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Abstract  

 

Introduction: Ganciclovir (GCV) and Valganciclovir (VGCV) show a large interindividual pharmacokinetic 

variability, particularly in children. The objectives of this study were: (i) to develop Machine-learning (ML) 

algorithms trained on simulated pharmacokinetics profiles obtained by Monte-Carlo simulations to estimate the 

best ganciclovir or valganciclovir starting dose in children; and (ii) to compare its performances on real-world 

profiles to previously published equation derived from literature POPPK models achieving about 20% of profiles 

within the target.  

Materials and methods: The pharmacokinetic parameters of 4 literature POPPK models in addition to the WHO 

growth curve for children were used in the mrgsolve R package to simulate 10800 pharmacokinetic profiles. ML 

algorithms were developed and benchmarked to predict the probability to reach  the steady-state area-under-the-

curve target (AUC0-24 within 40-60mg*h/L) based on demographic characteristics only. The best ML algorithm 

was then used to calculate the starting dose maximizing the target attainment. Performances were evaluated for 

ML and literature formula in a test set and in an external set of 32 and 31 actual patients (GCV and VGCV 

respectively).  

Results: A combination of Xgboost, neural network and random forest algorithms yielded the best performances 

and highest target attainment in the test set (36.8% for GCV and 35.3% for the VGCV). In actual patients, the 

best GCV ML starting dose  yielded the highest target attainment rate (25.8%) and perform equally for VGCV 

with the Franck model formula  (35.3% for both).  

Conclusion: The ML algorithms exhibit good performances in comparison to previously validated models and 

should be evaluated prospectively.  

 

Keywords: ganciclovir; machine learning; pediatrics; first dose; simulations 
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Key Points 

 

 This study aim at developing machine learning algorithms trained on simulated pharmacokinetics 

profiles obtained by Monte Carlo simulations to estimate the best ganciclovir or valganciclovir starting 

dose in children.  

 The best algorithm was used to calculate the ML starting dose associated with the highest probability to 

achieve the target (AUC0-24 40-60mg*h/L) and performances for target attainment were compared to 

previously published equation derived from literature POPPK models in 31 (ganciclovir) and 34 

patients (valganciclovir).  

 A combination of Xgboost, neural network and random forest algorithms yielded the best performances 

leading to the highest target attainment in the test set and in patients for valganciclovir and the second 

best for ganciclovir.  
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1. Introduction  

 

Cytomegalovirus (CMV) is a severe pathogen in children whose immune system is compromised or immature 

(like children after organ transplantation). The seroprevalence of CMV is very high and estimated around 85% in 

the general population and in donors of blood or organs [1]. CMV infection is common in pediatric allogeneic 

hematopoietic transplant recipients [2] and in solid organ transplant recipients [3]. Despite preventive strategies 

with oral valganciclovir (VGCV) after transplant for a defined high-risk period  (preemptive strategy) and close 

monitoring  of CMV replication, CMV disease can have consequences in transplant patients [4]. Antiviral 

therapy in patients with CMV replication prevents CMV disease which is associated with poor outcomes [5] as 

this infection causes significant morbidity and mortality [6].  

The most frequently used drugs in preventive strategies and for CMV disease in the immunocompromised 

children is intravenous ganciclovir (GCV), a synthetic nucleoside guanine analogue, which has a very poor oral 

bioavailability and VGCV, the prodrug of GCV, which is well absorbed from the gastrointestinal tract in 

children and rapidly metabolized to GCV in the intestinal wall. The resistance mutations and toxicity of VGCV 

and GCV are similar due to the rapid conversion of VGCV to GCV, including neutropenia, anemia, 

thrombocytopenia, diarrhea, and fever [7].  

