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A machine learning approach to estimate the Glomerular Filtration Rate in Intensive Care Unit patients based on plasma iohexol concentrations and covariates
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Introduction: This work aims to evaluate whether a machine learning approach is appropriate to estimate the glomerular filtration rate (GFR) in intensive care unit (ICU) patients based on sparse iohexol pharmacokinetic data and a limited number of predictors.

 30, 60, 180, 360, 540, 720, 1080 and 1440 min thereafter. Data splitting was performed to obtain a training (75%) and a test set (25%). To estimate GFR, 37 candidate potential predictors were considered and the best machine learning approach among multivariate-adaptive regression spline and extreme gradient boosting (Xgboost) was selected based on the root mean square error (RMSE). The approach associated with the best results in a 10-fold cross-validation experiment was then used to select the best limited combination of predictors in the training set, which was finally evaluated in the test set.

Results: The Xgboost approach yielded the best performance in the training set. The best combination of covariates was made up of; iohexol concentrations at times 180 and 720 min; the relative deviation from these theoretical times; the difference between these 2 concentrations; the simplified acute physiology score II; serum creatinine; and the fluid balance. It resulted in RMSE=6.2 mL/min and r²=0.866 in the test set. Interestingly, the 8 patients in the test set with a GFR<30 mL/min were all predicted accordingly. Conclusions: Xgboost provided accurate GFR estimation in ICU patients based on 2 timed blood concentrations after iohexol IV administration and 3 additional predictors.

Introduction

Accurate estimation of the glomerular filtration rate (GFR) in intensive care unit (ICU) patients is very important, not only because it has a high prognostic value but also because it helps to adjust care in order to avoid potential renal failure and also adjusts the dose of low therapeutic index drugs with renal elimination (aminoglycosides, beta-lactams...). Currently, in routine care, GFR is estimated using serum creatinine, an endogenous compound (produced by muscle catabolism) filtered by the kidneys [START_REF] Kellum | Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury[END_REF]. However, patients hospitalized in the ICU may not have steady-state production and elimination of creatinine (due to fever, liver failure, change in fluid balance, rhabdomyolysis, increase in creatinine secretion…) rending formulas based on serum creatinine inaccurate [START_REF] Kirwan | Estimated glomerular filtration rate correlates poorly with four-hour creatinine clearance in critically ill patients with acute kidney injury[END_REF].

Iohexol has been initially marketed in France as a radiographic contrast medium. It is mainly indicated for CTscans, urography or angiography in children, adolescents and adults (Summary of Product Characteristics).

Iohexol exhibits interesting pharmacokinetic characteristics which makes it a good candidate for the estimation of GFR [START_REF] Soveri | Measuring GFR: a systematic review[END_REF]. Several abbreviated formulas have been proposed to estimate GFR using only a few blood samples drawn during the elimination phase after IV administration of iohexol, the most popular being the Bröchner-Mortensen formula [START_REF] Bröchner-Mortensen | A simple method for the determination of glomerular filtration rate[END_REF]. However, the characteristics of ICU patients, presenting altered drug distribution patterns, render these formulas inappropriate. Thus, the best way to calculate iohexol pharmacokinetic parameters in these patients is to obtain a full pharmacokinetics (PK) profile. Some studies have developed population pharmacokinetics (POPPK) models for iohexol in specific populations (kidney transplant recipients, elderly patients) using different structural models (2 or 3 compartments) [START_REF] Benz-De Bretagne | New sampling strategy using a Bayesian approach to assess iohexol clearance in kidney transplant recipients[END_REF][START_REF] Taubert | Using a three-compartment model improves the estimation of iohexol clearance to assess glomerular filtration rate[END_REF][START_REF] Riff | Assessment of the glomerular filtration rate (GFR) in kidney transplant recipients using Bayesian estimation of the iohexol clearance[END_REF][START_REF] Åsberg | Measured GFR by Utilizing Population Pharmacokinetic Methods to Determine Iohexol Clearance[END_REF]. However, estimating the pharmacokinetics of a compound requires drawing many blood samples, which is not easy to apply in routine care. In a recent work, we showed that POPPK modeling and Bayesian estimation of iohexol clearance allows accurate assessment of GFR in ICU patients [START_REF] Gandonnière | Glomerular Hyper-and Hypofiltration During Acute Circulatory Failure: Iohexol-Based Gold-Standard Descriptive Study[END_REF]. However, these tools require population pharmacokinetic modeling skills and software that may not be readily available in ICUs. Furthermore, in the context of unstable renal function as observed in patients with acute circulatory failure, assumptions on the structural model may be inaccurate or too simplistic, due to some degree of erratic variability of concentrations over the sampling period.

