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Abstract 

Precision medicine requires individualized modeling of disease and drug dynamics, with machine-learning based 

computational techniques gaining increasing popularity. The complexity of either field, however, makes current 

pharmacological problems opaque to machine learning practitioners, and state-of-the-art machine learning 

methods inaccessible to pharmacometricians. To help bridge the two worlds, we provide an introduction to 

current problems and techniques in pharmacometrics—ranging from pharmacokinetic and pharmacodynamic 

modeling to pharmacometric simulations, model-informed precision dosing and systems pharmacology—and 

review some of the machine learning approaches to address them. We hope this would facilitate collaboration 

between experts, with complementary strengths of principled pharmacometric modeling and flexibility of 

machine learning leading to synergistic effects in pharmacological applications. 

 

Keywords: pharmacometrics, artificial intelligence, machine learning, simulations, model informed precision 

dosing 
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Key findings/implications of the manuscript 

Precision medicine requires individualized modeling of disease and drug dynamics, with machine learning-based 

computational techniques gaining increasing popularity.  

The complexity of either field, however, makes current pharmacological problems opaque to machine learning 

practitioners, and state-of-the-art machine learning methods inaccessible to pharmacometricians. 

To help bridge the worlds of pharmacometrics and machine learning, we provide an introduction to current 

problems and techniques in pharmacometrics, and review some of the machine learning approaches to address 

them.  
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1. Introduction 

With the world moving towards precision medicine, physicians and clinical pharmacologists are moving their 

focus towards tailoring treatments to match the individual patient, since the same dose of a drug could result in 

different concentrations and responses from one patient to another. This variability in dose requirement can be 

linked to many factors, including varying disease states, differences in drug exposure and response of the target, 

or the downstream cascade initiated by the drug/target interaction. The challenge of finding the right dose for 

each patient is at the heart of the discipline of pharmacometrics.  

Broadly, pharmacometrics investigate how a given dose relates to the exposure to the drug based on the changes 

in drug concentration (pharmacokinetics), and how the changes in exposure markers relate to molecular or 

clinical effects (pharmacodynamics) (Figure 1). A good understanding of these relationships is necessary for a 

reliable prediction of the dose with the best risk/benefit balance for an individual patient. While there have been 

developments in probabilistic and dynamical system-based techniques such as model-informed precision dosing, 

reliable prediction with current tools is still challenging. 

First, the markers directly linked to the exposure or effect of the drug are often unreachable, since it would 

require being able to measure concentrations at the target tissue on a continuous basis, or being able to observe 

clinical effects far into the future. Although the development of biosensors for real time measurement of drug 

concentrations is promising, it is still far from routine care use [1]. Drug exposure and effect are therefore often 

estimated only through the more accessible but less accurate surrogate markers, for example blood plasma 

concentrations. 

Secondly, plasma concentrations, in contrast to fixed doses, are variable and noisy. One reason is the inter-

individual variability due to genetic, demographic and environmental factors—including age, sex, body weight, 

genetic polymorphisms in metabolism enzymes or membrane transporters and in drug targets, differences in 

physiological function, circadian rhythms, disease state, and many others. Measurements are noisy even for a 

single individual: while part of this intra-individual variability is quantifiable (e.g. analytical uncertainty in drug 

measurement), the other part is not (e.g. uncertainty in drug dosage and blood sampling times, food effect, drug-

drug interactions, poor adherence to treatment, etc.) [2–6]. 
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In this article, we provide an overview of pharmacometrics and explore the potential of machine learning 

applications across all areas of pharmacometric modeling, drug development stages, and real-time decision 

making for therapeutic drug monitoring (dose adjustment). Building upon previous perspectives on machine 

learning in clinical pharmacology [7] and collaborative works between machine learners and 

pharmacometricians so far [8–10], we discuss the ways to bridge these worlds further. We provide a summary of 

the pharmacometric challenges and opportunities in Table 1, accompanied by Figures 2 to 5 that outline our 

vision for their stagewise integration with machine learning. 

2. Pharmacokinetic modeling 

Pharmacokinetics (PK) quantify the exposure of a body to the drug using different exposure markers (such as 

peak concentration Cmax, trough concentration C0 or Cmin, or total area under the concentration curve, AUC, 

which measures the average exposure between two doses) (Figure 1). For most drugs, C0 is a good surrogate of 

the AUC due to their strong correlation. In other cases, Cmax or more accurate estimation of the AUC should be 

preferred. Concentration profiles depend on the dose and individual features, but exposure needs to be high 

enough to achieve the desired effect of the drug while avoiding toxic effects. Once modeled, the relationship 

between individual features and the concentration profiles can be used to propose the initial treatment regimen, 

and adjusting the dose based on subsequent feedback until the desired exposure is reached—a practice known as 

model informed precision dosing (MIPD). Pharmacokinetic models are therefore key for data-driven precision 

medicine, simulation studies, novel drug discovery, and target attainment hypothesis testing. 