GCV and VGCV exhibit a large interindividual pharmacokinetic variability, particularly in pediatric transplant 

recipients [8]. Studies identified that renal function (Creatinine Clearance CrCL) and weight, age, reflecting both 

growth and maturation of organ functions were predictors of GCV clearance [8]. Pharmacokinetic studies have 

shown that the body Weight (WT) based formula led to underexposure compared with Body Surface Area 

(BSA)- CrCL-based algorithm, particularly in the youngest and that the probability of target attainment was 

lower in children than in adults [8]. Due to this variability, therapeutic drug monitoring (TDM) is recommended 

in children. In relation to the lack of pharmacodynamic studies in children, the surrogate efficacy target 

determined in adult (AUC0–24 = 40-60 mg.h/L) has been extrapolated for the prevention of CMV disease in 

children [9].  Indeed, with prophylaxis, breakthrough CMV viremia was associated with AUC0–24 <40 mg.h/L 

[10] and the risk of neutropenia and anemia increased with increasing GCV exposure ranges from 40-60 mg.h/L 

to 80-120 mg.h/L [11].  

Machine learning (ML) approaches are increasingly used to estimate exposure index [12,13] and have allowed 

us to derive a starting dose with the best probability of achieving vancomycin target serum concentrations in 

neonates [12]. However, the development of ML algorithms requires large datasets. To work around this 
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challenge, we have recently demonstrated that ML algorithms could be efficiently trained on simulated data, 

obtained using a population pharmacokinetic (POPPK) model from the literature [12,14].   

The objectives of this study were: (i) to develop a ML algorithm trained on simulated PK profiles obtained by 

Monte Carlo simulations based on POPPK models from the literature to estimate the best GCV or VGCV 

starting dose in children; and (ii) to compare its performances on real-world profiles with dose proposed from 

formula derived from  previously published POPPK models.  

 

2. Materials and Methods  

 

2.1. Simulation of ganciclovir and valganciclovir pharmacokinetic profiles in 

children 

2.1.1. Creation of a covariate database  

Ten thousand eight hundred simulated patients with different covariates used in previously published POPPK 

models of GCV and VGCV were simulated (corresponding to 300 profiles by sex and by age from 1 to 18 years 

old). In brief, age between 1 to 18 years old was simulated using a uniform distribution, weight and height were 

simulated based on a truncated normal distribution according to the World Health Organization (WHO) growth 

standard according to age group (1 year per year) [15], creatininemia was simulated based on a truncated normal 

distribution between 20 and 250 (micromole/L) independently of the other covariates [16], body surface area 

(BSA) was  calculated with Mostellers formula (BSA =  
             

    
), sex and type of transplant (solid organ 

or stem cells) were simulated using a uniform distributions. The creatinine clearance (CrCL) was then calculated 

based on age and creatininemia using the modified Schwarz formula [17] . The simulated covariates were split 

into 3 subsets for IV GCV and 4 subsets for VGCV to be used for simulation by the POPPK models. Furthers 

details on selected models are available in supplemental data 1. We performed Monte Carlo simulations in the 

mrgsolve R package [18] using previously published POPPK models (2 for GCV [16,20] and 3 for VGCV 

[16,20,21]), individual covariates simulated and dose recommendations for a prophylaxis treatment (Doseguidelines 

[5,22,23]; 5 mg/kg once a day for GCV and 7*BSA*CrCL for VGCV, max 900mg) to simulate individual 
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predicted concentrations after IV GCV and VGCV administration at steady state (ss=1 option in mrgsolve). The 

additive error and proportional error were set close to 0 (0.0001 mg/L for additive and 0.0001% for proportional 

error) to only take into account the inter-individual variability and covariate effect as previously described [24]. 

The steady state AUC0-24h,ref was then calculated using trapezoidal rule (AUC0-24,ref) based on samples simulated 

every 6 min. A filter was applied to remove AUC0–24–ref outliers (values outside the 5%-95% interval of 

simulated values). All the values of covariates, the code used to simulate them are available at: 

https://github.com/ponthL/ganciclovir_first_dose.git.  

