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Abstract 31 

Introduction: This work aims to evaluate whether a machine learning approach is appropriate to estimate the 32 

glomerular filtration rate (GFR) in intensive care unit (ICU) patients based on sparse iohexol pharmacokinetic 33 

data and a limited number of predictors.  34 

Methods: Eighty-six unstable patients received 3250 mg of iohexol IV and had 9 blood samples collected 5, 30, 35 

60, 180, 360, 540, 720, 1080 and 1440 min thereafter. Data splitting was performed to obtain a training (75%) 36 

and a test set (25%). To estimate GFR, 37 candidate potential predictors were considered and the best machine 37 

learning approach among multivariate-adaptive regression spline and extreme gradient boosting (Xgboost) was 38 

selected based on the root mean square error (RMSE). The approach associated with the best results in a 10-fold 39 

cross-validation experiment was then used to select the best limited combination of predictors in the training set, 40 

which was finally evaluated in the test set.  41 

Results: The Xgboost approach yielded the best performance in the training set. The best combination of covari-42 

ates was made up of; iohexol concentrations at times 180 and 720 min; the relative deviation from these theoreti-43 

cal times; the difference between these 2 concentrations; the simplified acute physiology score II; serum 44 

creatinine; and the fluid balance. It resulted in RMSE=6.2 mL/min and r²=0.866 in the test set. Interestingly, the 45 

8 patients in the test set with a GFR<30 mL/min were all predicted accordingly.  46 

Conclusions: Xgboost provided accurate GFR estimation in ICU patients based on 2 timed blood concentrations 47 

after iohexol IV administration and 3 additional predictors. 48 

Keywords: machine learning; iohexol; Xgboost; glomerular filtration rate; critical care; acute circulatory failure. 49 

  50 
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Key Points 51 

 Development of a machine learning model to estimate glomerular filtration rate through iohexol clearance in 52 

ICU patients. 53 

 This opens the way to the development of machine learning models to estimate drug exposure. 54 

 This approach can be implemented through web interfaces for treatment individualization using therapeutic 55 

drug monitoring. 56 

  57 
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1. Introduction 58 

Accurate estimation of the glomerular filtration rate (GFR) in intensive care unit (ICU) patients is very im-59 

portant, not only because it has a high prognostic value but also because it helps to adjust care in order to avoid 60 

potential renal failure and also adjusts the dose of low therapeutic index drugs with renal elimination (aminogly-61 

cosides, beta-lactams...). Currently, in routine care, GFR is estimated using serum creatinine, an endogenous 62 

compound (produced by muscle catabolism) filtered by the kidneys [1]. However, patients hospitalized in the 63 

ICU may not have steady-state production and elimination of creatinine (due to fever, liver failure, change in 64 

fluid balance, rhabdomyolysis, increase in creatinine secretion…) rending formulas based on serum creatinine 65 

inaccurate [2].  66 

Iohexol has been initially marketed in France as a radiographic contrast medium. It is mainly indicated for CT-67 

scans, urography or angiography in children, adolescents and adults (Summary of Product Characteristics). 68 

Iohexol exhibits interesting pharmacokinetic characteristics which makes it a good candidate for the estimation 69 

of GFR [3]. Several abbreviated formulas have been proposed to estimate GFR using only a few blood samples 70 

drawn during the elimination phase after IV administration of iohexol, the most popular being the Bröchner-71 

Mortensen formula [4]. However, the characteristics of ICU patients, presenting altered drug distribution pat-72 

terns, render these formulas inappropriate. Thus, the best way to calculate iohexol pharmacokinetic parameters 73 

in these patients is to obtain a full pharmacokinetics (PK) profile. Some studies have developed population 74 

pharmacokinetics (POPPK) models for iohexol in specific populations (kidney transplant recipients, elderly 75 

patients) using different structural models (2 or 3 compartments) [5–8]. However, estimating the pharmacokinet-76 

ics of a compound requires drawing many blood samples, which is not easy to apply in routine care. In a recent 77 

work, we showed that POPPK modeling and Bayesian estimation of iohexol clearance allows accurate assess-78 

ment of GFR in ICU patients [9]. However, these tools require population pharmacokinetic modeling skills and 79 

software that may not be readily available in ICUs. Furthermore, in the context of unstable renal function as 80 

observed in patients with acute circulatory failure, assumptions on the structural model may be inaccurate or too 81 

simplistic, due to some degree of erratic variability of concentrations over the sampling period. 82 

