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Abstract 
 

Therapeutic drug monitoring of mycophenolic acid (MPA) based on area under the curve (AUC) is 

well established and machine learning (ML) approaches could help to estimate AUC. The aim of this 

work is to estimate the AUC of MPA in organ transplant patients using Xgboost ML models. 

A total of 12,877 MPA AUC0-12h requests from 6884 patients sent to our ISBA expert system 

(www.pharmaco.chu-limoges.fr/) for AUC estimation and dose recommendation based on MPA 

concentrations measured at least at 3 sampling times (approx. 20min, 1 and 3h after dosing) were 

used to develop 2 ML models based on 2 or 3 concentrations. Data were split into a training set 

(75%) and a test set (25%) and the Xgboost models in the training set with the lowest RMSE in a ten-

fold cross-validation experiment were evaluated in the test set and in 4 independent full-pk datasets 

from renal or heart transplant patients.  

ML models based on 2 or 3 concentrations, differences between these concentrations, relative 

deviations from theoretical times of sampling, presence of a delayed absorption peak and 5 

covariates (dose, type of transplantation, associated immunosuppressant, age and time between 

transplantation and sampling) yielded accurate AUC estimation performances in the test datasets 

(relative bias<5% and relative RMSE<20%) and better performance than MAP Bayesian estimation in 

the 4 independent full-pk datasets. 

The Xgboost ML models described allow accurate estimation of MPA AUC0-12h and can be used for 

routine exposure estimation and dose adjustment and will soon be implemented in a dedicated web 

interface. 
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Introduction 

 

Mycophenolate mofetil (MMF) is the prodrug of mycophenolic acid (MPA), an immunosuppressive 

drug inhibiting inosine monophosphate dehydrogenase which is an enzyme involved in the de novo 

pathway for purine biosynthesis1. Although, MMF was initially marketed as a fixed dose drug, it 

exhibits a large inter-individual pharmacokinetic variability, poor relationships between dose vs. 

mycophenolic acid (MPA) area-under-the-curve (AUC) or through blood level (C0) vs. AUC;  and a 

better correlation between MPA AUC and patient outcome than any single concentration-time point 

or dose . While the last conference consensus recommended MPA therapeutic drug monitoring 

(TDM) based on the AUC as the best exposure marker 2, TDM is still not performed everywhere or for 

all patients. This is probably due to the poor predictive value of the C0 and the difficulty to estimate 

MPA AUC without the use of population pharmacokinetic models and maximum a posteriori 

Bayesian estimators based on limited sampling strategies. Indeed, this approach is not easy to 

implement in routine practice and needs some pharmacokinetic background and computer skills. 

This led us to launch in 2005 the Immunosuppressant Bayesian Dose Adjustment (ISBA) expert 

system and website 3 to share tools able to estimate the inter-dose AUC of immunosuppressants 

using population pharmacokinetics (POPPK) models and maximum a posteriori Bayesian estimation 

(MAP-BE) on the basis of 3 blood samples and patient characteristics (type of graft, age, post 

transplantation period, drug measurement assay) and the expertise required to interpret the data 

and make dose recommendations. On this website, each request posted is validated in less than 48h 

by a trained pharmacologist, representing a huge workload due to the large number of requests 

received from transplant centers worldwide (>120,000 since 2005). The POPPK models used in the 

ISBA back-office for MMF have all been developed using an in-house PK modelling package (ITSIM) 

that employs the iterative two-stage Bayesian estimation method (ITSB), as previously reported4. To 

describe the complex MPA profiles, we used one-compartment models with linear elimination and 

absorption modeled using two gamma distributions5. No covariate is used in the models but several 
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priors (“models”) have been built based on a few characteristics: cyclosporine co-treatment, 

adult/children, type of transplantation, drug assay and post-transplantation period. These models 

have been largely and successfully used, as reported in several papers6–11 . 

Machine learning is widely used in numerous application including pharmacology (Pubmed Entry 

“Machine learning” & “Pharmacology”= 600 in 2018, 846 in 2019) especially in structure/activity 

predictions 12,13 or drug discovery 14  but only a few applications to predict drug exposure, PK 

parameters or optimal dose exist 15–19. Recently, we successfully applied a machine learning approach 

for tacrolimus AUC estimation that yielded better performance in terms of relative bias or 

imprecision vs reference trapezoidal rule AUC than maximum a posteriori Bayesian estimation (MAP-

BE), even with only 2 samples 19. We used extreme gradient boosting (Xgboost R package) where 

simple regression trees are iteratively built by finding among all the input variables, split values that 

minimize the prediction error. The iterative process constructs an additional regression tree of the 

same structure that minimizes the residual errors of the previous regression tree 20.  