Rather than defining a structural model to describe observed data, machine-learning approaches use algorithmic modeling of free parameters linked with complex interactions [START_REF] Badillo | An Introduction to Machine Learning[END_REF]. In the context of pharmacokinetics, these methods could be used to estimate clearance from a number of patient features, i.e. demographic characteristics, laboratory test results, disease history, or associated medications. Extreme gradient boosting is a machinelearning approach based on boosting. In brief, simple regression trees are iteratively built by finding split values among all input variables that minimize prediction error. The iterative process constructs an additional regression tree of the same structure, but which minimizes the residual errors of the first regression tree [START_REF] Chen | XGBoost: A Scalable Tree Boosting System[END_REF]. Multivariate adaptive regression splines (MARS) capture the nonlinear relationships in the data. This method assesses cut points (knots) for each predictor, converts continuous features into ordered categorical variables, and then creates a linear regression model with the candidate feature(s). The exact form of the nonlinearity is not specified before the train of the model and the approach investigates nonlinearities and interactions in the data that help to maximize accuracy [START_REF] Friedman | Multivariate Adaptive Regression Splines[END_REF]. These non-linear methods are meant to make estimations with the highest accuracy. Once constructed, these predictive models can be used in clinical practice using web-interfaces or applications. This work aims to use machine learning to estimate ICU patients' GFR at the time of sampling using a limited number of Iohexol blood concentrations and other predictors, and to compare its performance to that of the Bröchner-Mortensen formula and of a population pharmacokinetics model.

Material & methods

Patients and pharmacokinetic study

This is a post-hoc analysis of the database of the "IOXREA" study (NCT0205026). This clinical study was set up by the intensive care units at the University Hospitals of Tours, Strasbourg and Orleans and aimed at describing pharmacokinetic profiles of iohexol in unstable ICU patients with acute circulatory failure of any cause. Details of the protocol and patient characteristics are available in a recent article reporting the iohexol population pharmacokinetic model developed [START_REF] Gandonnière | Glomerular Hyper-and Hypofiltration During Acute Circulatory Failure: Iohexol-Based Gold-Standard Descriptive Study[END_REF]. In brief, at most 12h after admission to ICU patients received a unique iohexol dose of 3235 mg by intravenous bolus injection and had 9 blood samples collected at 5, 30, 60, 180, 360, 540, 720, 1080 and 1440 min after. Body weight, body mass index, serum creatinine at admission and during iohexol sampling, plasma protein and albumin, blood urea, the fluid balance, simplified acute physiology score II (SAPSII) [START_REF] Gall | A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study[END_REF], nephrotoxic drugs administered, hematocrit and plasma sodium were recorded. Iohexol plasma concentration measurement was performed using a High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) method in the laboratory of biochemistry at Tours University Hospital [START_REF] Castagnet | Routine determination of GFR in renal transplant recipients by HPLC quantification of plasma iohexol concentrations and comparison with estimated GFR[END_REF].

Principle of the machine learning analysis

The present study used supervised learning to estimate iohexol clearance (as a surrogate marker of GFR), a continuous outcome (regression problem), the reference value of which was set using a reference method (CL Ref) .

The reference iohexol clearance values were obtained using the population pharmacokinetic model previously developed in these patients, all the concentration-time points available [START_REF] Gandonnière | Glomerular Hyper-and Hypofiltration During Acute Circulatory Failure: Iohexol-Based Gold-Standard Descriptive Study[END_REF] and maximum a posteriori bayesian estimation. A training set was used to build and tune the model parameters (through iterations by minimizing an objective function, i.e. the algorithm "learns" how to predict reference clearance) and once the best model was defined, it was evaluated on an independent test set that has not been used to develop the model (by measuring the accuracy of clearance estimation).