Rather than defining a structural model to describe observed data, machine-learning approaches use algorithmic 83 

modeling of free parameters linked with complex interactions [10]. In the context of pharmacokinetics, these 84 

methods could be used to estimate clearance from a number of patient features, i.e. demographic characteristics, 85 

laboratory test results, disease history, or associated medications. Extreme gradient boosting is a machine-86 

learning approach based on boosting. In brief, simple regression trees are iteratively built by finding split values 87 

among all input variables that minimize prediction error. The iterative process constructs an additional regres-88 

sion tree of the same structure, but which minimizes the residual errors of the first regression tree [11]. Multivar-89 

iate adaptive regression splines (MARS) capture the nonlinear relationships in the data.  This method assesses 90 

cut points (knots) for each predictor, converts continuous features into ordered categorical variables, and then 91 

creates a linear regression model with the candidate feature(s). The exact form of the nonlinearity is not specified 92 

before the train of the model and the approach investigates nonlinearities and interactions in the data that help to 93 

maximize accuracy [12]. 94 
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These non-linear methods are meant to make estimations with the highest accuracy. Once constructed, these 95 

predictive models can be used in clinical practice using web-interfaces or applications. This work aims to use 96 

machine learning to estimate ICU patients’ GFR at the time of sampling using a limited number of Iohexol blood 97 

concentrations and other predictors, and to compare its performance to that of the Bröchner-Mortensen formula 98 

and of a population pharmacokinetics model. 99 

 100 

2. Material & methods 101 

 102 

2.1. Patients and pharmacokinetic study 103 

This is a post-hoc analysis of the database of the “IOXREA” study (NCT0205026). This clinical study was set 104 

up by the intensive care units at the University Hospitals of Tours, Strasbourg and Orleans and aimed at describ-105 

ing pharmacokinetic profiles of iohexol in unstable ICU patients with acute circulatory failure of any cause. 106 

Details of the protocol and patient characteristics are available in a recent article reporting the iohexol population 107 

pharmacokinetic model developed [9]. In brief, at most 12h after admission to ICU patients received a unique 108 

iohexol dose of 3235 mg by intravenous bolus injection and had 9 blood samples collected at 5, 30, 60, 180, 360, 109 

540, 720, 1080 and 1440 min after. Body weight, body mass index, serum creatinine at admission and during 110 

iohexol sampling, plasma protein and albumin, blood urea, the fluid balance, simplified acute physiology score 111 

II (SAPSII) [13], nephrotoxic drugs administered, hematocrit and plasma sodium were recorded. Iohexol plasma 112 

concentration measurement was performed using a High-Performance Liquid Chromatography with Diode-113 

Array Detection (HPLC-DAD) method in the laboratory of biochemistry at Tours University Hospital [14].  114 

 115 

2.2. Principle of the machine learning analysis 116 

The present study used supervised learning to estimate iohexol clearance (as a surrogate marker of GFR), a con-117 

tinuous outcome (regression problem), the reference value of which was set using a reference method (CLRef). 118 

The reference iohexol clearance values were obtained using the population pharmacokinetic model previously 119 

developed in these patients, all the concentration-time points available [9] and maximum a posteriori bayesian 120 

estimation. A training set was used to build and tune the model parameters (through iterations by minimizing an 121 

objective function, i.e. the algorithm “learns” how to predict reference clearance) and once the best model was 122 

defined, it was evaluated on an independent test set that has not been used to develop the model (by measuring 123 

the accuracy of clearance estimation). 124 

  125 

2.3. Data preparation and feature engineering 126 

The potential predictors investigated in the present study included pharmacokinetic data (iohexol concentrations, 127 

sampling times, and differences between theoretical and actual sampling times), demographic data (age, sex, 128 

weight, height, body mass index, body surface area), laboratory test results (creatinine at inclusion and during 129 

iohexol sampling, urea, albumin, hematocrit, proteinemia, natremia) and clinical data (fluid balance during 130 

pharmacokinetic assessment, SAPSII, main admission diagnostic and administration of nephrotoxic drugs the 131 

day before inclusion). The iohexol sampling was gathered into 9 theoretical time classes (bins), leading to 9 132 

columns per patient for iohexol concentrations (ESM_1). To account for the deviation of true vs. theoretical 133 

sampling times, a new variable was created, corresponding to the relative deviation with respect to the theoreti-134 
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cal time within each bin. For example, if the sample time was 185 min and the corresponding theoretical time 135 

was 180 min, the relative time difference was (185 – 180)/180 = 0.028).  136 

 137 

2.4. Exploratory data analyses 138 

Exploration of the data was performed by means of the GGally R package (https://CRAN.R-139 

project.org/package=GGally) using scatterplots, boxplots and density distribution plots. This analysis allows 140 

exploring correlations between variables, because some machine learning methods (including MARS) exhibit 141 

poor performance with highly correlated features. Additionally, it was used to explore the correlation between 142 

the reference clearance and the predictors. 143 

 144 

2.5. Pre-processing of the data 145 

A pre-processing step is needed before the development of machine-learning models. Most machine-learning 146 

methods cannot deal with missing data (including MARS) and thus require an imputation step. We used the k 147 

nearest neighbor imputation (5 nearest neighbors) to impute missing data [15]. Additionally, MARS requires a 148 

normalization step (centering and scaling) and the exclusion of predictors characterized by a null variance (mon-149 

otonic predictors that often make the model crash), which we applied.  150 

Validation of the algorithms and evaluation of their predictive performances in an independent dataset is a cru-151 

cial step to evaluate the merits of the model. Data splitting was performed by random selection of patients in a 152 

training (75%) and a test set (25%). Estimations obtained in the validation set were compared to CLRef  . 153 