Population pharmacokinetic (popPK) modeling is used to fit pharmacokinetic parameters based on the time-

concentration profiles of a set of individuals. The mean popPK parameters describe the structural model of a 

given population, and their variance the statistical model of their inter- and intra-individual variabilities [11]. In 

this section, we review current approaches to popPK modeling, challenges in modeling variability with small 

data samples and narrow study populations, and the potential of machine learning methods for addressing them. 

2.1. Population pharmacokinetic model development 

In pharmacokinetics, the human body is typically represented by a simplified compartmental structural model, 

where peripheral compartments correspond to different tissues in the body, and the central compartment includes 

the vascular system through which the drug is transported (Figure 1b). The compartments are interconnected—
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usually through the central compartment—and the drug movements (absorption, distribution, elimination) 

between them are specified via rate constants either in their explicit forms or through ordinary differential 

equations (ODEs). Variability in rate constants can be linked to individual covariates (age, sex, genetics)—one 

task of popPK, then, is to estimate the relationships between individual covariates and the rate constants in a 

given population, while discovering the sources of and accounting for inter- and intra-individual variabilities.  

One or two-compartment structural models are common choices made by human experts for ease of 

mathematical modeling, but they can lead to oversimplification or misspecification of the true pharmacokinetic 

mechanisms. To address this, data-driven machine learning methods for model selection have been proposed, 

including those based on genetic algorithms and neural networks [12–14] (Figure 3). In addition, a reinforcement 

learning algorithm has been developed to select the best structural non-parametric models [15].  

Nonlinear mixed effect (NLME) modeling is the standard approach for fitting popPK models though other 

nonparametric methods have also been developed [11,16–19] (Figure 1c). As stated above, popPK parameters 

can depend on individual covariates; however, when the covariates are high-dimensional and have strong 

correlations structures, it is a challenge to select only those most relevant to the PK of a particular drug. This 

leads to a range of popPK models designed for the same drug and population, yet having distinct covariate sets 

[20]. Additionally, not all covariates may have a causal effect on pharmacokinetic parameters. Recent works 

have proposed using machine learning (random forests, support vector regression, and neural networks) to guide 

covariate screening, leading to performance improvements [21,22]. Machine learning could also be used to 

further improve the estimates of nonlinear relationships between individual covariates and rate constants 

typically modeled in popPK analyses.  

2.2. A priori and a posteriori population pharmacokinetic modeling 

Population pharmacokinetics could be categorized as a priori, when only individual covariates—but no drug 

concentration measurements—are available (initial dose prediction), or a posteriori, refining subsequent doses as 

more drug exposure information is obtained. Machine learning approaches for covariate-based first dose 

prediction, ranging from simple regression models to the more complex techniques, have so far been limited due 

to high inter-individual variability [23,24]. However, pure popPK-based approaches may also fall short of 

perfect target attainment [3,25–27]. We now briefly explore the potential synergies between a priori and a 
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posteriori popPK and machine learning-based predictions, combining the strengths of pharmacological domain 

knowledge captured by popPK and the powerful pattern-matching of machine learning. 

One line of work combining popPK modeling with machine learning for a priori first dose prediction focuses on 

popPK as a way to generate more training data, since samples from real patients are often insufficient for 

training the machine learning model. For example, Monte Carlo simulations of one [24] or more [28] popPK 

models and training an XGBoost model on the resulting data has been effective at improving dose predictions for 

vancomycin. In relation to that, we have recently developed machine learning algorithms to predict tacrolimus 

exposure from Monte Carlo simulations based on a previously published popPK model, with performances as 

good as those of models developed using measured patient data [29]. However, we have also found that machine 

learning models tend to overfit with increasing simulated data, one example being everolimus exposure 

prediction in transplanted patients [30]. Alternatively, Tang et al. proposed using popPK models as a basis for 

training a machine learning predictor for individual PK parameter values, and observed improvements in 

performance [31].  

In a posteriori popPK, exposure markers are predicted following observation of an individual response to the 

initial doses. Feedback from initial observations is used to improve individualized predictions of the next 

exposure and to propose a more accurate dose while updating the parameters of the popPK model. Bayesian 

methods (such as maximum a posteriori estimation) are typically used to obtain posterior distributions of popPK 

parameters [32,33]; however, their performance suffers when complex prior models cannot be complemented 

with sufficient individualized information, leading to parameter shrinkage to mean population values [19]. 

Hybrid popPK and machine learning algorithms have been developed to address these limitations: Hughes & 

Keizer propose a machine learning classifier for optionally ignoring popPK information by flattening the priors 

on an individual level[34]; Destere et al. use machine learning to predict the residual errors of popPK model 

outputs [35]. When larger datasets are available, popPK modeling may be skipped altogether in favor of machine 

learning-based PK parameter and exposure index prediction directly from individual data [36–38], leading to 

similar or improved performance and faster development [39]. 
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3. Exposure/effect modeling 

Ultimately, the goal of precision medicine is not only to accurately estimate exposure markers, but to improve 

the outcomes (clinically relevant endpoints) of a treatment. The relationship between exposure markers of a drug 

and the outcome (or effect) on the patient is at the core of pharmacodynamics (PD). The two are often analyzed 

together and jointly referred to as exposure/effect (or PK/PD) modeling. 