A major difference between the population pharmacokinetics approach and machine learning is that 

POPPK involves results from specifying a mechanistic model, physiologically interpretable to describe 

the observed data while ML aims to find the best algorithmic model that minimizes prediction errors 

based on the data and results. ML exhibits excellent performances while losing in interpretability 

(“black box” phenomenon). The more the algorithm used to predict a result is complex, the more the 

performances are improved but the interpretability decreases21. Currently, the algorithms associated 

with the highest number of wins in the Kaggle competition are deep neural networks and Xgboost 

methods 22.  

The objective of this study was to develop Xgboost models to estimate mycophenolic acid (MPA) 

inter-dose AUC0-12h, based on a limited number of blood concentrations (2 or 3) and predictors, and 

to compare their performance to that of MAP-BE in external validation datasets. 
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Methods 

Patients and data 

The MPA AUC0-12 estimation and dose recommendation requests received on our ISBA website 

since 2007, whatever the type of transplantation, were extracted and cleaned using the tidyverse 

framework23. We selected the requests with: an interdose of 12h; MPA plasma levels measured using 

HPLC; and at least 3 sampling time points at approximately 20 min (10 to 30 min, C20), 60 min (45 to 

75 min, C1) and 180 min (160 to 200 min, C3) after drug intake. The 20, 60, 180 min limited sampling 

strategy (LSS) was previously reported as the optimal sampling schedule in most situations for MMF 

AUC0-12 estimation based on samples taken in the 4h post dosing2. The other predictors available 

were the morning dose of MMF, the time elapsed between transplantation and sampling, the 

indication of MMF (in decreasing order: kidney, heart transplantation, nephrotic syndrome, liver, 

lung transplantation, lupus in adult patients, lupus in pediatric patients, hematopoietic stem cell 

transplantation and all the remaining cases gathered as “others”), the associated 

immunosuppressant (cyclosporine, tacrolimus, sirolimus/everolimus or none of these) and patients’ 

age.  

Plan of the study 

In this study, supervised learning was used to predict AUC0-12h, whose reference value had been 

obtained by our ISBA expert system using MAP-BE and at least 3 concentrations. Two machine 

learning (ML) models were developed in parallel, one including only 2 concentrations and the other 

including 3. The data were split into a training set, used to build the model, tune the 

hyperparameters and evaluate model performance by cross-validation and a test set used to 

evaluate the performance of the models in an independent set of data. The performances were 

evaluated in the test set only after the best model had been optimized in the training set, by 

calculating the root mean square error (RMSE, expressed in mg*h/L) between the estimated and 

reference AUCs. Because the reference (MAP BE) AUC0-12h can be considered as an imprecise and 
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potentially biased estimate of the “true” AUC, the results of our Xgboost models based on 2 or 3 

concentrations to the “true” AUCs obtained from full PK profiles using MAP BE applied to all the 

samples available were also compared. For that, we used 4 different datasets from adult renal 

transplant patients (i) on MMF + tacrolimus; PCCP 24, (ii) on MMF + cyclosporine (Stablocine25) and  

(iii)on MMF + cyclosporine or sirolimus (CONCEPT26) and one from adult heart transplant patients  on 

MPA + cyclosporine or tacrolimus (PIGREC 10). The performances of the Xgboost models in these 

confirmation datasets were also compared to that of the MAP-BE based on the 3 time-points limited 

sampling strategies available on ISBA.  

Feature engineering 

The MPA concentrations were binned into 3 theoretical time classes (concentrations at 20min (C20 

sampled between 10 and 30min), at 1h (C1 sampled between 45 and 75 min) and at 3h (C3 sampled 

between 160 and 200 min)), leading to 3 predictors per patient. The relative deviation with respect 

to the theoretical times was also considered. For instance, if the actual sampling time was 1.06h for 

the theoretical time 1h, the relative time difference was (1.06 – 1)/1 = 0.06. The differences between 

the concentrations C1 – C20, C1 – C3 and C3 – C20 were also considered as potential predictors and, 

to add information about potentially delayed absorption peaks, 3 dummy variables corresponding to 

C3>C1, C3>C20 and C3>C20&C1 were created. Finally, the set of features used to predict AUC0-12h 

were: the categorized indication of MMF, the categorized associated immunosuppressant, patient 

age, time elapsed between transplantation and MPA plasma sampling, MMF morning dose, MPA 

concentrations at times 20min, 1h and 3h, relative deviation from the theoretical times, differences 

between concentrations, and dummy variables for delayed absorption peak. For the models based 

on 2 concentrations (C1 and C3), the relative time difference for C20 and the concentration 

differences or dummy delayed absorption including C20 were removed. 