 154 

2.6. Selection of a first machine-learning approach 155 

First, Xgboost and MARS were run using all features in the training set. The models were tuned by searching the 156 

parameter combination associated with the lowest root mean squared error (RMSE) and highest r² with reference 157 

GFR values, using a 10-fold cross-validation for which the training dataset was randomly split into 10 parts. The 158 

best combination of parameters was investigated in 90% of the training dataset (analysis set) and evaluated in the 159 

10% remaining (assessment) dataset, and this process was repeated 10 times. For Xgboost, the parameters, tuned 160 

among a grid of fifty random combinations, were: the number of predictors randomly sampled at each split 161 

(mtry, between 1 and the number of predictors), the minimum number of data points in a node required for the 162 

node to be split further (min_n, between 1 and 40), the maximum depth of the tree (tree_depth, between 1 and 163 

15) and the rate at which the boosting algorithm adapts from iteration-to-iteration (learn_rate, between 0 and 164 

0.08). For MARS the parameters, tuned among a grid of fifty random combinations, were the number of terms in 165 

the model (between 1 and 37) and the highest possible degree of interaction between features (1 or 2). Secondly, 166 

once the best parameter combination was found, the models were evaluated using additional 10-fold cross-167 

validations to assess the mean RMSE and r
2
 and their standard deviations.  168 

 169 

2.7. Features selection 170 

We calculated the maximal information coefficient (MIC), which measures the strength of the linear or non-171 

linear association between two variables X and Y, and selected the 4 variables best associated with iohexol 172 

clearance, in addition to iohexol concentrations and corresponding relative time differences. Then, combinations 173 

https://cran.r-project.org/package=GGally
https://cran.r-project.org/package=GGally
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of limited numbers of predictors were investigated in terms of mean RMSE and r² using 10-fold cross-validation 174 

in the training set, with the best approach selected at the previous step (Xgboost or MARS). 175 

Finally, the model with the best performances was selected to predict iohexol clearance values in the independ-176 

ent test set. The relative importance of the estimators was evaluated by random permutations and a variable 177 

importance plot was drawn. The estimation performance was evaluated using scatter plots of estimated vs. CLRef 178 

and Bland-Altman plots. Reference and estimated iohexol clearance values were secondarily categorized into 179 

groups according to the Kidney Disease Improving Global Outcome (KDIGO) acute kidney injury working 180 

group recommendations, as follows: <30 mL/min, ≥ 30 to 60 mL/min, ≥ 60 to 90mL/min, ≥ 90 to 130 mL/min 181 

and ≥ 130 mL/min and a confusion matrix was drawn.  182 

 183 

2.8. Robustness evaluation 184 

To evaluate the influence of iohexol concentration and sampling time uncertainty, 10% noise was randomly 185 

added to the test set using the addNoise function of the sdcMicro R package [16] and the resulting performances 186 

were compared to those of the best model . The individual predicted clearances were compared using a paired t-187 

test. 188 

 189 

2.9. Comparison with other approaches 190 

Results obtained in the test dataset using the best machine-learning approach were compared to those obtained 191 

using the standard Bröchner Mortensen formula using 4 blood samples drawn during the elimination phase (180, 192 

360, 540 and 720 min or 180, 360, 540 and 1440 min after iohexol administration) [4]. They were also compared 193 

to those from a Maximum a posteriori Bayesian estimator using 3 iohexol samples (0.1, 1 and 9h post infusion) 194 

and a non-linear mixed effect population pharmacokinetic model developed in Monolix (Monolix version 195 

2019R1. Antony, France: Lixoft SAS, 2019. http://lixoft.com/products/monolix/). For each method, the relative 196 

mean prediction error (MPE) and the relative RMSE were calculated. A linear mixed effect model was built with 197 

random effect on “subject” to assess the differences in the approaches to approximate CLRef (comparison of 198 

MPE). 199 

 200 

3. Results 201 

 202 

3.1. Patients 203 

Eighty-six patients were included and randomly assigned to the training or the test set (Table 1). No difference 204 

was observed for characteristics between the training and test sets. Among these patients, 4 had hyperfiltration 205 

(GFR > 130 ml/min), 3 had a GFR between 90 and 130 ml/min and 62 (72%) had acute kidney injury according 206 

to the KDIGO classification. Thirty one patients had a previous chronic kidney disease (GFR < 90 ml/min). 207 

Twenty three patients died during the ICU stay. 208 

 209 

3.2. Exploratory data analyses 210 

Strong correlations were observed at the individual level between the iohexol concentrations measured at the 211 

different sampling times, but the more distant the times the lower the correlation (ESM_2). The SAPSII, serum 212 

creatinine and urea were the predictors best associated with the reference clearance (r > 0.4). 213 

http://lixoft.com/products/monolix/
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 214 