At a microscopic level, PK/PD models describe relationships between drug concentrations and the activation or 

inhibition of (molecular) targets, typically using NLME methods (Figure 1d). At a macroscopic level, the effect 

could describe the efficacy or toxicity in terms of patient symptoms and the benefit/risk balance at a given 

exposure level. While the low-level molecular effects are relatively well-defined in PK/PD modeling, they are 

mostly based on in vitro experiments, e.g. by estimating the concentration required to reach 50% of the maximal 

or inhibitory effect (EC50 or IC50 respectively), or measuring receptor occupancy; however, some rare 

exceptions aside (such as effect of hypertension drugs observed through changes in blood pressure, or effect of 

statins observed through changes in LDL-cholesterol values), direct measurement of effect at target tissues is not 

possible in vivo. Similarly, high-level outcomes are often defined through binary efficacy and toxicity 

thresholds—a likely oversimplification in itself—which might be impossible to determine due to delayed 

outcomes such as survival; in this case, only imprecise surrogates (such as tumor growth in oncology or 

glomerular filtration rate in renal transplantation) are available. Machine learning could help determine the best 

exposure indices and their relationship to microscopic targets or macroscopic outcomes, taking into account non-

linear relationships, delays in response or changes in dynamics due to cumulative exposure. 

3.1. Pharmacokinetics/pharmacodynamics for chronic disease 

In addition to challenges of inter- and intra-individual variability, chronic diseases tend to evolve over time, with 

the same treatment leading to a different exposure/effect relationship depending on the disease state. 

Longitudinal studies and disease progression modeling are therefore of crucial importance for determining 

correct PK/PD relationships. A standard statistical approach is to use joint modeling of longitudinal and time-to-

event data [40–42], with the limitation that joint modeling relies on strict hypotheses about the choice of the 

hazard function for the survival model [43]. Machine learning models could be explored as an alternative. For 

example, Lee et al. develop a deep learning model for dynamic survival predictions for multiple competing risks 
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[44]. Combining this model with unsupervised learning to identify latent patient groups with their own 

submodels [45], they show promising results in predicting the progression of prostate cancer [46]. 

3.2. Pharmacokinetics/pharmacodynamics of drug interactions 

A related challenge is that complex diseases are often multicausal and need to be treated by several drugs at the 

same time (e.g. in case of immunosuppressants, antibiotics or anticancer drugs). This could lead to noisy or 

incorrect exposure/effect estimates if the drugs are studied without accounting for interaction effects. For 

example, low exposure of one treatment could be misclassified as a non-predictor of a clinical outcome if the 

other treatment compensates for it due to pharmacodynamic (synergistic) interaction. The treatments may also 

interact pharmacokinetically by inducing or inhibiting each other's metabolism. A review of pure 

pharmacometric and machine learning-based approaches for compound combination prediction has been 

presented in Bulusu et al. [47]—categorizing the techniques into those based on gene expression and cell line 

sensitivity, pathways and networks, and mathematical models utilizing chemical information. In addition to 

standard approaches based on support vector machines, neural networks, and random forests, more recent works 

have been exploring more sophisticated techniques to detect drug-drug and drug-target interactions. This 

includes the line of work in graph neural networks [48–50], multi-armed bandits for efficient sequential 

exploration of  safe drug dose combinations [51], as well as explainability for disentangling the different effects 

of each drug on the outcomes predicted by other black-box machine learning models [52].  Different 

computational approaches to drug-drug interaction prediction have been increasingly benchmarked through 

competitions (such as AstraZeneca-Sanger DREAM challenge [53]), encouraging the development of more 

innovative approaches while resulting in more publicly available data. This allows for systematic comparison of 

the merits of different techniques through the same training and blinded test datasets, but it also carries the 

danger of overfitting to a (still relatively small) competition dataset and the proxy performance metric, resulting 

in difficulties in generalizing to novel contexts outside of the dataset as well as in vivo applications [54]. 