7 
 

Exploratory data analyses 

A correlation matrix and scatterplots were drawn to explore the correlation between AUC0-12h and 

predictors using the GGally package27
. Boxplots were also built to investigate AUC0-12h/dose in the 

subgroup with cyclosporine vs other immunosuppressants, split by MMF indications. Indeed, 

cyclosporine is known to be associated with lower AUC/dose values due to inhibition of MPA 

enterohepatic recycling 28.   

Pre-processing of the data 

For all the ML analyses, the tidymodels framework was used 29. The two categorical variables 

“indication for MMF” and “associated immunosuppressants” were one hot encoded (i.e., 

transformed in 0/1 dummy variables). No other pre-processing was applied to the data, as Xgboost 

does not require normalization. There was no missing data in the predictors. Data splitting was 

performed by random selection of patients in a training (75%) and a test set (25%).  

Development of the Xgboost models 

A tuning step was done by searching, in a 40X40 grid, the parameter combination associated with the 

lowest RMSE and highest r² between estimated and reference AUC0-12 values, using a 10-fold cross-

validation (for which the training dataset was randomly split into 10 parts). In brief, the best 

combination of parameters was investigated in 90% of the training set (called the analysis subset) 

and evaluated in the remaining 10% (called the assessment subset) and this process was repeated 10 

times by circular permutation. The parameters tuned were: the number of predictors randomly 

sampled at each split (mtry, between 1 and 28), the minimum number of data points in a node 

required for the node to be split further (min_n between 1 and 40), the maximum depth of the tree 

(tree_depth, between 1 and 15), the rate at which the boosting algorithm adapts from iteration-to-

iteration (learn_rate, between 0 and 0.08) and the amount of data randomly exposed to the fitting 

routine at each tree (sample_size, between 0.1 and 1). The relative importance of the predictors was 

then evaluated by random permutations and variable importance plots were drawn. Once the best 
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parameter combinations had been selected, the model was evaluated using 10-fold cross-validations 

to assess the mean RMSE and r² and their standard deviations in the training set and scatter plots of 

estimated and residuals vs. reference AUC0-12 were drawn. In a last step, the AUC0-12 prediction 

was performed in the test set and the performances were evaluated by calculation of the RMSE, r², 

the relative mean prediction error (MPE), relative RMSE (imprecision) and the number and 

proportion of estimations with an MPE value out of the ±20% interval. Scatter plots of predicted vs. 

reference AUC0-12, and of residuals vs. reference AUC0-12 were also drawn. 

External evaluation vs full PK profiles and comparison with POPPK 

Concentrations at 20min, 1h and 3h as well as dose, sampling times and time elapsed between 

transplantation and MPA plasma sampling were extracted from the PK databases to predict the 

AUC0-12 using the ML models and the MAP-BE based on 3 concentrations, as used in ISBA. The full 

concentration profiles were also used to calculate the “true” AUC0-12 using MAP-BE with all the 

available samples. 

Performances of the ML models using 2 or 3 concentrations and of MAP-BE based on 3 

concentrations were compared to the reference AUC0-12 in terms of the relative MPE and relative 

RMSE and the proportion of MPE out of the ±10 or the ±20% interval. Additionally, scatter plots of 

predicted AUCs or residuals vs. the reference AUC0-12 were drawn to compare the different 

approaches.  