3.3. Xgboost and MARS with all predictors 215 

The performances obtained for Xgboost after 10-fold cross-validation were: mean ± SD RMSE = 10.4 ± 216 

1.7mL/min and r² = 0.925 ± 0.017. The best tuned parameters values were mtry = 8, min_n = 6, tree_depth = 6 217 

and learning rate = 0.003. For MARS, the mean ± SD RMSE = 11 ± 2.4mL/min and r² = 0.902 ± 0.035 and the 218 

best tuned parameters values were num_terms = 4 and prod_degree = 2. Based on these results, the Xgboost 219 

approach was retained for the next steps. 220 

 221 

3.4. Feature selection 222 

The most important features as regards the maximal information coefficient (ESM_1) were serum creatinine, 223 

blood urea, SAPSII and fluid balance. Combinations of these predictors, together with iohexol concentrations 224 

and relative time differences were then investigated using Xgboost. Their respective performances are presented 225 

in Table 2. The best model was #14 (Table 2). In this model, 16/65 “720 min” times (24.6%) had to be imputed 226 

in the training set, while no data was missing in the test set. The variable importance plot of this model is pre-227 

sented in ESM_2, showing that concentrations at time 720 and 180 min were the variables of highest im-228 

portance. 229 

 230 

3.5. Evaluation in the test set 231 

Model #14 was investigated in the test set and exhibited RMSE = 6.2 mL/min and r² = 0.866. The predicted vs. 232 

reference clearance scatter-plot is presented in Figure 1 and the corresponding Bland-Altman plot in Figure 2. 233 

The individual predicted and reference clearance values in the test set were not statistically different, with or 234 

without random noise (p = 0.1517) (Table 3). Eighteen predicted clearance values out of 21 (86%) could be 235 

correctly classified according to the GFR KDIGO classification (Figure 3). There was no patient at all in the 236 

normal or hyperfiltration group. Interestingly, the 8 patients with GFR < 30 mL/min were all predicted accord-237 

ingly.  238 

 239 

3.6. Comparison with other approaches 240 

Relative MPE and its 95% confidence interval, relative RMSE, bias standard deviation, and the number of pro-241 

files with MPE out of the ±10% or ±30% intervals obtained with the different iohexol clearance estimation ap-242 

proaches as compared to the reference values, are presented in Table 4. The machine learning and the population 243 

pharmacokinetics model had a significantly lower bias than the Bröchner Mortensen approach, while there was 244 

no difference between the first two (Table 4). Precision was similar whatever the approach used (no statistical 245 

test was performed as only one value per approach was available). No significant difference with the CLref was 246 

observed for the Xgboost (β±SD; pvalue: 0.27 ± 1.09; 0.804), Xgboost with noise (1.48 ± 1.09; 0.177) or MAP-247 

BE with the 3 sample LSS (-0.91 ± 1.09; 0.405) while a significant difference was observed for both Bröchner 248 

Mortensen formulae (3.77 ± 1.11; 0.001 and 6.23 ± 1.09; <0.0001 for BM with samples at 24 and 12h respec-249 

tively). The predicted clearance values using each method for each patient are presented in Figure 4.  250 

 251 

4. Discussion 252 

 253 
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In this work, we developed an extreme gradient boosting model relying on iohexol concentration at times 180 254 

and 720 min, SAPSII, serum creatinine and fluid balance over the iohexol sampling period for iohexol clearance 255 

estimation. Contrary to pharmacokinetic-based approaches, whose goal is to describe the underlying physiologi-256 

cal phenomena, the goal of a machine-learning model is to make accurate predictions (or estimations), with 257 

whatever variables are necessary. It is thus a different concept aiming to increase the predictive performance, 258 

with the trade-off on interpretability.  259 

One advantage of our model is that the number of samples needed to predict GFR is decreased in comparison to 260 

Bayesian models, which require at least 3 samples or to the Bröchner-Mortensen formulae, which requires 3 or 261 

4. Furthermore, in ICU patients whose renal function may fluctuate over short periods of time, a method using as 262 

few iohexol concentrations as possible may limit GFR estimation errors due to erratic deviations of concentra-263 

tions from their theoretical exponential decay. The model developed uses various features, not only pharmacoki-264 

netic data, to describe iohexol clearance, making the model less dependent on possible measurement errors. We 265 

checked this by adding 10% noise to iohexol concentrations in the test set, showing that the estimations were not 266 

significantly affected. It is very important to note that, at least in ICU patients, our approach provides better 267 

predictive performances than the classical BM method. The availability of a tool that is less dependent on 268 

iohexol concentrations may be particularly useful in such unstable patients. 269 

 270 

Interestingly, during the selection of predictors, we observed that correlation between very close iohexol concen-271 

trations caused an increase in RMSE, even if the individual predictors were all important. To illustrate that, the 272 