Data preparation and feature engineering

The potential predictors investigated in the present study included pharmacokinetic data (iohexol concentrations, sampling times, and differences between theoretical and actual sampling times), demographic data (age, sex, weight, height, body mass index, body surface area), laboratory test results (creatinine at inclusion and during iohexol sampling, urea, albumin, hematocrit, proteinemia, natremia) and clinical data (fluid balance during pharmacokinetic assessment, SAPSII, main admission diagnostic and administration of nephrotoxic drugs the day before inclusion). The iohexol sampling was gathered into 9 theoretical time classes (bins), leading to 9 columns per patient for iohexol concentrations (ESM_1). To account for the deviation of true vs. theoretical sampling times, a new variable was created, corresponding to the relative deviation with respect to the theoreti-cal time within each bin. For example, if the sample time was 185 min and the corresponding theoretical time was 180 min, the relative time difference was (185 -180)/180 = 0.028).

Exploratory data analyses

Exploration of the data was performed by means of the GGally R package (https://CRAN.Rproject.org/package=GGally) using scatterplots, boxplots and density distribution plots. This analysis allows exploring correlations between variables, because some machine learning methods (including MARS) exhibit poor performance with highly correlated features. Additionally, it was used to explore the correlation between the reference clearance and the predictors.

Pre-processing of the data

A pre-processing step is needed before the development of machine-learning models. Most machine-learning methods cannot deal with missing data (including MARS) and thus require an imputation step. We used the k nearest neighbor imputation (5 nearest neighbors) to impute missing data [START_REF] Gower | A General Coefficient of Similarity and Some of Its Properties[END_REF]. Additionally, MARS requires a normalization step (centering and scaling) and the exclusion of predictors characterized by a null variance (monotonic predictors that often make the model crash), which we applied.

Validation of the algorithms and evaluation of their predictive performances in an independent dataset is a crucial step to evaluate the merits of the model. Data splitting was performed by random selection of patients in a training (75%) and a test set (25%). Estimations obtained in the validation set were compared to CL Ref .

Selection of a first machine-learning approach

First, Xgboost and MARS were run using all features in the training set. The models were tuned by searching the parameter combination associated with the lowest root mean squared error (RMSE) and highest r² with reference GFR values, using a 10-fold cross-validation for which the training dataset was randomly split into 10 parts. The best combination of parameters was investigated in 90% of the training dataset (analysis set) and evaluated in the 10% remaining (assessment) dataset, and this process was repeated 10 times. For Xgboost, the parameters, tuned among a grid of fifty random combinations, were: the number of predictors randomly sampled at each split (mtry, between 1 and the number of predictors), the minimum number of data points in a node required for the node to be split further (min_n, between 1 and 40), the maximum depth of the tree (tree_depth, between 1 and 15) and the rate at which the boosting algorithm adapts from iteration-to-iteration (learn_rate, between 0 and 0.08). For MARS the parameters, tuned among a grid of fifty random combinations, were the number of terms in the model (between 1 and 37) and the highest possible degree of interaction between features (1 or 2). Secondly, once the best parameter combination was found, the models were evaluated using additional 10-fold crossvalidations to assess the mean RMSE and r 2 and their standard deviations.

Features selection

We calculated the maximal information coefficient (MIC), which measures the strength of the linear or nonlinear association between two variables X and Y, and selected the 4 variables best associated with iohexol clearance, in addition to iohexol concentrations and corresponding relative time differences. Then, combinations of limited numbers of predictors were investigated in terms of mean RMSE and r² using 10-fold cross-validation in the training set, with the best approach selected at the previous step (Xgboost or MARS).

Finally, the model with the best performances was selected to predict iohexol clearance values in the independent test set. The relative importance of the estimators was evaluated by random permutations and a variable importance plot was drawn. The estimation performance was evaluated using scatter plots of estimated vs. CL Ref and Bland-Altman plots. Reference and estimated iohexol clearance values were secondarily categorized into groups according to the Kidney Disease Improving Global Outcome (KDIGO) acute kidney injury working group recommendations, as follows: <30 mL/min, ≥ 30 to 60 mL/min, ≥ 60 to 90mL/min, ≥ 90 to 130 mL/min and ≥ 130 mL/min and a confusion matrix was drawn.

Robustness evaluation

To evaluate the influence of iohexol concentration and sampling time uncertainty, 10% noise was randomly added to the test set using the addNoise function of the sdcMicro R package [START_REF] Templ | Statistical Disclosure Control for Micro-Data Using the R Package sdcMicro[END_REF] and the resulting performances were compared to those of the best model . The individual predicted clearances were compared using a paired ttest.