 

2.2. Machine learning analysis 

2.2.1. Development of the ML algorithms 

All pre-processing and machine learning analyses were performed using the tidy models framework in R version 

4.2.2 [25]. Analyses were performed independently for GCV and VGCV. Data were split into a training set 

(75%) and a test set (25 %) by random selection of simulated patients. A new qualitative variable was created for 

classification analyses: target attainment AUC0-24h,ref : yes/no (target attainment was defined by an AUC0-24h,ref 

between 40 and 60 mg*h/L).  

Preprocessing consisted in normalization (centering and scaling) of numeric variables, and one hot encoding of 

categorical features. Xgboost (eXtreme gradient boosting training) [26], Neural networks MLP [27] and Random 

Forests [28] algorithms, were employed in parallel. We also evaluated the combined prediction of the 3 

algorithms using the stack R package [29]. We tuned the hyperparameters for each algorithms using ten-fold 

cross-validations in the training set. Once optimized, the ML algorithms (Xgboost, Neural networks, Random 

Forest and Stacking of the 3 models) were evaluated in the training set, using another set of cross-validation, 

based on the accuracy, ROC-AUC, sensibility, specificity, negative predictive value (NPV), and positive 

predictive value (PPV). The best algorithm based on accuracy was finally evaluated in the test set. The relative 

importance of each feature was determined using random permutations and a variable importance plot was 

drawn.  

2.2.2. Determination of the best ML starting dose 

For each simulated patient, ML algorithm predicted the probability of having an AUC0-24 in the target (defined 

by an AUC0-24 between 40 and 60 mg*h/L). Different dose ranging from 0,1*Doseguidelines to 5* Doseguidelines were 

screened and the one associated with the highest probability of target attainment was selected as the optimal ML 

https://github.com/ponthL/ganciclovir_first_dose.git
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starting dose (= doseML). Finally, as simulation were drawn at steady state and under the hypothesis of strict 

linearity of the PK, the AUC0-24ML for the doseML was derived as follows in the train and test sets: 

            
                    

              
 

To compare our performance with doses described in the literature in the test set, we selected models and 

calculated doses using formula derived from these different POPPK models (DosePOPPK) and we calculated the 

AUC0-24 as follows:  

               
                       

              
 

The probability of target attainment for AUC0-24,ML was compared to those of the literature models (AUC0-

24,POPPK) in the test set.  The calculations of the doses used for comparison extracted from each literature model 

are available at: https://github.com/ponthL/ganciclovir_first_dose.git. 

 

2.3. External validation in actual patients 

Deidentified data from 31 patients treated by GCV and 34 patients by VGCV  for whom TDM was routinely 

performed [16], were used to externally evaluate the ML algorithms. Parental informed consent was obtained for 

all infants. The study protocol was approved by institutional ethics committee (N°2018-1830). The authors 

confirmed that they have complied with the World Medical Association Declaration of Helsinki regarding 

ethical conduct of research involving human subjects. We virtually compared the proportion of target attainment 

the patients would have reached after starting dose based on guidelines, starting dose proposed by the formula 

from the POPPK literature models and starting dose proposed by the ML algorithms. The virtual AUC0-24 

following the different doses were calculated, with the hypothesis of strong linearity, based on the AUC0-24, ref 

obtained using trapezoidal rule on 6 available concentrations, the Doseadministered (based on guidelines), DosePOPPK 

or DoseML. The whole methodology applied in this study is summarized in the Figure 1.  

 

 

3. Results  
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After outliers filtering out, 9873 profiles were available for GCV (7404 for training and 2469 for testing) and 

9809 for VGCV (7356 for training and 2453 for testing). Characteristics of the simulated profiles and real-world 

patients are summarized in Table 1 for GCV and in Table 2 for VGCV.  The distributions of the simulated 

AUC0-24,ref with GCV and VGCV are presented in the Figure 2.  