RMSE of the model including all the concentrations available was 10.4 ml/min vs. 9.55 ml/min for the final 273 

model. This led us to select only two time points, one close to (180 min) and the other distant from (720 min) 274 

iohexol administration. Similarly, sampling times close to the end of the infusion were not considered, first be-275 

cause small variations in sampling times can lead to high variations in concentrations and secondly, because they 276 

correspond to the distribution phase and may not reflect the clearance of the tracer. Most of the GFR measure-277 

ment methods based on iohexol pharmacokinetics use samples drawn during the first few hours following infu-278 

sion. This is particularly relevant for outpatients in whom it is important to decrease the time spent at hospital. 279 

The BM method and most of the POPPK models previously published were built using such time constraints. As 280 

such, Asberg et al developed a non-parametric population pharmacokinetic model in pediatric and adult patients 281 

from 4 samples in the 5 hours after iohexol administration [8]. Similarly, Riff et al proposed a three-point LSS 282 

using a parametric model with samples up to 270 min in adult kidney transplant patients [7]. However, in ICU, 283 

expanding the sampling period is not problematic as patients stay longer at hospital.  284 

 285 

The model evaluated here, whether or not 10% noise was introduced, yielded quite similar MPE and RMSE to 286 

the Bayesian approach (non-significant differences in MPE), but performed far better than the BM formulae 287 

which exhibited significant differences with the reference clearance (Table 4). Using our model, GFR was not 288 

well estimated in some patients (with up to 10 mL/min differences), but there was no systematic bias (Figure 4). 289 

The Bland-Altman plot showed that one patient’s clearance was very poorly predicted with a difference out of 290 

the confidence interval of bias. In routine care, the acceptable value of bias is variable according to the context. 291 

Special attention paid to the patient’s data did not allow us to detect specific issues (his iohexol concentrations 292 

were around the 25
th

 percentile of the distribution of concentrations at times 180 and 720 min and its CLref was 293 
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calculated from 9 samples). However, it cannot be excluded that inaccuracy in the reference clearance assess-294 

ment participated in this discrepancy. The estimations obtained using the Xgboost approach were accurate 295 

enough to satisfactorily classify new patients in its GFR category [1], especially those with severely impaired 296 

renal function. Indeed, all the patients with GFR < 30 mL/min were predicted accordingly. Two patients had a 297 

predicted value < 30 mL/min while their reference value was actually in the 30-60 mL/min class, but the error 298 

made remained under 5 mL/min (they were at the limits of the class). The patient with the large bias in clearance 299 

estimation (discussed above) was also misclassified (predicted > 60 mL/min but in the 30-60 mL/min class).  300 

 301 

The present results were developed in a rather small population and have to be investigated in other patients 302 

before considering the model for use for routine care. The performance of our model is probably not good 303 

enough to make it suitable for routine clinical use. There are several reasons for this. First, all the sampling times 304 

included in the analysis were binned to reference times, leading to uncertainty in the concentrations observed. 305 

Indeed, a very strict sampling protocol would have been necessary to avoid this uncertainty. However, as shown 306 

by our sensitivity analysis, the model was quite robust with regards to noise introduced in the concentration data, 307 

as well as to small variations in sampling times. This robustness can be explained by the addition of new predic-308 

tors to counteract this uncertainty (relative deviation to theoretical time). Secondly, as stated before for the outli-309 

er patient, another source of “noise” is the uncertainty in the reference clearance. Indeed, in this study, reference 310 

clearance was assessed using a previously developed population pharmacokinetic model [9] with all the availa-311 

ble iohexol concentrations. However, only 3 and 4 concentration-time points were available in 4 and 7 patients, 312 

respectively. As machine-learning methods optimize accuracy, uncertainty in the reference may lead to flawed 313 

models and decreasing estimation accuracy. In our analysis, missing observations had to be imputed for the 314 

selection of the best approach, as MARS cannot cope with missing data. In contrast, Xgboost allows for missing 315 

data and we made the analysis with and without imputations in the training set and obtained better performances 316 

with data imputation for missing values (data not shown). One can be surprised by the inclusion in our model of 317 

creatinine, a worse estimator of GFR than iohexol clearance. We evaluated the final model without creatinine 318 

and found that the performances were slightly poorer (increase in RMSE from 9.55 to 9.87 ml/min). As our 319 

judgment criterion was the RMSE, we kept this variable in the final model. However, its importance is rather 320 

low in comparison to iohexol concentrations, as shown in the variable importance plot (supplemental Figure 5 in 321 

ESM_2).  322 

In a population of unstable ICU patients with acute circulatory failure one could expect more severe renal failure 323 

than what can be inferred from creatinine values (Table 1). However, it has been demonstrated using iohexol 324 

clearance in the IOXREA study [9]  that despite low plasma creatinine values, GFR was rather low on average 325 

while the individual GFR values varied in a wide range (3 to 170 ml/min). This emphasizes that creatinine is not 326 

suited to estimate GFR in unstable critically ill patients, because creatinine rise in case of AKI is slow and acute 327 

changes in the volume of distribution (due to fluid load) may artificially decrease serum creatinine.   328 

 329 

To the best of our knowledge, up until now, these machine-learning approaches have rarely been used in phar-330 

macology and never in pharmacokinetics. Examples of pharmacological applications, recently reviewed by 331 