Comparison with other approaches

Results obtained in the test dataset using the best machine-learning approach were compared to those obtained using the standard Bröchner Mortensen formula using 4 blood samples drawn during the elimination phase (180, 360, 540 and 720 min or 180, 360, 540 and 1440 min after iohexol administration) [START_REF] Bröchner-Mortensen | A simple method for the determination of glomerular filtration rate[END_REF]. They were also compared to those from a Maximum a posteriori Bayesian estimator using 3 iohexol samples (0.1, 1 and 9h post infusion) and a non-linear mixed effect population pharmacokinetic model developed in Monolix (Monolix version 2019R1. Antony, France: Lixoft SAS, 2019. http://lixoft.com/products/monolix/). For each method, the relative mean prediction error (MPE) and the relative RMSE were calculated. A linear mixed effect model was built with random effect on "subject" to assess the differences in the approaches to approximate CL Ref (comparison of MPE).

Results

Patients

Eighty-six patients were included and randomly assigned to the training or the test set (Table 1). No difference was observed for characteristics between the training and test sets. Among these patients, 4 had hyperfiltration (GFR > 130 ml/min), 3 had a GFR between 90 and 130 ml/min and 62 (72%) had acute kidney injury according to the KDIGO classification. Thirty one patients had a previous chronic kidney disease (GFR < 90 ml/min).

Twenty three patients died during the ICU stay.

Exploratory data analyses

Strong correlations were observed at the individual level between the iohexol concentrations measured at the different sampling times, but the more distant the times the lower the correlation (ESM_2). The SAPSII, serum creatinine and urea were the predictors best associated with the reference clearance (r > 0.4).

Xgboost and MARS with all predictors

The performances obtained for Xgboost after 10-fold cross-validation were: mean ± SD RMSE = 10.4 ± 1.7mL/min and r² = 0.925 ± 0.017. The best tuned parameters values were mtry = 8, min_n = 6, tree_depth = 6 and learning rate = 0.003. For MARS, the mean ± SD RMSE = 11 ± 2.4mL/min and r² = 0.902 ± 0.035 and the best tuned parameters values were num_terms = 4 and prod_degree = 2. Based on these results, the Xgboost approach was retained for the next steps.

Feature selection

The most important features as regards the maximal information coefficient (ESM_1) were serum creatinine, blood urea, SAPSII and fluid balance. Combinations of these predictors, together with iohexol concentrations and relative time differences were then investigated using Xgboost. Their respective performances are presented in Table 2. The best model was #14 (Table 2). In this model, 16/65 "720 min" times (24.6%) had to be imputed in the training set, while no data was missing in the test set. The variable importance plot of this model is presented in ESM_2, showing that concentrations at time 720 and 180 min were the variables of highest importance.

Evaluation in the test set

Model #14 was investigated in the test set and exhibited RMSE = 6.2 mL/min and r² = 0.866. The predicted vs. reference clearance scatter-plot is presented in Figure 1 and the corresponding Bland-Altman plot in Figure 2.

The individual predicted and reference clearance values in the test set were not statistically different, with or without random noise (p = 0.1517) (Table 3). Eighteen predicted clearance values out of 21 (86%) could be correctly classified according to the GFR KDIGO classification (Figure 3). There was no patient at all in the normal or hyperfiltration group. Interestingly, the 8 patients with GFR < 30 mL/min were all predicted accordingly.

Comparison with other approaches

Relative MPE and its 95% confidence interval, relative RMSE, bias standard deviation, and the number of profiles with MPE out of the ±10% or ±30% intervals obtained with the different iohexol clearance estimation approaches as compared to the reference values, are presented in Table 4. The machine learning and the population pharmacokinetics model had a significantly lower bias than the Bröchner Mortensen approach, while there was no difference between the first two (Table 4). Precision was similar whatever the approach used (no statistical test was performed as only one value per approach was available). No significant difference with the CL ref was observed for the Xgboost (β±SD; pvalue: 0.27 ± 1.09; 0.804), Xgboost with noise (1.48 ± 1.09; 0.177) or MAP-BE with the 3 sample LSS (-0.91 ± 1.09; 0.405) while a significant difference was observed for both Bröchner Mortensen formulae (3.77 ± 1.11; 0.001 and 6.23 ± 1.09; <0.0001 for BM with samples at 24 and 12h respectively). The predicted clearance values using each method for each patient are presented in Figure 4.