3.3. Using more general pharmacokinetic/pharmacodynamic data 

Since precise measurements of the effect—whether target activation or clinical outcome—may never be fully 

observed, it is important to determine appropriate surrogate measurements and how to leverage them for better 

outcome estimates. The relationships between the surrogate and the true outcome need to be estimated in order 

to develop a good model. However, often this may only be possible in animal models and in vitro studies that do 
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not directly correspond to human patients. Understanding how to identify good biomarkers from observational 

data, how to transfer the knowledge across different species (animal to human) and experimental scales (in vitro 

molecular studies to in vivo clinical outcomes), and how to incorporate the knowledge of the disease mechanisms 

could inform better estimates of the PK/PD relationships. In addition, it might be necessary to go beyond any 

single observational biomarker, and leverage the changes of patterns in multiple inter-related markers: for 

example, Barbieri et al. successfully develop and externally validate a deep learning approach combining 

previous observations and patient characteristics for individualized anemia treatments in chronic renal failure 

patients [55]. Another relevant line of work in machine learning for biomarker identification and knowledge 

transfer includes language models for large-scale medical text preprocessing [56] and knowledge graph 

development [57–61], where link prediction could be used to quantify the relationships of interest. The use of 

these techniques, as well as modeling of richer individual data (e.g. chronic conditions, drug-drug interactions), 

are visualized as part of a more advanced machine learning pipeline for pharmacometrics in Figure 4. 

4. Pharmacometric simulations 

Aside from the use of simulation and sampling of popPK models as a way of generating additional training data 

for machine learning models, simulations are useful in their own right.  The key uses of simulation in PK and 

PK/PD modeling include (i) evaluation of popPK models using visual predictive checks [62], (ii) a priori dose 

evaluation based on the probability of PK or PD target attainment, and (iii) aiding the simulation of clinical trials 

to answer “what if” questions [19] (Figure 2).  

4.1. Simulation of popPK models  

Machine learning can aid with improving the quality of popPK models which in turn would improve the 

simulated data. Monte Carlo simulations from popPK models are typically drawn from normal or log-normal 

parameter distributions [16,17,19]; however, this requires that the popPK and PK/PD models are well-specified, 

that true parameters come from required distributions, and that the dynamics conform to strong assumptions of 

linearity that are required to extrapolate to unseen populations. Typically, a popPK model is estimated from a 

rather small number of subjects with heterogeneous profiles from a homogeneous population. Thus many 

different models have to be developed for each subpopulation (e.g. neonates and adults, healthy and critically ill 

subjects). Additionally, small sample sizes may not allow the model to generalize to the rest of the 
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subpopulation, and one subpopulation may not generalize to another [63]. Bayesian model averaging approaches 

have been proposed  to address that by performing model selection or creating an ensembled or averaged popPK 

model either at a population [26] or individualized level [64]. In particular, the latter method uses the 

demographic information summaries reported alongside published popPK models to find those the most 

applicable to a particular individual, and using that to create individualized model ensembles [64]. Another 

approach is to use continual learning [65] to dynamically adapt and refine prior popPK models to fit populations 

of interest, thereby improving predictions. Future work could also investigate generative model-based simulation 

approaches; however, this is subject to the major limitation of scarce data. Overcoming this would likely involve 

finding new and better ways of incorporating domain expertise as prior knowledge. 

4.2. Clinical trial simulations 

Clinical trial simulations (CTS) are extensively used in pharmacology, particularly to optimize the design of 

real-world clinical trials (including their sample size, dosing regimen, choice of control, duration, etc.) 

Estimating the possible outcomes of the trial before its execution—particularly phases II and III—is crucial, 

since the wrong selection of a treatment regimen and incorrect responder group identification could result in 

catastrophic losses in time and money for a drug company. As a result, it is a growing requirement from the 

regulators (such as FDA) to have a strong justification for the selected dose within the design of the trial (see e.g. 

Project Optimus for oncological drug development and Friends of Cancer Research meeting report [66]). While 

clinical trial simulations could act as part of this justification, they may rely on simplistic assumptions on how 

preclinical data from animal and in vitro experiments would translate to patients—it is hoped that machine 

learning could help overcome these assumptions and discover the connections in a data-driven manner. For 

example, Bedon et al. use machine learning to find the dose-limiting toxicity predictors in phase I of a 

chemotherapy treatment [67]; similar data-driven predictors could be used to identify relationships between 

individual features and expected or adverse effects—especially when they are nonlinear and linked to complex, 

multidimensional patterns. Machine learning, particularly developments in bandit literature, has also been 

proposed for identifying responder subgroups [51,68], identifying maximum tolerated dose under safety and 

efficacy constraints [69] and designing better trials [70,71]. Finally, in the post-market phase, clinical trial 

simulations can be used to propose recommendations in the case of delayed or missed administration of a drug 

[72,73], which could again be potentially improved with machine learning methods. 

https://www.fda.gov/about-fda/oncology-center-excellence/project-optimus
https://friendsofcancerresearch.org/wp-content/uploads/Optimizing_Dosing_in_Oncology_Drug_Development.pdf
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5. Optimal dose selection 