The PCCP study24 included 128 PK profiles of 11 samples (0, 0.33, 0.66, 1, 1.5, 2, 3, 4, 6, 8, 12h post 

dosing) collected at 7 and 14 days, 1, 3 and 6 months after renal transplantation. The Stablocine 

study 25 included 20 PK profiles of 10 or 11 samples (0, 0.33, 0.66, 1, 1.5, 2, 3, 4, 6, 9h and (not 

present in every profile) 12h post dosing) in stable renal transplant patients. The CONCEPT study 26 

included 67 PK profiles of 10 or 11 samples (0, 0.33, 0.66, 1, 1.5, 2, 3, 4, 6, 9h and (not present in 

every profile) 12h post dosing) collected at weeks 12, 16 and 26 after renal transplantation. The 
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PIGREC study10  included 75 PK profiles of 10 samples (0, 0.33, 0.66, 1, 1.5, 2, 3, 4, 6 and 9h post 

dosing) collected between day 7 and day 14, and at 1,3 and 12 months after transplantation.  

Results 

Patients and data 

A total of 12,877 MPA AUC0-12h requests from 6884 patients fulfilling the inclusion criteria were 

available in the cleaned datasets extracted from ISBA (out of 12,890 requests before cleaning). The 

characteristics of the training and test sets are reported in Table 1. The AUC0-12 ranged between 1 

and 181 mg*h/L and 3 and 164 mg*h/L in the training and test sets, respectively. Boxplots of AUC0-

12/dose in the different subgroups defined by cyclosporine vs other immunosuppressants and 

indication of MMF are presented in Figure S1. 

Exploratory data analyses 

The correlation matrix between AUC0-12 and individual predictors is presented in Figure S2 and 

shows rather poor correlation in general, the best being with C1h (r=0.7) and C3h (r=0.66).  

Xgboost model 

The best-tuned parameter values for each model are presented in Supplemental Table S1. Excellent 

validation results were obtained in the training set (using 10-fold cross-validation) and in the test set 

(Table 2). Interestingly, there was no difference between the two validation steps, suggesting that 

there was no overfitting in the training set, thanks to the cross-validation. AUC0-12 ML estimation 

was approximately twice better when using 3 concentrations rather than 2. The relative MPE was 

close to 0 and the relative RMSE <20% in both the training and test sets. The scatter plots and 

residual plots obtained in the test sets are presented in Figure 1. The variable importance plot of 

each model is presented in Figure S3 and shows that concentrations at time 3 and 1h were the most 

important variables.  
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External evaluation vs the reference AUC0-12 and comparison with POPPK 

estimates 

The results of external validation in full-PK databases are presented in Table 3 and show that only the 

Xgboost model with 3 concentrations led to better results than with 2 points or the 3-point MAP-BE, 

in comparison to the reference AUC. The prediction performance in the early period post-

transplantation (<1 month) was similar to that in the whole validation datasets.  

Figure 2 presents the scatter plots and residual plots of estimated vs. reference AUC0-12 in these 

final validation studies. Figure 3 presents for each individual the MPA AUC0-12 estimated using ML 

with 2 or 3 samples, MAP-BE with 3 samples and the reference AUC0-12. 

Discussion 

In this work, we developed Xgboost ML models based on 2 or 3 samples to estimate the AUC0-12h of 

MPA in transplant or auto-immune indications. The models were developed using the standard ML 

procedure with a development in a training set using cross-validation for tuning of the parameters 

and estimation of the performances and once the best model was selected, validation in the test set.  

The results were then compared on an external dataset with those obtained by extensive-sampling 

AUC0-12 estimated using MAP-BE using all the available samples (reference AUC0-12) and to MAP-BE 

estimates based on a 3-point LSS, as employed by the ISBA expert system3 in renal and heart 

transplant patients. The performances of the ML were excellent as compared to the reference AUC0-

12 when using 3 concentrations, and numerically better than those of MAP-BE based on the 3-point 

LSS. 

The performances obtained with the 3-point ML model were better in all the external validation 

datasets, in terms of imprecision and number of profiles out of the ±20% acceptability interval, than 

the 3-point MAP-BE. Additionally, the MAP-BEs available in ISBA and used in the present study for 

comparison to ML were initially developed using the datasets used here for validation, probably 



11 
 

advantaging them. However, in line with our previous results for tacrolimus, ML yields better results.  

The ML model using only 2 samples showed acceptable bias values but imprecision around 25%, 

which is not so high in comparison to literature results but very close to the threshold of 25% 

considered as the limit for accurate estimation in the last MPA consensus2. This 2-point ML estimator 

might still be used in cases where only 2 samples are available, but the prescriber has to be informed 

of the degraded performance in comparison to the 3-point model.  

In addition to better performances than the 3 samples MAP-BE used in ISBA, the ML approach has 

the advantage of practicability, as our single ML model can accommodate all associated 

immunosuppressants or MMF indications, when different MAP-BEs are necessary for each subgroup 

in ISBA. 