Discussion

In this work, we developed an extreme gradient boosting model relying on iohexol concentration at times 180 and 720 min, SAPSII, serum creatinine and fluid balance over the iohexol sampling period for iohexol clearance estimation. Contrary to pharmacokinetic-based approaches, whose goal is to describe the underlying physiological phenomena, the goal of a machine-learning model is to make accurate predictions (or estimations), with whatever variables are necessary. It is thus a different concept aiming to increase the predictive performance, with the trade-off on interpretability.

One advantage of our model is that the number of samples needed to predict GFR is decreased in comparison to Bayesian models, which require at least 3 samples or to the Bröchner-Mortensen formulae, which requires 3 or 4. Furthermore, in ICU patients whose renal function may fluctuate over short periods of time, a method using as few iohexol concentrations as possible may limit GFR estimation errors due to erratic deviations of concentrations from their theoretical exponential decay. The model developed uses various features, not only pharmacokinetic data, to describe iohexol clearance, making the model less dependent on possible measurement errors. We checked this by adding 10% noise to iohexol concentrations in the test set, showing that the estimations were not significantly affected. It is very important to note that, at least in ICU patients, our approach provides better predictive performances than the classical BM method. The availability of a tool that is less dependent on iohexol concentrations may be particularly useful in such unstable patients.

Interestingly, during the selection of predictors, we observed that correlation between very close iohexol concentrations caused an increase in RMSE, even if the individual predictors were all important. To illustrate that, the RMSE of the model including all the concentrations available was 10.4 ml/min vs. 9.55 ml/min for the final model. This led us to select only two time points, one close to (180 min) and the other distant from (720 min) iohexol administration. Similarly, sampling times close to the end of the infusion were not considered, first because small variations in sampling times can lead to high variations in concentrations and secondly, because they correspond to the distribution phase and may not reflect the clearance of the tracer. Most of the GFR measurement methods based on iohexol pharmacokinetics use samples drawn during the first few hours following infusion. This is particularly relevant for outpatients in whom it is important to decrease the time spent at hospital. The BM method and most of the POPPK models previously published were built using such time constraints. As such, Asberg et al developed a non-parametric population pharmacokinetic model in pediatric and adult patients from 4 samples in the 5 hours after iohexol administration [START_REF] Åsberg | Measured GFR by Utilizing Population Pharmacokinetic Methods to Determine Iohexol Clearance[END_REF]. Similarly, Riff et al proposed a three-point LSS using a parametric model with samples up to 270 min in adult kidney transplant patients [START_REF] Riff | Assessment of the glomerular filtration rate (GFR) in kidney transplant recipients using Bayesian estimation of the iohexol clearance[END_REF]. However, in ICU, expanding the sampling period is not problematic as patients stay longer at hospital. The model evaluated here, whether or not 10% noise was introduced, yielded quite similar MPE and RMSE to the Bayesian approach (non-significant differences in MPE), but performed far better than the BM formulae which exhibited significant differences with the reference clearance (Table 4). Using our model, GFR was not well estimated in some patients (with up to 10 mL/min differences), but there was no systematic bias (Figure 4).

The Bland-Altman plot showed that one patient's clearance was very poorly predicted with a difference out of the confidence interval of bias. In routine care, the acceptable value of bias is variable according to the context. Special attention paid to the patient's data did not allow us to detect specific issues (his iohexol concentrations were around the 25 th percentile of the distribution of concentrations at times 180 and 720 min and its CL ref was calculated from 9 samples). However, it cannot be excluded that inaccuracy in the reference clearance assessment participated in this discrepancy. The estimations obtained using the Xgboost approach were accurate enough to satisfactorily classify new patients in its GFR category [START_REF] Kellum | Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury[END_REF], especially those with severely impaired renal function. Indeed, all the patients with GFR < 30 mL/min were predicted accordingly. Two patients had a predicted value < 30 mL/min while their reference value was actually in the 30-60 mL/min class, but the error made remained under 5 mL/min (they were at the limits of the class). The patient with the large bias in clearance estimation (discussed above) was also misclassified (predicted > 60 mL/min but in the 30-60 mL/min class).