5.1. Model-informed precision dosing 

One of the main purposes of PK/PD modeling is to inform precision dosing for patients on the basis of their 

individual features, increasing the probability of target attainment, especially when therapeutic windows of the 

drug are narrow [74,75]. In addition to machine learning methods most widely used in pharmacology, such as 

linear regression, random forests and gradient boosting—methods used to predict a single exposure marker or 

probability of target attainment—other approaches can predict the entire time-series of drug concentrations in 

relation to individual features, the treatment regimen, and initial observations of treatment response. Recurrent 

neural networks have been recently proposed for estimating treatment outcomes over time [76], and generative 

adversarial networks have been used to model the effects of continuous-valued treatments [77]. Future work 

could investigate the potential of using such methods for representing both continuous doses and their 

administration frequencies together, capturing the full treatment regimen. Another direction would be to look 

into more powerful representations of popPK models as dynamical systems. Modeling of dynamical systems 

using machine learning is a field of growing interest, with a range of developments in symbolic regression [78–

80], neural ODEs [81–87], or combinations of the two [10] for deriving data-driven and interpretable closed 

form expressions. In particular, Janssen et al show how combining deep neural networks with ODEs can 

improve on NLME modeling when proposing the first dose and simulating treatments [88]. More complex 

methods could be also used to model the changes in rate constants over time. Of course, many of these 

approaches require large amounts of available data—often a luxury in pharmacology, especially in rare diseases. 

However, machine learning could also help by integrating additional modalities of pharmacological knowledge 

beyond popPK models, such as known or latent factors of variability, stages of disease, relations to other drugs 

and animal studies, causal relationships, and other inductive biases that would improve the existing data 

efficiency for learning individual variability.  

5.2. Decision support with therapeutic drug monitoring 

In clinical practice, following an observation of an off-target value of an exposure marker (AUC, C0, Cmaxx, 

among others), the clinician or clinical pharmacologist uses their expertise to decide whether to change the dose 

by a certain amount, to keep the dose and ask for a control, or to wait until the next planned measurement in 
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order to improve the outcome. Such “manual” precision dosing decisions can be largely dependent on the past 

experience and biases of the individual clinician/pharmacologist. In this case the use of the more principled 

model-informed precision dosing could be helpful [89], although its introduction to routine practice is still 

challenging [90]. With the same caveats of sufficient data availability for both short- and long-term outcomes, 

machine learning could be leveraged to develop the next-generation decision support systems for therapeutic 

drug monitoring. Reinforcement learning is an increasingly popular technique, where therapeutic drug 

monitoring is reframed as a Markov decision process with an agent taking actions (prescribing treatments) based 

on the feedback from the environment (patient state) so as to maximize the reward (optimal exposure of the drug 

and positive treatment outcomes)  [91,92]. Such agents are already being developed for sensitive drugs like 

heparin [93] and warfarin [94] as well as chemotherapy [92,95,96]. As machine learning techniques for 

pharmacometrics become more advanced and reliable, decision making for therapeutic drug monitoring could 

evolve into adaptive clinical trial designs, acquiring the most relevant information while minimizing adverse 

effects, as shown in Figure 5. 

6. Systems pharmacology  

Unlike pharmacometric disciplines of PK and PD which analyze drug mechanisms in isolation, (quantitative) 

systems pharmacology (QSP) considers these mechanisms within the broader context of a complex biological 

system, where a single reaction is only a small part of a large network of interacting metabolic pathways. Indeed, 

the reasons for why a drug may be effective for an individual patient may have to do with the differences in the 

downstream cascade of the events initiated by the drug-target binding, or the broader characteristics of individual 

physiopathology. Jointly modeling the mechanisms of disease through metabolic pathway systems, gene 

expression data as well as the direction of causality (e.g. considering inflammation and its modification in gene 

expression as a consequence rather than the cause of autoimmune conditions) may also lead to better 

understanding of the disease and inform new treatments. One example of such a shift is the network 

pharmacology paradigm, which moves beyond the ‘one gene, one drug, one disease’ approach and instead 

considers simultaneous treatment of multiple molecular targets within the disease network [97]. 

Systems pharmacology aims to model and integrate multiple data sources explicitly by drawing on mathematical 

modeling, experimental drug pharmacology, multi-omic data, and data from previous clinical trials and animal 

studies (Figure 4). In a white paper report published by the QSP special interest group at the International 
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Society of Pharmacometrics (ISoP QSP SIG) [98], it is proposed that integration of machine learning and 

traditional QSP could improve parameter estimation, model structure, and mitigating the problems in 

dimensionality reduction. Examples of machine learning approaches include integration of multi-omic (e.g., 

transcriptomic, genomic, epigenetic) data to identify patient subgroups for Sjögren syndrome for potential 

treatment individualization [99], and latent hybridization models integrating PK/PD data with longitudinal 

hospital measurements to improve outcomes of a COVID-19 treatment [10]. In particular, by connecting an in 

vitro PB/PK model for dexamethasone and certain inflammatory cytokines [100] to nonspecific patient 

measurements indicating inflammation (C-reactive protein), the latter approach serves as a compelling 

demonstration of the potential of machine learning in effectively connecting disparate sources of systems 

pharmacology and clinical knowledge to improve specific treatments.  