 

 

3.1. Development of the Machine Learning algorithm 

 

The performances of the algorithms trained in the train set with each ML algorithm and in the test set for the best 

algorithm are available in the Table 3. The value of the optimal hyperparameters for each ML algorithm is 

reported in the supplemental data 2. The linear combination of the 3 ML algorithms (stacking model) yielded the 

best performances for GCV and VGCV (the plots of the Stacking model showing the contributions of each 

model are available in the supplemental data 2 and at: https://github.com/ponthL/ganciclovir_first_dose.git). The 

variable importance plots for GCV and VGCV to predict the AUC0-24 in the target showed that creatinine 

clearance was the most important variable followed by the weight and height (Figure 3).  

 

3.2. Robustness evaluation in the test set. 

 

Paired boxplots comparing the 2 dose proposals (DoseML and Doseguidelines) in the test set are presented in Figure 

4a for GCV and Figure 4b for VGCV. For individuals who had AUC0-24 <40 mg.h/L using Doseguidelines, ML 

would have recommended overall higher DoseML resulting in improving the proportion of AUC0-24,ML  in the 

target. For individuals who had AUC0-24 between 40 and 60 mg.h/L using Doseguidelines, ML would have 

recommended similar DoseML. For individuals who had AUC0-24 >60 mg.h/L using Doseguidelines, it seems that 

ML would have mostly recommended equal or lower DoseML resulting in decrease of proportion of AUC0-24,ML  

above the target. 

When split into exposure classes (below, within or above the target), the best target attainment rate was obtained 

with the dosesML (GCV: 36.8%, N=909/2469; VGCV: 35.3%, N=866/2453) in comparison to the dosesguidelines 

(GCV: 21.3%, N=526/2469  (p<0.005), VGCV: 29.6%, N=727/2453 (p<0.005)) and to the DosesPOPPK (Figure 
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5a (GCV) and 5b (VGCV)). The results stratified by age group (<2, between 2 and 12 and >12 years) are 

presented in the Supplemental data 3 and 4 for GCV and VGCV respectively. 

 

3.3. External validation in a database from actual patients 

 

Paired boxplots comparing the 2 dose proposals (DoseML and Doseadministered) in the real-world patients are 

presented in Figure 4a for GCV and Figure 4b for VGCV. For GCV and VGCV, overall, the ML algorithm 

proposed higher DoseML than the Dosesguidelines when the AUC0-24 was below the target (<40 mg*h/L), similar 

when the AUC0-24 was in the target and lower DoseML when the AUC0-24 was above the target. 

When split into exposure classes for GCV, the best target attainment rate was obtained with the best target 

attainment rate was obtained with the dosesML (25.8%, N=8/31) followed by the Franck (22.6%, n=7/31) and the 

dosesguidelines (12.9%, N=4/31) (Figure 6a). For VGCV, the best target attainment rate was obtained equally with 

the dosesML (35.3%, N=12/34) and the Franck DosePOPPK (35.3%, N=12/34) followed by the dosesguidelines 

(20.6%, N=7/34) and by the other DosesPOPPK (Figure 6b).  

4. Discussion  

 

In the present study, we developed a ML algorithm from simulated PK profiles to predict the starting dose of 

GCV or VGCV in transplanted children. Our algorithm showed numerically better performances for GCV in 

comparison to the doses based on literatures formula. For VGCV, the best target attainment rate was equal with 

the Franck et al doses [16]. A possible explanation is that the largest part of the patient used for the external 

evaluation of the algorithm were from the same center as those used for the development of the Franck et al 

POPPK model.  

In the present study, instead of simulating from a single study, we performed Monte Carlo simulation from 

different POPPK studies allowing to increase the diversity of PK profiles obtained. No weighting on the 

simulations relative to the size of each POPPK study was applied to assess the contribution of each study toward 

the overall results (as it would be in a meta-analysis approach). However, as shown in the supplemental data 1, 

the populations were homogeneous across the studies. In previous studies interesting in model averaging or 

development of ML based on simulations, no a priori weighting based on POPPK studies was applied and 

performances were good [30,31].  
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The approach developed here could be view as a sort of meta-analysis of population pharmacokinetic models 

from literature. A meta-analysis in population pharmacokinetics typically involves combining data from multiple 

studies to create a comprehensive model. This approach has its advantages, such as a comprehensive view of the 

data, and drawbacks, like potential bias from the original models or heterogeneity of data. Using external 

validation with retrospective local data to externally validate existing POPPK models could be an alternative 

offering more practical insights specific to the local population.  