The present results were developed in a rather small population and have to be investigated in other patients before considering the model for use for routine care. The performance of our model is probably not good enough to make it suitable for routine clinical use. There are several reasons for this. First, all the sampling times included in the analysis were binned to reference times, leading to uncertainty in the concentrations observed. Indeed, a very strict sampling protocol would have been necessary to avoid this uncertainty. However, as shown by our sensitivity analysis, the model was quite robust with regards to noise introduced in the concentration data, as well as to small variations in sampling times. This robustness can be explained by the addition of new predictors to counteract this uncertainty (relative deviation to theoretical time). Secondly, as stated before for the outlier patient, another source of "noise" is the uncertainty in the reference clearance. Indeed, in this study, reference clearance was assessed using a previously developed population pharmacokinetic model [START_REF] Gandonnière | Glomerular Hyper-and Hypofiltration During Acute Circulatory Failure: Iohexol-Based Gold-Standard Descriptive Study[END_REF] with all the available iohexol concentrations. However, only 3 and 4 concentration-time points were available in 4 and 7 patients, respectively. As machine-learning methods optimize accuracy, uncertainty in the reference may lead to flawed models and decreasing estimation accuracy. In our analysis, missing observations had to be imputed for the selection of the best approach, as MARS cannot cope with missing data. In contrast, Xgboost allows for missing data and we made the analysis with and without imputations in the training set and obtained better performances with data imputation for missing values (data not shown). One can be surprised by the inclusion in our model of creatinine, a worse estimator of GFR than iohexol clearance. We evaluated the final model without creatinine and found that the performances were slightly poorer (increase in RMSE from 9.55 to 9.87 ml/min). As our judgment criterion was the RMSE, we kept this variable in the final model. However, its importance is rather low in comparison to iohexol concentrations, as shown in the variable importance plot (supplemental Figure 5 

in ESM_2).
In a population of unstable ICU patients with acute circulatory failure one could expect more severe renal failure than what can be inferred from creatinine values (Table 1). However, it has been demonstrated using iohexol clearance in the IOXREA study [START_REF] Gandonnière | Glomerular Hyper-and Hypofiltration During Acute Circulatory Failure: Iohexol-Based Gold-Standard Descriptive Study[END_REF] that despite low plasma creatinine values, GFR was rather low on average while the individual GFR values varied in a wide range (3 to 170 ml/min). This emphasizes that creatinine is not suited to estimate GFR in unstable critically ill patients, because creatinine rise in case of AKI is slow and acute changes in the volume of distribution (due to fluid load) may artificially decrease serum creatinine.

To the best of our knowledge, up until now, these machine-learning approaches have rarely been used in pharmacology and never in pharmacokinetics. Examples of pharmacological applications, recently reviewed by Badillo et al [START_REF] Badillo | An Introduction to Machine Learning[END_REF], focused mainly on the prediction of drug-drug or drug-food interactions using large public databases [START_REF] Ryu | Deep learning improves prediction of drug-drug and drug-food interactions[END_REF], on the prediction of quantitative structure-activity relationships [START_REF] Sheridan | Extreme Gradient Boosting as a Method for Quantitative Structure-Activity Relationships[END_REF], or on safety personalization [START_REF] Daunhawer | Enhanced early prediction of clinically relevant neonatal hyperbilirubinemia with machine learning[END_REF]. The present work is the first of its kind and demonstrates that machine-learning analysis can be successfully applied to a rather small dataset of pharmacokinetic nature, in essence. This opens the way to the development of models of treatment individualization through therapeutic drug monitoring, as well as to the function assessment using demographic data and laboratory test results.

The Bröchner-Mortensen formula is quite easy to implement on a simple spreadsheet as it relies on a regression equation, while the implementation of population pharmacokinetics or Xgboost models is more difficult. Indeed, while some simple machine learning models can be easily explained (e.g., if they rely on linear regression), more complex ones such as Xgboost, allow to highly improve accuracy but work as black boxes. A solution is to develop user-friendly interfaces allowing physicians to calculate patient GFR on their own. Our team has developed such tools in the Immunosuppressant Bayesian Adaptation (for the ISBA) website, in order to estimate exposure to immunosuppressive drugs (https://pharmaco.chu-limoges.fr/) and Asberg et al. provided a shiny application for a non-parametric iohexol clearance calculation in renal transplant patients [START_REF] Åsberg | Measured GFR by Utilizing Population Pharmacokinetic Methods to Determine Iohexol Clearance[END_REF]. We also developed an interactive R shiny application to use the model developed here (https://jbwoillard.shinyapps.io/App-3/). In AVAILABILITY OF DATA AND MATERIAL: The data that support the findings of this study are available from Charlotte Salmon Gandonnière upon reasonable request (charlotte.salmon.gandonniere@gmail.com), code is available under request (Rmarkdown html file). 
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  Iohexol concentration at time 180 & 720 min, relative deviation to theoretical time 180 & 720, Serum creatinine during iohexol sampling (µM), SAPS II, Fluid balance during iohexol pharmacokinetic sampling (mL), time_diff = iohexol concentration at time 180 min -iohexol concentration at time Parameters used were mtry = number of predictors -1, trees = 1000, min_n = 5, tree_depth = 5, learn_rate = 0.01 from the results of 10 folds cross validation, RMSE is root mean square error in mL/min, r² is the coefficient of determination. The model retained is in bold.