There are some differences between this study and our previous one with tacrolimus19. Indeed, 

tacrolimus POPPK is not easy to model, but it has obvious associations with covariates that explain 

part of the inter-individual variability, the dose-exposure relationship is good and the AUC is fairly 

correlated with single time-points (the first being the trough level, used in routine practice)30. All 

these elements may explain why our first ML algorithms were successful. The situation is very 

different with MMF, which can be regarded as the worst-case scenario: MPA exhibits very complex 

pharmacokinetics, the very diverse (and sometimes chaotic) individual profiles are much more 

difficult to model and there is only a weak correlation between the dose and the AUC (as shown 

here), and between the AUC and any single time point2. Therefore, it was much more challenging to 

develop accurate ML algorithms for MPA, and this achievement suggests it should be possible for all 

the other drugs for which TDM is performed. The progress when compared to MAP-BE looks less 

impressive than with tacrolimus, but this highlights the fact that learning from a less precise 

reference (here MAP-BE imprecision is ~20% for MMF) results in somewhat less precise prediction. If 

the ML models were trained in a large, full-profile dataset they would have been more accurate, but 

we did not have such a database. In our hands, trading rich profiles for a lower number of patients 
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(i.e. training the ML algorithms in the validation datasets) did not result in a better performance 

either. 

The principle of ML is to build algorithms that estimate individual values with the lowest imprecision, 

which is perfectly adapted to TDM. However, ML algorithms cannot study the determinants of inter- 

or intra-individual variability or perform simulations to estimate a priori the first dose, or calculate 

the probability of target attainment for different dosing regimens, for instance. Therefore, we think 

that ML may replace POPPK for individual exposure estimation but that POPPK will remain very 

useful for other purposes. Additionally, although being very accurate, ML algorithms are not as 

flexible as POPPK models. For instance, our ML models cannot take into account more than 3 

samples per patient and the sampling times have to be in the same ranges as those of the training set 

(since the validation for times outside these ranges has not yet been done). 

Imprecision values observed in the present study (19%, 14.7%, 22.5%, in renal and 14.6 % in heart 

transplantation) are slightly better than those reported in the literature, in the range of 20%-

25%5,10,31–35. These values are higher in comparison to other immunosuppressants (e.g. tacrolimus, 

with imprecision ~10%) but they reflect the complexity of MPA pharmacokinetics. Some papers 

reported slightly better precision, but these POPPK models were either not validated in independent 

datasets 7,9,36 or they compared 3-points MAP-BE AUCs to reference AUCs obtained using 6 samples 

and the same POPPK model, leading probably to overestimation of the MAP-BE results11. 

 

The randomized, comparative APOMYGRE study in 137 adult kidney transplant recipients on CsA 

showed that concentration-controlled MMF dosing using the MAP-BE implemented in ISBA had a 

significant lower incidence of acute rejection than patients with standard-dose MMF37. In their meta-

analysis, Metz et al.38 concluded that when concentration-controlled dosing is performed based on 

pharmacokinetic calculation to a target concentration, MPA exposure is well controlled and clinical 

outcomes are improved, which has been stressed in the very recent consensus conference paper2. 



13 
 

Based on the better performance of our ML estimator in comparison to ISBA MAP-BEs (among which 

those used in the APOMYGRE study), we propose to use it for routine calculation of MPA AUC and 

will make it available to the medical community through a web-interface. In the meantime, a 

temporary shiny application (https://jbwoillard.shinyapps.io/App-7_mmf_ml/) has been built to test 

the model (for research purposes only).   

The added value of AUC-based dose adjustment of MMF has currently been demonstrated for the 

very early post-transplant phase (especially the first weeks after transplantation)2. The performances 

of our ML models in patients transplanted for less than 1 month (only one study in kidney and one in 

heart transplant patients had data collected within the 1st month) were very similar to those in the 

whole validation population. 

The use of our ML estimator is submitted to some restrictions, due to the datasets used to design it: 

it was developed using MPA concentrations measured using HPLC and in which the inter-dose was 

12h. Additionally, the external dataset used for external validation comprised only renal and heart 

transplant recipients. It’s performances in the other MMF indications for which the model was 

developed (nephrotic syndrome, liver or lung transplantation, lupus, pediatric lupus, hematopoietic 

stem cell transplantation and “other” mostly corresponding to auto-immune disease) are still to be 

evaluated. 