In contrast, training a ML algorithm on simulated POPPK data does not integrate actual patient data from 

different studies. Instead, it uses existing models to generate new data for training the ML algorithm. While both 

approaches aim to enhance drug dosing predictions, the meta-analysis directly pools real-world data, whereas the 

ML approach indirectly uses existing knowledge to create a new predictive tool. 

Our ML estimator slightly improved the target attainment in comparison to the doseguidelines or dosePOPPK. VGCV 

or GCV are subject to a large interindividual variability, and the target drug attainment would only be attained in 

a small proportion of patients.  In a review comparing pharmacokinetics studies [8], only Facchin model [21] 

showed a target attainment rate for VGCV of over 40% while in our study we achieved a target attainment rate  

of 35.3% with the ML algorithm. For GCV, Franck et al showed disparities according to the studies with 

variables target attainment rates among the ages [8]. We similarly observed a difference in target attainment 

when patients were stratified by age class (supplemental data 3 and 4): under 2 years, between 2 and 12 years, 

and over 12 years. Patients under 2 years receiving intravenous ganciclovir (IV GCV) showed overexposure 

compared to the POPPK model predictions, which primarily indicated underexposure. This discrepancy can be 

attributed to the iterative search for the optimal dose in the training set, resulting in doses up to 5x Doseguidelines. 

While a maximum dose of 2x Doseguidelines might have been more appropriate for these patients, we maintained 

the 5x Doseguidelines threshold for all patients for consistency purposes. For the VGCV, similar to the POPPK 

model predictions, we observed overall underexposure in children under 2 years and overexposure in children 

over 12 years. Inter-individual pharmacokinetic variability is higher in neonates than in adults and the former are 

characterized by a higher distribution volume and a lower clearance [32]. As the models used for the simulations 

contained only a few newborns or children under 1 year of age, we chose to develop our model with children 

starting at 1yo. Taken together, these results suggest that the starting dose should still be followed by TDM to 

improve the individual target attainment. 
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We used an iterative increase of the dose to select the one associated with the largest probability of the target 

attainment. In the case of multiple doses associated with the highest probability, we selected the smallest one. 

This approach is to our knowledge innovative in proposing the dose that maximize the target attainment. 

However, for some patient, the highest probability was rather small and a possibility could be to make a proposal 

only for patient having a probability of at least 0.6 to reach the target. 

 

In this study, the pharmacokinetic profiles used to train the ML algorithms were obtained from Monte Carlo 

simulations using 3 published POPPK models for IV ganciclovir [16,20] and 4 for VGCV[16,20,21]. The 

simulations were based on published covariates and their distributions, but we did not simulate the covariates 

with covariance.  Indeed, we simulated each weight and height independently using the World Health 

Organization growth data and based on gender. To avoid any bias in relation to that, we used a small granularity 

(1 year per year) in the simulations allowing to prevent from unrepresentative combinations (e.g. 2 years old 

baby weighting 30 kg). In addition, we removed the outliers values of AUC0-24 to avoid unrepresentative 

combinations.  

In this study, Xgboost, Neural network, Random Forests algorithms were compared. We chose these algorithms 

because we had previously used them successfully on our previous projects. Finally, the stack model which 

combined the predictions of the 3 models (Xgboost, Neural networks and Random Forest) had the best 

performance. This stacking-based modeling approach combined information from multiple models and avoided 

specification of one specific model, to keep only the strengths of each model. This approach has already been 

used successfully [33,34].  