Due to the diversity and complexity of data, such machine learning methods are rare and highly specialized; 

however, we believe in their potential and necessity for helping move the field forward in the future.  

7. Conclusions and perspectives 

In this article, we reviewed the potential synergies between pharmacometrics and machine learning to better 

model the pharmacokinetics and/or pharmacodynamics of drugs, and to use this knowledge to improve 

individual patient outcomes through precision medicine. We discussed the methods for each subfield of 

pharmacometrics—pharmacokinetics, pharmacodynamics—as well as pharmacometric simulations, model-

informed precision dosing, therapeutic drug monitoring and quantitative systems pharmacology.  

In particular, we expanded the discussion from machine learning for treatment effects [8] and their uncertainty to 

exposure/effect modeling, the use of surrogate markers as proxies for clinical outcomes of interest, and 

multimodal data integration. We have left out of scope, however, questions no less important to machine 

learning for pharmacology, including but not limited to principled data collection, data quality, value of 

information, integration of data from diverse healthcare systems, and continuous monitoring of patients. 

Given the promising machine learning developments so far, one may ask why these approaches are not 

researched and applied more widely. The most important constraint is the availability of high-quality 

pharmacometric data (the initial and critical step for any successful machine learning system, as emphasized in 

Figures 4 and 5). Unlike relatively cheap and ubiquitous vital sign measurements using automatic sensors, 
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collection of pharmacometric data (such as drug concentrations at fine-grained timescales) is rare and expensive. 

While there exist some developments in the form of federated learning platforms [101,102] and electronic 

healthcare record databases, the data is still subject to high regulatory scrutiny and privacy issues, which make it 

less accessible. Just like for chemists, with no data to feed the data-hungry deep learning systems, the AI 

revolution for pharmacologists is yet to happen [103]. 

A potential solution to improving the data accessibility and model reproducibility issues could be the 

development of large, open datasets [104,105]. Such datasets could be developed by (1) anonymizing and 

releasing existing data or (2) generating synthetic datasets.  

Anonymized datasets have the advantage of representing real patient cases, but, prepared improperly, could 

reveal sensitive data. They are also expensive to acquire—especially in quantities required for large-scale 

training—and are subject to regulations, further restricting their accessibility. 

Synthetic datasets have been proposed as an alternative source of more accessible, low-cost training data. 

However, generative modeling—a machine learning strategy for creating synthetic datasets—has its own 

challenges. The choice of the generative model (such as variational autoencoder, generative adversarial network, 

diffusion model, etc.) depends on the situation at hand and may not be straightforward. Some models can 

provide more control of incorporated domain knowledge while being too rigid to fully represent real-world data; 

others could flexibly adapt to more complex data but uncontrollably overfit (and fail to generalize) due to 

overparameterization.  

Currently rising in their popularity, deep generative models in particular depend on the availability of sufficient 

and diverse enough data for their training—which is a problem when it is precisely the lack of such data that 

motivates the use of generative modeling in medicine. For instance, recent successful generative models for 

image and text data, such as StableDiffusion [106] and ChatGPT [107], have all been trained on much larger 

datasets than would typically be available in the medical domain, while medical data is arguably even more 

complex in its structure. Overparameterized deep generative models, having lost the original context and 

meaning of data, could produce unrealistic or non-physiologically-viable examples, amplify spurious 

dependencies and biases, and leak private information by reproducing its own training data. 

Principled synthetic dataset development and validation in collaboration of both machine learning and 

pharmacology experts is therefore crucial. A new class of pharmacology-specific generative models will be 
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needed to account for expert insights and relevant biological and pharmacological nuances, while fitting complex 

data in an explainable way. Domain expertise could also be used to filter spurious unrealistic data and correct 

biases. The quality and reliability of the synthetic data should always be validated in an independent setting; 

possibly by testing how a downstream model trained on generated data performs in unseen scenarios, compared 

to when trained on an independent real dataset. 

 

The second constraint that prevents adoption of machine learning in pharmacometrics is making sure that the 

models are principled and trustworthy enough to be used in high-stakes settings for real-world patients, with 

challenges in relation to explainability of black-box models, quantification of uncertainty guarantees, and the 

regulatory approval for machine learning models in routine care. The naive ways of applying machine learning 

to pharmacometric data, as shown in Figure 2, can result in unreliable answers that cannot always be used for 

real-world patients—but further collaborative research in specialized, pharmacometrics-focused methods is 

likely to eventually make them more applicable. This is recognized by the regulatory agencies such as the US 

Food and Drug Administration [108]; however, rapid advancement of machine learning often outpaces the 

process of establishing a regulatory framework, which in turn requires a lot of careful consideration and time to 

strike the right balance between innovation and patient safety. Collaboration between researchers, industry 

stakeholders, and regulatory agencies is essential, and we are hopeful that—as the guidelines become clearer—

the demonstration of efficacy and trustworthiness of machine learning methods will become more 

straightforward, leading to higher adoption. 