We believe that the ML models we developed are insensitive to the achievement of the 

pharmacokinetic steady-state, because they do not rely on a pharmacokinetic model and they gave 

excellent results in the very large training and validation datasets, where part of the profiles were 

certainly not at steady-state (e.g., profiles collected on day 7 post-transplantation where the dose 

had already been adjusted based on adverse effects). 

However, these ML models have some limitations. To cope with deviations from the theoretical 

times, we included them as new features in the model but we have no idea about the accuracy of the 

algorithms when samples are drawn outside the ranges actually observed in our datasets. This has to 

https://jbwoillard.shinyapps.io/App-7_mmf_ml/
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be investigated in further studies. In the meantime, we do not recommend using the algorithms 

when samples are collected outside the pre-defined ranges (20 min: from 10 to 30 min; 60 min: from 

45 to 75 min; and 180 min: from 160 to 200 min). Also, our ML models are less flexible than MAP-BE 

and cannot manage more than 3 samples. These ML models are perfectly adapted for routine use 

but not really for research projects or specific cases in which more than 3 samples are available.  

In conclusion, an Xgboost ML model providing accurate estimation of mycophenolic acid AUC0-12h 

has been developed for many MMF indications, and validated in independent groups of kidney and 

heart transplant recipients. It will soon be implemented in a dedicated web interface for these two 

indications. A patent has been filed.  

Study Highlights 
 What is the current knowledge on the topic? Mycophenolic acid (MPA) AUC0-12h for 

individual dose adjustment is difficult to estimate in routine patient care.  

 What question did this study address? We investigated whether machine learning models 

could estimate MPA AUC0-12h using a limited number of blood concentrations, as well as or 

even better than deterministic pharmacokinetic models with Bayesian estimation. 

 What does this study add to our knowledge? We developed and validated in kidney or heart 

transplants Xgboost machine learning models allowing accurate estimation of MPA AUC0-

12h based on 3 blood concentrations with better performances than that of the 

pharmacokinetic approach previously employed. 

 How might this change clinical pharmacology or translational science? These models will be 

soon implemented in an expert system made available to the transplant community through 

a dedicated website. 
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Table 1: Characteristics of the ISBA requests used for the development and validation of the models 

 Train (n=9658) Test (n=3219) 

Time between transplantation and MPA 

blood concentrations (years) 
1.07 [0.25, 5.42] 1.06 [0.25, 5.73] 

AUC0-12h (mg*h/L) 39.30 [29.11, 51.20] 39.24 [28.96, 50.88] 

Patient age  (year) 53.74 [38.58, 64.45] 52.85 [39.01, 64.10] 

Morning dose (mg) 750 [500, 1000] 750 [500, 1000] 

Deviation from the 20m theoretical time 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 

Deviation from the 1h theoretical time 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 

Deviation from the 3h theoretical time 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 

Concentration difference between C1h and 

C20m 
1.70 [-1.44, 5.61] 1.70 [-1.58, 5.50] 

Concentration difference between C1h and 

C3h 
5.20 [2.03, 9.20] 5.39 [2.10, 9.30] 

Concentration difference between C20m and 

C3h 
2.10 [-0.90, 8.00] 2.30 [-0.80, 8.38] 

Delayed absorption (C3>C1) 1293 (13.4) 409 (12.7) 

Delayed absorption (C3>C20) 3228 (33.4) 1035 (32.2) 

Delayed absorption (C3>C20 & C3>C1) 1145 (11.9) 379 (11.8) 

Associated immunosuppressant 

Tacrolimus 

Ciclosporine 

None 

Sirolimus/everolimus 

 

 

5265 (54.5) 

2580 (26.7) 

1542 (16.0) 

271 ( 2.8) 

 

 

1811 (56.3) 

830 (25.8) 

483 (15.0) 

95 ( 3.0) 

Transplant type 

Kidney 

Heart 

Nephrotic syndrome 

Liver 

Lung 

Lupus 

Pediatric lupus 

 

7398 (76.6) 

782 (8.1) 

524 (5.4) 

296 (3.1) 

202 (2.1) 

97 (1.0) 

45 (0.5) 

 

2470 (76.7) 

246 (7.6) 

187 (5.8) 

100 (3.1) 

79 (2.5) 

30 (0.9) 

