strong 203 

deviation toward an underestimation for high values (CL > 5 L/h) as shown in the Figure 2A. 204 

The shrinkage represents the percentage regression to the mean of a parameter 205 

distribution. The shrinkage of C24h-CL was 45.6% and 44.6% in the training and testing 206 

datasets, respectively. 207 

3.3. Performance of ML to correct C24h-CL estimation errors in the training and 208 

testing datasets 209 

The Xgboost algorithm predicted the error with r2 = 0.94 in the training set and r2 = 0.98 in 210 

the testing set (Figure 3). The 3 features engineered were the most important according to 211 

the variable importance plot (Figure 4), followed by the CL-related variables (ETA CL and CL 212 

predicted). The corCL was (mean ± SD [min-max]) 4.9 ± 3.3[0.9-19.5] L/h. The 213 

hyperparameters of the best tuned Xgboost model are presented in the Supplemental Table 214 

2.  215 

The MPE% represents the accuracy of the estimation, the RMSE% represents the imprecision 216 

of the estimation. Correction using Xgboost error estimates decreased drastically the MPE% 217 

(by 95.8% and 85.6%) and the RMSE% (by 69.5% and 69.0%) in the training and testing sets, 218 

respectively (Table 1). Additionally, less than 1% of corCL were outside the ± 20% MPE 219 
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interval in the training set and none in the testing set, corresponding to a decrease of 97.4% 220 

and 100% respectively in comparison to C24h-CL (Table 1). 221 

The hybrid model decreased the shrinkage of ISA CL estimation by 54.0% and 58.5% 222 

respectively (training: 21.2% and testing: 18.5%). 223 

3.4. Evaluation of the hybrid model on a dataset simulated using an independent 224 

POPPK model 225 

After applying filters, 5/200 full PK profiles were removed. The refCL and C24h-CL were 226 

(mean ± SD [min-max]) 3.4 ± 2.2 [0.8-14.1] L/h and 3.0 ± 1.4 [1.0-7.7, respectively. The 227 

performances of the hybrid model (corCL) in comparison to the MAP-BE applied to C24H 228 

(C24h-CL) are presented in Table 1. The hybrid model decreased the MPE% by approximately 229 

96% and the RMSE% by 68% as compared to MAP-BE alone. As for simulations from the first 230 

POPPK model, the unexplained error was underestimated (refCL-C24h-CL) for refCL larger for 231 

values > 5 L/h (Figure 5). The hybrid model corrected this underestimation accurately for 232 

most of the cases but slightly overcorrected for some of them. 233 

4. Discussion 234 

In this study, we developed a hybrid algorithm combining MAP-BE and ML, able to estimate 235 

very accurately ISA CL based on the steady-state C24h. The performance obtained with this 236 

hybrid algorithm was better than that of MAP-BE alone. 237 

All the data used in this study were obtained by simulation from two independent published 238 

POPPK models, one for the development [22]and the other  for the validation [27] phases. 239 

The former was developed using data from solid organ transplant patients [22] and the 240 

latter using the data from the SECURE study [18], corresponding mainly to patients with 241 

hematologic malignancies, either active or at the stage of stem cell transplantation. This 242 

difference in patient populations may account for the slightly lower performance of our 243 

hybrid algorithm in the validation test set but it also suggests that it can be extrapolated to 244 

other types of patients on ISA. 245 

We did not evaluate the performance of MAPBAYR in comparison to standard tool (such as 246 

NONMEM or Monolix) as it has been already done by Le Louedec et al in the original article 247 
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[24]. The authors reported, in comparison to NONMEM for the seven real models tested 248 

(carboplatin, ibrutinib, pazotinib, cabozantinib, sunitinib, methotrexate and voriconazole), 249 

satisfactory performances with overall 97.3% and 99.3% of accurate estimations for PK 250 

parameters and PK outcomes used for MIPD, respectively. Additionally, we acknowledge 251 

that the estimation of the true CL using MAPBAYR based on all the simulated samples could 252 

have been avoided by using the simulated CL directly. We did that to mimic real PK profiles 253 

in real patients in whom we would have had full PK profiles (but unknown true CL ) and 254 

evaluated a limited sampling strategy. Finally, the mean CL obtained with MAPBAYR applied 255 

to all the samples was identical to the simulated CL (data not shown). 256 

MAP-BE fed only with C24h values strongly underestimated ISA CL for values >5 L/h, and the 257 

higher the C24h-CL, the stronger the correction made by the hybrid algorithm. Actually, with 258 

so little individual information (only 1 concentration), the estimated CL is largely shrunken 259 

toward the typical mean population value. Similarly, for values > 2.5 L/h, an overestimation 260 

is observed even if to a lower extent than the underpredicted values on Figures 4 and 5. 261 