Badillo et al [10], focused mainly on the prediction of drug-drug or drug-food interactions using large public 332 

databases [17], on the prediction of quantitative structure-activity relationships [18], or on safety personalization 333 
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[19]. The present work is the first of its kind and demonstrates that machine-learning analysis can be successful-334 

ly applied to a rather small dataset of pharmacokinetic nature, in essence. This opens the way to the development 335 

of models of treatment individualization through therapeutic drug monitoring, as well as to the function assess-336 

ment using demographic data and laboratory test results. 337 

 338 

The Bröchner-Mortensen formula is quite easy to implement on a simple spreadsheet as it relies on a regression 339 

equation, while the implementation of population pharmacokinetics or Xgboost models is more difficult. Indeed, 340 

while some simple machine learning models can be easily explained (e.g., if they rely on linear regression), more 341 

complex ones such as Xgboost, allow to highly improve accuracy but work as black boxes. A solution is to de-342 

velop user-friendly interfaces allowing physicians to calculate patient GFR on their own. Our team has devel-343 

oped such tools in the Immunosuppressant Bayesian Adaptation (for the ISBA) website, in order to estimate 344 

exposure to immunosuppressive drugs (https://pharmaco.chu-limoges.fr/) and Asberg et al. provided a shiny 345 

application for a non-parametric iohexol clearance calculation in renal transplant patients [8]. We also developed 346 

an interactive R shiny application to use the model developed here (https://jbwoillard.shinyapps.io/App-3/). In 347 

conclusion, once improved and validated on a larger number of patients, this tool could represent a simple means 348 

to estimate GFR in ICU patients.  349 

 350 
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 412 

Table 1: Patient characteristics in the development and the validation datasets 413 

Variable Training set Test set P 

value 

N 65 21  

Iohexol clearance* (mL/min) (mean (SD))  45.9 (38.1)            35.9 (16.9)              0.245 

Iohexol concentration at 5 min (mg/L) (median [IQR]) 319.6 [225.2, 

430.3] 

363.7 [277.9, 

460.9]    

0.394 

Iohexol concentration at  30 min (mg/L) (median [IQR]) 169.9 [144.1, 

202.6] 

186.2 [147.1, 

235.7] 

0.221 

Iohexol concentration at time 60 min (mg/L) (median [IQR]) 134.9 [109.0, 

169.3] 

157.4 [121.8, 

205.2]    

0.128 

Iohexol concentration at time 180 min (mg/L) (median [IQR]) 91.3 [64.8, 

129.6]    

99.8 [80.3, 

125.8]      

0.194 

Iohexol concentration at time 360 min (mg/L) (median [IQR]) 58.5 [35.2, 

99.4]     

70.5 [57.4, 

97.3]       

0.177 

Iohexol concentration at time 540 min (mg/L) (median [IQR]) 36.6 [21.8, 

82.4]     

49.3 [33.8, 

63.2]       

0.414 

Iohexol concentration at time 720 min (mg/L) (median [IQR]) 27.5 [15.3, 

72.8]     

37.6 [20.1, 

49.5]       

0.649 

Iohexol concentration at time 1080 min (mg/L) (median 

[IQR]) 

19.5 [6.5, 50.6]      22.8 [15.8, 

31.2]       

0.668 

Iohexol concentration at time 1440 min (mg/L) (median 

[IQR]) 

10.9 [4.3, 40.0]      12.1 [6.2, 22.0]        0.686 

Baseline serum creatinine (µM) (mean (SD))      75.0 (25.7) 74.5 (16.3)   0.940 

Weight (Kg) (mean (SD))           83.7 (21.2)            78.6 (19.9)              0.334 

Height (cm) (mean (SD))         169.0 (8.6)            169.9 (9.2)              0.656 

Body Mass Index (Kg/m²) (mean (SD))           29.3 (7.3)             27.2 (6.6)               0.238 

Body surface area (m²) (mean (SD)) 2.0 (0.3)   1.9 (0.3)                0.365 

Age (years) (mean (SD)) 65.3 (14.3)      64.1 (10.4)              0.715 

Sex Female (%) 22 (35.5)                9 (42.9)                   0.732 

SAPS II (mean (SD) ) 61.5 (22.0)       56.5 (14.9)              0.334 

Nephrotoxic drugs the days before inclusion = Yes (%) 50 (80.6)                19 (90.5)                0.482 

Hematocrit (%) (mean (SD))              31.8 (5.9)             31.8 (7.0)               0.984 

Proteinemia (g/L) (mean (SD)) 53.1 (7.4)             52.8 (8.9)               0.866 

Albuminemia (g/L) (mean (SD))      28.5 (5.6)             28.9 (6.4)               0.811 

Blood sodium (mmol/l) (mean (SD))  137.2 (5.7)            136.4 (3.7)              0.522 

Serum creatinine  during iohexol sampling (µM) (median 122.0 [74.0, 99.0 [79.0, 0.608 
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[IQR]) 190.0]   186.0]      