The final constraint is the lack of appropriate combined expertise to build and apply more specialized 

pharmacometric machine learning models. While standard off-the-shelf machine learning packages (see Keras 

[109], scikit-learn [110], or tidymodels [111]) are relatively accessible to pharmacologist practitioners, the 

development and use of more complex machine learning models requires mathematical and statistical skill. The 

increasing availability of advanced machine learning tools therefore has the danger of increased prevalence of 

low-quality research due to unprincipled application. For example, a reproducibility study by Kapoor and 

Narayanan [112] shows that, in more than 300 of the scientific and medical papers surveyed, complex machine 

learning methods fail to reproduce and do not outperform baseline decades-old models such as logistic 

regression. Of particular note is the issue of data leakage, which may involve both leakage of test data into the 
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training procedure, or including information from the future or outside knowledge that would typically be 

unavailable in real-world settings. Such mistakes might inflate the performance of the model during training and 

test-time but perform poorly when faced with previously unseen real-world data. 

  

Conversely, machine learning practitioners may not have the necessary pharmacometric expertise available in 

order to build on the domain knowledge. For example, when applied naively, machine learning models may 

learn correlations between variables that are not causally related, which would seem to produce good results in 

the training phase but perform poorly in test-time environments when such correlations do not hold. In this case, 

the pharmacological expertise may help mitigate such issues in time. Principled and expert-verifiable models 

(Figures 3-5) are nonstandard and require extensive knowledge of both pharmacometrics and machine learning 

as well as strong collaborative relationships, and, as always, must be carefully validated in external populations. 

With this article, we hope to encourage new partnerships between the experts of both fields, and to inspire new 

methods and ideas to advance pharmacometric machine learning—the development of new larger datasets that 

consider the complexity of clinical data, new models that are able to integrate different kinds of pharmacometric 

domain knowledge, and user-friendly interfaces as well as rigorous evaluation and validation processes to 

streamline the wider adoption by the practitioners. 
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Table 1: Summary of pharmacometric tasks, their goals, methods, and opportunities for machine learning 

developed in this review. 

Task Goal Pharmacometric 

methods 

Challenges Opportunities 

Population 

pharmacokinetic 

(popPK) 

modeling 

To predict individualized 

PK parameters and 

exposure indices based on 

individual demographic 

data only (a priori) or 

additionally incorporating 

individual drug 

concentration 

measurements (a 

posteriori) 

● Nonlinear mixed 

effect (NLME) 

modeling [11,16,19] 
● Nonparametric 

models [17] 
 

● Structural model 

selection [12–14] 
● Nonlinearity in 

covariates/PK 

parameter 

associations; 

collinearity in 

covariates   
 

● AutoML and neural   

network-based 

approaches 
● Genetic algorithms, 

neural   network and 

Cox survival based 

covariate selection 

methods [20,21] 
● Xgboost-based 

individual PK 

parameter prediction 

[31,38] 
 

Exposure/effect 

modeling 

To model the relationship 

between PK exposure 

indices and microscopic 

(molecular target) or 

macroscopic (clinical 

endpoint) effects on the 

body 

● Molecular scale: 

NLME or 

nonparametric 

methods 
● Population scale: 

logistic regression, 

survival analysis, 

joint modeling of 

longitudinal 

outcomes and time-

to-event data [42] 

● Finding the best 

exposure indices 

while taking into 

account nonlinear 

relationships, delays 

in response, changes 

in dynamics due to 

cumulative 

exposure 
● Leveraging 

longitudinal 

exposure marker 

and outcome 

observations 
● Drug interaction 

modeling  
 

 

● Knowledge graph 

models for  disease 

biomarker 

identification from 

observational data 

and for PK/PD 

relationship modeling 

[57–59] 
● Recurrent neural 

network-based 

survival analysis [46] 
● Deep learning 

methods for temporal 

subgroup clustering 

[113] 
● Graph neural 

network and deep 

learning methods 

[48,50] 

Pharmacometric 

simulations 

To evaluate popPK 

models (via visual 

predictive checks) and a 

priori treatment regimens 

for PK/PD target 

attainment; to answer 

counterfactual questions 

in clinical trials 

Monte Carlo simulations 

[16,17,19] 

  

● Unknown underlying 

distributions for 

accurate Monte 

Carlo simulation 
● Simplistic 

assumptions on 

preclinical, animal, 

in vitro data for 

clinical trial 

simulations 
● Maximum tolerated 

dose identification 

under safety and 

efficacy constraints 
● popPK model 

ensembling at 

population or 

● Generative model-

based simulations 
● Data-driven 

utilization of prior 

information [67] 
● ML-based (adaptive) 

clinical trial design 

[70,71] 
● Multi-armed bandit 

approaches [69] 
● ML-based or 

population-level 

Bayesian model 

averaging [26,28] 
● Representation 

learning-based 

individualized model 
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individualized levels averaging [64] 
● Continual learning 

for dynamic 

refinement of  popPK 

priors [65] 