Figure 1 -

 1 Figure 1-Iohexol clearance estimated using the Xgboost model vs. reference clearance in the test set.

Figure 2 -

 2 Figure 2-Bland-Altman plot for Xgboost estimated and reference clearance values in the test set. Differences = reference -Xgboost clearance and Means is the average of reference and Xgboost clearance in each individual.

Figure 3

 3 Figure 3 Confusion matrix for patients of the test set, depending on the glomerular filtration rate categories.

Figure 4 -

 4 Figure 4-Comparison of the different methods for estimation of CL in the test set. BM is Bröchner-Mortensen formula, MAP-BE is maximum a posteriori Bayesian estimation based on the 0.1, 1 and 9h limited sampling strategy and the parametric POPPK model developed using Monolix.

Table 1 :

 1 Patient characteristics in the development and the validation datasets

	Variable

Table 2

 2 Comparison of different Xgboost models based on reduced numbers of predictors. Performances are the 415 mean ± SD after 10-fold cross-validation of the training set. 416

	#Model Models investigated

Table 3 :

 3 Individual predicted iohexol clearance using the best model (#14), without and with 10% random noise added, and reference iohexol clearance for all the patients of the test set (n=21). Discrepancies with the categories of Glomerular Filtration categorized by stages, as recommended by the Kidney Disease Improving Global Outcome (KDIGO) AKI work group are highlighted in bold

	Patient number	Predicted	Predicted iohexol clearance	
		iohexol	with a 10% random noise	
		clearance	(mL/min)	Reference iohexol clearance
		(mL/min)		(mL/min)
	1	8.2	8.33	5.5
	2	15.5	15.7	16.5
	3	17.9	18.2	18.9
	4	27.0	27.0	22.2
	5	22.2	22.8	22.3
	6	26.4	32.1	24.4
	7	24.2	23.5	24.8
	8	25.5	25.3	25.1
	9	28.5	28.0	30.8
	10	33.7	33.9	31.4
	11	28.4	26.3	32.7
	12	35.0	37.1	37.6
	13	46.3	38.3	39.2
	14	30.7	29.8	40.2
	15	38.4	39.0	41.7
	16	58.0	63.6	47.7
	17	41.7	42.9	47.9
	18	52.4	52.8	48.0
	19	70.8	73.9	53.5
	20	67.2	75.5	71.4
	21	61.5	70.8	71.9

Table 4 :

 4 Mean prediction errors (MPE) and Root mean square errors (RMSE) for (1) the 2-sample Xgboost model without or with random noise, (2) the 3-samples limited sampling strategy and maximum a posteriori Bayesian estimation (0.1, 1 and 9h) and (3) the 4-samples Bröchner-Mortensen (BM) formula (samples at 3, 6, 9 and 12 or 24h post administration).

				Percentage of	Percentage of
		MPE (mL/min)	RMSE	relative MPE	relative MPE
	Model	[95% confidence	(mL/min)/Standard	out of the	out of the
		interval]	deviation	±10% interval	±30% interval
				(%)	(%)
	XGboost	0.3 [-12.2, 12.8]	6.2/6.4	43	9.5
	XGboost with 10% noise	1.5 [-12.1, 15.1]	6.9/6.9	43	19
	Limited sampling			38	4.8
	strategy, MAP-	-0.9 [-12.2, 10.37]	5.7/5.7		
	Bayesian estimator				
	BM 3, 6, 9, 12h	*6.2 [-4.5, 16.9]	8.2/5.4	57	24
	BM 3, 6, 9, 24h	*3.7 [-5, 12.4]	6.6/4.4	45	5.0

* Significant differences from the other values (linear mixed effect model with random effect on subject).