Blood urea during iohexol sampling (median [IQR]) 11.2 [7.4, 17.0]      10.4 [7.2, 14.5]        0.287 

Rapid fluid infusion between ICU admission and study inclu-

sion (mL) (median [IQR])     

1105 [0, 3000] 1000 [500, 

2000] 

0.387 

Rapid fluid infusion during iohexol-pharmacokinetic sam-

pling (mL) (median [IQR]) 

500 [0, 2000]   895 [500, 

1000]   

0.882 

Fluid balance during iohexol-pharmacokinetic sampling 

(mL) (mean (SD)) 

1668 (2857)        1297 (2079)          0.584 

 

Main admission diagnosis (%) 

1 : cardiogenic shock 

2 : septic shock 

3 : hemorrhagic shock 

4 : other shock 

5 : de novo acute respiratory failure 

6 : acute respiratory failure on chronic respiratory insuffi-

ciency 

7 : Coma 

8: Acute kidney injury 

10 : cardiac arrest 

13 : other  

 

 

2 (3.2) 

31 (50.0) 

1 (1.6) 

4 (6.5) 

4 (6.5) 

6 (9.7) 

 

5 (8.1) 

1 (1.6) 

4 (6.5) 

4 (6.5) 

 

 

1 (4.8) 

12 (57.1) 

1 (4.8) 

1 (4.8) 

1 (4.8) 

1 (4.8) 

 

0 (0.0) 

0 (0.0) 

1 (4.8) 

3 (14.3) 

 

*measured using all available Iohexol samples and a population pharmacokinetic model  414 
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Table 2 Comparison of different Xgboost models based on reduced numbers of predictors. Performances are the 415 

mean ± SD after 10-fold cross-validation of the training set.  416 

#Model Models investigated RMSE 

± SD 

R² ± 

SD 

1 Iohexol concentration at time 180, 360 & 540 min, relative deviation to theoreti-

cal time 180, 360 & 540, Serum creatinine during iohexol sampling (µM),  

Blood urea, SAPS II, Fluid balance during iohexol pharmacokinetic sampling 

(mL) 

11.8 ± 

1.28 

0.912 ± 

0.020 

2 Iohexol concentration at time 60, 360 &720 min, 

relative deviation to theoretical time 60, 360 &720, Serum creatinine during 

iohexol sampling (µM), Blood urea, SAPS II, Fluid balance during iohexol 

pharmacokinetic sampling (mL) 

11.7 ± 

1.68 

0.878 ± 

0.029 

3 Iohexol concentration at time 60, 360, 540 & 720 min, relative deviation to 

theoretical time 60, 360, 540 & 720, Serum creatinine during iohexol sampling 

(µM), Blood urea, SAPS II, Fluid balance during iohexol pharmacokinetic sam-

pling (mL) 

12.4 ± 

1.68 

0.869 ± 

0.033 

4 Iohexol concentration at time 180 & 540 min,  

relative deviation to theoretical time 180 &540, 

Serum creatinine during iohexol sampling (µM),  

Blood urea, SAPS II, Fluid balance during iohexol pharmacokinetic sampling 

(mL) 

12.9 ± 

1.37 

0.895 ± 

0.034 

5 Iohexol concentration at time 540 min, relative deviation to theoretical time 540, 

Serum creatinine during iohexol sampling (µM),  Blood urea,  SAPS II,  Fluid 

balance during iohexol pharmacokinetic sampling (mL) 

15.2 ± 

1.43   

0.851 ± 

0.032 

6 Iohexol concentration at time 360 min, relative deviation to theoretical time 360,  

Serum creatinine during iohexol sampling (µM),  Blood urea, SAPS II, Fluid 

balance during iohexol pharmacokinetic sampling (mL) 

14.4 ± 

1.70  

0.847 ± 

0.036 

7 Iohexol concentration at time 60 &540 min, relative deviation to theoretical time 

60 &540, Blood urea, SAPS II, Fluid balance during iohexol pharmacokinetic 

sampling (mL) 

13.8 ± 

1.66 

0.866 ± 

0.035 

8 Iohexol concentration at time 180 &540 min, relative deviation to theoretical 

time 180 & 540, Serum creatinine during iohexol sampling (µM), SAPS II,  

Fluid balance during iohexol pharmacokinetic sampling (mL) 

11.2 ±  

1.43  

0.901 ± 

0.032 

9 Iohexol concentration at time 360 &540 min, relative deviation to theoretical 

time 360 & 540, Serum creatinine during iohexol sampling (µM), SAPS II, 

Fluid balance during iohexol pharmacokinetic sampling (mL) 

11.4 ±  

1.47  

0.897  

± 0.027 

10 Iohexol concentration at time 540 & 720 min, relative deviation to theoretical 

time 540 & 720, Serum creatinine during iohexol sampling (µM), SAPS II,  

Fluid balance during iohexol pharmacokinetic sampling (mL)  

14.6 ± 

1.87 

0.822 ± 

0.058 



 