Figure 5 also showed that in 10 cases with high CL values, the hybrid algorithm 262 

overcorrected the CL leading to an overestimation of refCL. 263 

It is of note that the typical CL in the external validation population was 2.36 L/h (theta 1) 264 

while in the results, a mean value of 3.4 L/h was observed. The discrepancy is probably 265 

stochastic and linked to the number of simulations as increasing the number of simulations 266 

to 1000 led to a mean CL =2.8 and median = 2.38 L/h.  267 

The bimodal distribution (as function of sex) observed in the unexplained error of MAB-BE 268 

C0 was removed after correction (Figure 2). The correction of the shrinkage of CL by the 269 

hybrid model is probably mediated by a decrease in the strong influence of the covariate 270 

'Sex' carried by the POPPK model (as this is the only covariate that explain the interindividual 271 

variability of CL). In contrast, the covariate 'Sex' provides the least important information for 272 

the ML algorithm to predict the unexplained error as shown in the Figure 4.  273 

The correlation matrix between features and predictors shows a strong correlation between 274 

some of the predictors, preventing the use of them in a regression or mixed effect analysis. 275 

For example, the simulated and predicted concentrations exhibited r = 0.997, CL eta and CL 276 

MAP-BE a r = 0.865 or BMI and V2 a r = 1.0. Despite this, all the features were used with a 277 
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different importance in the VIP plot. This is probably linked to the principle of the Xgboost 278 

algorithm that randomly selects part of the features to build each tree during the iterative 279 

development of the ensemble algorithm.  280 

The PK/PD exposure marker initially used in the preclinical model for ISA was the AUC [28–281 

30], but its use in routine practice is complicated since good Bayesian estimation would 282 

require more than one concentration-time point. In the present work, the algorithm 283 

developed yields very accurate estimation of ISA CL, hence of its AUC (CL = dose/AUC). 284 

Thereby, an individualized dose after intravenous administration of ISA can be proposed to 285 

reach an individual AUC target derived from the ECOFF or MIC [31]. This hybrid algorithm 286 

has not been developed for oral ISA and its development will be performed in further work, 287 

even if the relevance of dose adjustment is less pronounced due to the pill dosages (multiple 288 

of 100 mg) that do not allow precise dose individualization. 289 

We previously developed a similar hybrid algorithm for the estimation of the glomerular 290 

filtration rate (GFR) after iohexol administration and found that it decreased the shrinkage 291 

and improved the individual predictions [14]. The present study confirms that this 292 

methodology is generalizable. It is of note that in the previous work, the glmnet algorithm 293 

was also evaluated and yielded slightly better results than the XGboost. However, we did not 294 

evaluate it here and chose directly the Xgboost algorithm as (i) when we evaluated both 295 

algorithms on different LSS, we observed that the Xgboost obtained a more constant 296 

improvement in comparison to the glmnet and (ii) as discussed above, the Xgboost algorithm 297 

is less sensitive to the high collinearity between the predictors as compared to linear 298 

regression. The principle of Xgboost, an algorithm based on boosting, is to iteratively build a 299 

simple regression tree by finding split values among part of the predictors randomly selected 300 

that minimize the loss function (here the root mean square error). The iterative process 301 

constructs additional regression trees of the same structure including other randomly 302 

selected predictors, but minimizes the residual errors of the previous aggregated regression 303 

trees. 304 

In this work, we did not try to develop a ML algorithm to directly predict the CL of 305 

isavuconazole based on features and available concentrations as previously done by our 306 

group for other drugs [2,32]. Even if a comparison of the hybrid algorithm with the direct use 307 



12 
 

of a ML algorithm is of interest, the problem with the ML algorithm alone is a loss in 308 

interpretability (black box). The aim of the hybrid algorithm is both to improve the 309 

performance of existing population pharmacokinetics models while preserving the 310 

pharmacological interpretability.  311 

The filtering of extreme simulations prevented Xgboost from learning from unrealistic 312 

profiles, even if this algorithm in particular makes nonlinear prediction and discretizes the 313 

continuous values into quantiles, which is less sensible to outliers data [33]. Supplemental 314 

Figure 2 shows a typical case illustrating that the patients filtered out were characterized by 315 

a typical value of CL assigned by MAPBAYR. 316 

Interestingly, the most important variables for predicting the error between refCL and C24h-317 

CL were those engineered and those related to CL. Indeed, these variables inform about the 318 

importance of deviation in respect to typical CL in the population. 319 

Since this combined algorithm may be complicated to reproduce, we have developed a shiny 320 

interface to allow testing it, for research purposes only (https://hybrid-321 

models.shinyapps.io/isavuconazole/).  322 

In this work we only evaluated the improvement by using the hybrid algorithm for a single 323 