9 (0.3) 
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Bone marrow 

Other 

34 (0.4) 

280 (2.9) 

13 (0.4) 

85 (2.6) 

(median [IQR]) are presented for continuous data and n(%) for categorical data.  
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Table 2: Performances of the models in the training and testing datasets to estimate AUC0-12 

obtained from 3 samples MAP-BE from ISBA  

  MPA 2 samples MPA 3 samples 

training 

*RMSE ± SD (mg*h/L) 6.78 ± 0.08 5.59 ± 0.07 

*R² ± SD 0.864 ± 0.004 0.908 ± 0.002 

Relative MPE (%) 2.7 1.8 

Relative RMSE (%) 18.6 14.5 

testing 

RMSE (µg*h/L) 6.41 5.34 

R² 0.876 0.914 

Relative MPE (%) 2.1 1.4 

Relative RMSE (%) 17.0 13.2 

Number of MPE out of the ±20% interval n(%) 560 (17.4%) 306 (9.5%) 

*Values and standard deviations obtained after 10 fold cross-validation,  
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Table 3: Performances of ML models and MAP-BE based on 3 samples LSS to estimate reference 

AUC0-12s obtained from full PK profiles using the trapezoidal rule. 

  All patients 
Patients in the first month post 

transplantation 

Study Method 
Relative 

MPE (%) 

Relative 

RMSE (%) 

Bias out 

of ±20% 

n (%) 

Bias out 

of ±10% 

n (%) 

Relative 

MPE 

(%) 

Relative 

RMSE 

(%) 

Bias 

out 

of 

±20% 

n (%) 

Bias 

out 

of 

±10% 

n (%) 

PCCP study 

(n=128 / n 1st 

month = 49) 

Xgboost 

2 concentrations 
-1.2 24.2 46 (35.9) 80 (62.5) 

-1.1 24.1 20 

(40.8) 

67.3 

(33) 

Xgboost 

3 concentrations 
-4.0 19.0 39 (30.5) 76 (59.4) 

-4.9 19.2 15 

(30.6) 

57.1 

(28) 

MAP-BE 

3 concentrations 
1.0 19.9 37 (28.9) 81 (63.3) 

2.4 20.0 15 

(30.6) 

61.1 

(30) 

Stablocine 

(n=20) 

Xgboost 

2 concentrations 
1.5 17.8 4 (20) 10 (50) 

NA NA NA NA 

Xgboost 

3 concentrations 
2.8 14.7 2 (10) 8 (40) 

NA NA NA NA 

MAP-BE 

3 concentrations 
9.3 20.5 7 (35) 9 (45) 

NA NA NA NA 

CONCEPT 

(n=67) 

Xgboost 

2 concentrations 
-0.8 26.3 27 (40) 42(63) 

NA NA NA NA 

Xgboost 

3 concentrations 
-1.1 22.5 14 (21) 43(64) 

NA NA NA NA 

MAP-BE 

3 concentrations 
2.1 25.1 18 (27) 40 (60) 

NA NA NA NA 

PIGREC (n=75/ 

n 1st month = 

20) 

Xgboost 

2 concentrations 
2.5 23.1 31 (41) 44 (59) 

7.7 20.4 7 (35) 12 

(60) 

Xgboost 

3 concentrations 
-1.2 15.6 17 (23) 41 (55) 

3.5 14.3 6 (30) 10 

(50) 

MAP-BE 

3 concentrations 
3.5 17.3 17 (23) 47 (63) 

4.6 19.1 5 (25) 11 

(55) 
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Figure 1: Scatter plots and residual plots of predicted vs reference interdose AUC0-12s in the test set, 

for MPA using 2 or 3 MPA plasma concentrations.  

Figure 2: Scatter plots and residual plots of predicted vs reference interdose AUC0-12s in the external 

validation studies split into renal and heart transplantation. The MPA AUC0-12 is estimated using the 

Xgboost model from 2 or 3 MPA plasma concentrations and MAP-BE is the maximum a posteriori 

Bayesian estimation based on 3 samples and the parametric POPPK models available on ISBA. 

Figure 3: Comparison of the different methods of MPA AUC0-12 estimation in the external validation 

studies. MAP-BE is maximum a posteriori Bayesian estimation based on the 20min, 1 and 3h limited 

sampling strategy and the parametric POPPK models available in ISBA. The colour blue refers to 

kidney transplant patients and red, heart transplant patients. 