  17 

11 Iohexol concentration at time 360 & 720 min, relative deviation to theoretical 

time 360 & 720, Serum creatinine during iohexol sampling (µM), SAPS II, 

Fluid balance during iohexol pharmacokinetic sampling (mL) 

12.9 ± 

1.24 

0.864 ± 

0.031 

12 Iohexol concentration at time 180 & 720 min, relative deviation to theoretical 

time 180 & 720, Serum creatinine during iohexol sampling (µM), SAPS II, 

Fluid balance during iohexol pharmacokinetic sampling (mL) 

10.2 ± 

1.32 

0.930 ± 

0.023 

13 Iohexol concentration at time 180 & 360 min, relative deviation to theoretical 

time 180 & 360, Serum creatinine during iohexol sampling (µM), SAPS II, 

Fluid balance during iohexol pharmacokinetic sampling (mL) 

11.6 ± 

1.61 

0.893 ± 

0.043 

14 Iohexol concentration at time 180 & 720 min, relative deviation to theoreti-

cal time 180 & 720, Serum creatinine during iohexol sampling (µM),  

SAPS II, Fluid balance during iohexol pharmacokinetic sampling (mL), 

time_diff = iohexol concentration at time 180 min - iohexol concentration at 

time 720 min) 

9.55± 

1.22 

0.948 ± 

0.019 

Parameters used were mtry = number of predictors – 1, trees = 1000,  min_n = 5, tree_depth = 5, learn_rate = 417 

0.01 from the results of 10 folds cross validation, RMSE is root mean square error in mL/min, r² is the coeffi-418 

cient of determination. The model retained is in bold. 419 
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Table 3: Individual predicted iohexol clearance using the best model (#14), without and with 10% random noise 

added, and reference iohexol clearance for all the patients of the test set (n=21). Discrepancies with the catego-

ries of Glomerular Filtration categorized by stages, as recommended by the Kidney Disease Improving Global 

Outcome (KDIGO) AKI work group are highlighted in bold 

Patient number Predicted 

iohexol 

clearance 

 (mL/min) 

Predicted iohexol clearance  

with a 10% random noise 

(mL/min) Reference iohexol clearance 

(mL/min) 

1 8.2 8.33 5.5 

2 15.5 15.7 16.5 

3 17.9 18.2 18.9 

4 27.0 27.0 22.2 

5 22.2 22.8 22.3 

6 26.4 32.1 24.4 

7 24.2 23.5 24.8 

8 25.5 25.3 25.1 

9 28.5 28.0 30.8 

10 33.7 33.9 31.4 

11 28.4 26.3 32.7 

12 35.0 37.1 37.6 

13 46.3 38.3 39.2 

14 30.7 29.8 40.2 

15 38.4 39.0 41.7 

16 58.0 63.6 47.7 

17 41.7 42.9 47.9 

18 52.4 52.8 48.0 

19 70.8 73.9 53.5 

20 67.2 75.5 71.4 

21 61.5 70.8 71.9 
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Table 4: Mean prediction errors (MPE) and Root mean square errors (RMSE) for (1) the 2-sample Xgboost 

model without or with random noise, (2) the 3-samples limited sampling strategy and maximum a posteriori 

Bayesian estimation (0.1, 1 and 9h) and (3) the 4-samples Bröchner-Mortensen (BM) formula (samples at 3, 6, 9 

and 12 or 24h post administration). 

Model 

MPE (mL/min) 

[95% confidence 

interval] 

RMSE 

(mL/min)/Standard 

deviation 

Percentage of 

relative MPE 

out of the 

±10% interval 

(%) 

Percentage of 

relative MPE 

out of the 

±30% interval 

(%) 

XGboost 0.3 [-12.2, 12.8] 6.2/6.4 43 9.5 

XGboost with 10% 

noise 
1.5 [-12.1, 15.1] 6.9/6.9 

43 19 

Limited sampling 

strategy, MAP-

Bayesian estimator 

- 0.9 [-12.2, 10.37] 5.7/5.7 

38 4.8 

BM 3, 6, 9, 12h *6.2 [-4.5, 16.9] 8.2/5.4 57 24 

BM 3, 6, 9, 24h *3.7 [-5, 12.4] 6.6/4.4 45 5.0 

* Significant differences from the other values (linear mixed effect model with random effect on sub-

ject).  
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Figure legends 

Figure 1- Iohexol clearance estimated using the Xgboost model vs. reference clearance in the test set. 

Figure 2- Bland-Altman plot for Xgboost estimated and reference clearance values in the test set. Differences = 

reference - Xgboost clearance and Means is the average of reference and Xgboost clearance in each individual.  

Figure 3 Confusion matrix for patients of the test set, depending on the glomerular filtration rate categories. 

Figure 4- Comparison of the different methods for estimation of CL in the test set. BM is Bröchner-Mortensen 

formula, MAP-BE is maximum a posteriori Bayesian estimation based on the 0.1, 1 and 9h limited sampling 

strategy and the parametric POPPK model developed using Monolix. 