POPPK model. It could be of interest to compare the improvement to recent and accurate 324 

model averaging approaches [34]. Indeed in a previous collaborative work, we showed that 325 

these approaches had similar (or slightly better) performances in comparison to  the ML 326 

algorithm that directly estimated the CL of vancomycin [32]. We could also try to develop 327 

hybrid algorithms for model averaging approaches but that would require some additional 328 

works. Additionally, previous works by other groups have combined POPPK model and ML 329 

algorithms. For example,  Tang et al  combined ML and POPPK to improve antibiotic CL 330 

estimation based on covariates while we used both covariates but in addition, the estimated 331 

PK parameters, observations and the POPPK model predictions[10]. Another example is the 332 

works of Hughes et al who developed a ML algorithm which learned from the error between 333 

observations and predictions and was able to select patients in whom it would be better to 334 

use flat priors rather than conventional MAP-BE for vancomycin [12].  335 

https://hybrid-models.shinyapps.io/isavuconazole/
https://hybrid-models.shinyapps.io/isavuconazole/
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This study has some limitations. First, the algorithm development and validation are only 336 

based on simulations, meaning that it still requires validation in “real” patients before it can 337 

be implemented in the clinics. Simulations were performed with a single dosage (200 mg) 338 

which corresponds to the recommended dose. The impact of ISA dose on pharmacokinetic 339 

parameters or as a predictor for the hybrid model was therefore not explored and PK 340 

linearity was assumed (i.e. CL is independent of the dose and a dose increase will result in a 341 

proportional increase in AUC). The inclusion of the dose would require providing the 342 

algorithm with initial simulations for different dose levels and would allow to confirm the 343 

hypothesis of dose proportionality.  However, the goal of such an algorithm is to propose 344 

different doses in the population so that each patient can reach a predefined target and that 345 

should be investigated in future works. The absence of clear AUC targets is another 346 

limitation and when the strain sensitivity is unknown, the mean AUC target of the SECURE 347 

study (100 h.mg/L) can be proposed [27]. Finally, the relevance of TDM has not been 348 

evaluated in this work which only proposes tools to perform it. 349 

5. Conclusions 350 

In conclusion, the hybrid model associating a POPPK model, MAP-BE with a limited sampling 351 

strategy and ML developed here may spearhead a new generation of tools for model-352 

informed precision dosing in routine practice. 353 

  354 
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Table 1 Performances of different method (MAP-BE and hybrid model) in the training and testing datasets and in the 466 
external set obtained by simulation from Desai A. et al. POPPK model 467 

 Training set Testing set External validation [27] 

 C24h-CL Hybrid 

model 

C24h-CL Hybrid 

model 
C24h-CL 

Hybrid 

model 

MPE (%) 3.4 - 0.15 3.6 - 0.5 7.8 -0.3 

RMSE (%) 11.2 3.4 11.4 3.5 16.3 5.2 

Out of ± 

20% error 

interval 

(%) 

7.6 0.2 5.6 0 22.4 0 

MPE is mean predictive error, RMSE is root mean square error and MAP-BE is maximum a posteriori Bayesian estimator 468 

  469 
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Figure Legends 470 

Figure 1: Density plot of C24h-CL error in the overall simulations. 471 

Figure 2: Unexplained error (true CL – MAP-BE LSS C24H CL or true CL – hybrid CL) before 472 

and after correction of clearances in the training (A) and testing (B) dataset. Males were 473 

represented by blue points and females by red points. 474 

Figure 3: Correlation between C24h-CL error and Xgboost estimation error in the training (A) 475 

and testing (B) dataset. 476 

Figure 4: Variable Importance Plot for the prediction of the error (reference CL based on 477 

MAP-BE applied on one simulated sample every 30min between 0 and 24h – CL obtained 478 

using MAP-BE applied on C24H only) by the Xgboost algorithm. 479 

Figure 5: Unexplained error in CL prediction (ref CL –C24h-CL (grey round) or ref CL – hybrid 480 

CL (black square)) as function of refCL in the external validation set. 481 

Supplementary Materials 482 

Supplemental Table 1: Comparison of predictors in the training and testing datasets. 483 

Supplemental Table 2: hyperparameters selected for the best Xgboost algorithm 484 

Supplemental figure 1: Correlation plot between the different evaluated features used to 485 

predict the difference between the reference clearance and the C24h-CL. 486 

Supplemental figure 2: Observed and individual predicted concentrations in a removed 487 

simulation. black points: "simulated concentrations"; black line: "individual predicted 488 

concentrations". 489 
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