Optimal dose 

selection 

To propose an optimal 

treatment regimen based 

on popPK and 

exposure/effect data, and 

to dynamically adjust the 

regimen as more data is 

collected 

 

Joint modeling [42] ● Refining dose 

proposal on the basis 

of individual features 

(individual 

concentration 

measurements and 

covariates) to 

increase the 

probability of target 

attainment 
● Development of 

more powerful 

representations of 

popPK models as 

dynamical systems: 
● Symbolic 

regression [78–80], 

neural ODEs [81–

87], and 

combinations [88] 

● Recurrent neural 

networks for 

estimating treatment 

outcomes over time 

[76] 
● Use of generative 

models to model the 

effects of continuous-

valued treatments 

[77] 
● Reinforcement 

learning to improve 

dose selection [91,92] 
● ML integration of 

pharmacological 

knowledge beyond 

popPK models (e.g. 

known or latent 

factors of variability, 

stages of disease, 

relations to other 

drugs and animal 

studies, omics data, 

causal relationships, 

and other inductive 

biases) [10,99] 

Systems 

pharmacology 
To integrate physiological 

and other modalities of 

biological knowledge into 

pharmacometrics and 

drug development 
 

● Physiologically 

based PK [114] 
● Gene ontology and 

pathway analysis 

[115] 
● Compound target 

and target pathway 

networks for 

different compounds 

and targets [116] 

● Integration of multi-

source and multi-

scale data with linear 

or nonlinear 

relationships 
● Improvement in 

parameter 

estimation, model 

structure and 

dimensionality 

reduction 
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List of Figures 

Figure 1: Stages of pharmacometric modeling. (a) Data. A population-level dataset is collected, including 

attributes such as age, weight, sex, genetic information, as well as concentration measurements of the drug. (b) 

Compartmental model. An expert picks a model (such as the two-compartment model) that fits the drug 

dynamics. The compartmental model is associated with a set of differential equations parameterized by the rates 

of drug absorption, distribution, metabolism and elimination (ADME). (c) Pharmacokinetic (PK) modeling. The 

compartmental model with parameters fit to population data define an individualized concentration-time curve 

with associated exposure indices, such as peak and trough concentrations (Cmax,C0), and area under curve 

(AUC). (d) Pharmacodynamic (PD) modeling. Therapeutic and toxic effects of the drug depend on drug 

exposure. The drug dose is adjusted to fall within the therapeutic range, maximizing the efficacy of the drug 

while minimizing its toxicity. 

Figure 2: Direct machine learning approaches to precision dosing. Machine learning models are often used 

simply as an off-the-shelf tool, involving none to minimal pharmacometric domain knowledge. (a) Supervised 

machine learning. A machine learning model, such as a neural network (alternatively a support vector machine, 

random forest, etc.) is trained to take in the patient inputs to return the correct output (such as a personalized 

dose or an exposure marker). These large nonlinear models can fit the datasets very well but may not provide 

much ground behind their predictions and are difficult to trust in high-stakes situations such as in healthcare. (b) 

Pharmacometric curves as the prediction target. Alternatively, instead of returning the final result immediately, 

the machine learning model could be trained to predict earlier parts of the pharmacometric pipeline—the use of 

neural ordinary differential equations (ODEs) to find the pharmacometric curve being one example. An expert 

can perform a visual predictive check to verify the plausibility of the curve, but in most cases there are no 

reliability guarantees. 

Figure 3: Incorporation of pharmacometric domain practices. A more complicated pipeline showing how 

machine learning could be incorporated as part of the standard pharmacometric practice (see Figure 1). At the 

first stage of model selection, machine learning could be used to select the most appropriate compartmental 

structure, with techniques like symbolic machine learning used to derive the precise differential equations 

driving the dynamics. These explicit outputs can be observed and verified by the expert. After the parameter 

fitting stage, machine learning could be further used for individualized error correction and adjustment. 
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Figure 4: Enriching the models with broad pharmacometric knowledge through multi-source, multi-scale data. A 

variety of big data sources—including scientific studies, chemical properties for drugs and proteins, metabolic 

networks, past clinical trials—can be processed and consolidated using advanced machine learning techniques 

(such as natural language processing and graph neural networks) into large knowledge bases. Combined with 

richer individual data (including full medication and treatment history, full genome and proteome), joint 

pharmacometric and machine learning techniques could account for more complex factors (e.g. drug-drug 

interactions and systems biology), producing an individualized model of drug dynamics. 

Figure 5: Use of machine learning models for decision making and further data acquisition. As joint machine 

learning (ML) and pharmacometric (PMx) developments progress further to be suitable for real-world decision 

making, techniques such as reinforcement learning could be used to design new adaptive clinical trials, 

collecting relevant information while improving individual patient outcomes. 

 