Our study had limitations. The highest one is that we considered a strict linearity in the dose/AUC relationship 

by using cross-product to estimate the AUC0-24 after a given dose or the dose that would have led to a given 

AUC0-24. Nevertheless, the same approach has been used for the different approaches (guidelines, POPPK and 

ML) leading to a fair comparison. Due to lack of pharmacodynamic studies in pediatrics, the target of AUC0-24 

between 40-60 mg·h/mL has been extrapolated from adults’ studies explaining why we chose this target range, 

but it should be refined in the future or at least validated that this target range is relevant for this population.   

In the external set, the median dose of VGCV was lower than in the simulations because we had fewer patients 

with impaired renal function. Another limitation is the small number of variables used for ML estimator 

development. However, as this ML algorithm was trained on simulated data generated using a previously 

published POPPK model, we were limited to the covariates selected in the POPPK models. Finally, no simple 
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equation can be directly derived from the developed ML algorithm and to overcome that, we developed a 

shiny.App for demonstration: https://pharmaco.shinyapps.io/valganciclovir/ for VGCV and 

https://pharmaco.shinyapps.io/ganciclovir/ for ganciclovir. The source code is available at: 

https://github.com/ponthL/ganciclovir_first_dose.git  

 

5. Conclusion 

 

In conclusion, we have developed an ML based approach to estimate GCV and VGCV starting dose in pediatrics 

transplant recipients. The DoseML estimator improves the exposure target attainment rate. Further prospective 

investigations are needed to confirm its clinical relevance in this population. 
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Table 1: Characteristics of the simulated profiles and external validation of actual patients for GCV algorithm 

development. 

 

 

 All simulated 

patients 

N = 9873 

train+test 

Simulated 

patients from 

Franck et al 

N= 4904   

Simulated 

patients from 

Nguyen et al 

N=4969 

Real-world patients 

 

N=31 

Weight (kg) 32.0 

[19.6;50.6] 

34.2 

[20.7;51.7] 

30.2 

[18.5;49.0] 

21.5[12;32.5] 

Creatinine 

(micromole/L) 

49.8 

[34.5;70.0] 

49.9 

[34.7;70.3] 

49.7 

[34.3;69.9] 

36.7 [26.6;51.2] 

CrCL (mL/ 

min)  

140 

[96.8;207] 

145 

[98.5;211]   

136 

[94.7;203] 

152[111;199.6] 

Age (years) 9.00 

[5.00;14.0] 

10.0 

[6.00;14.0] 

9.00 

[5.00;13.0] 

6.8 [2.8;10.1] 

Height (cm) 138 [116;159] 140 [119;161] 136 [114;157] 116[87;138] 

Dose (mg) 160 

[98.1;253] 

171 [104;259]   151 

[92.4;245] 

200[105;380] 

Dose (mg/kg) 5 5 5 5 [4.9;5.3] 

Male Sex  4916 (49.8%) 2475 (50.5%) 2441 (49.1%) 8 (26%) 

Type of 

transplant 

Transplant 

stem cells  

4948 (50.1%) 2476 (50.5%) 2472 (49.7%) 14 (45%) 

solid organ 4925 (49.9%) 2428 (49.5%)    2497 (50.3%) 17 (55%) 

AUC0-24,ref 

(mg*h/L) 

   33.5 

[20.7;52.7] 

30.0 

[19.1;46.4] 

38.3 

[22.9;58.6] 

32.3[23.8;61.9] 

 

 
Continuous variables are presented as median [IQR] and categorical variables are presented as number (%). 

CrCL : creatinine Clearance (using modified Schwartz formula). AUC0-24,ref  : Area under the curve obtained 

using the trapezoidal rules ;  
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Table 2: Characteristics of the simulated profiles and real-world patients for VGCV algorithm development. 

 

 

 

 All simulated 

patients 

N = 9809 

train+test 

Simulated 

patients 

from Franck 

et al Model 

N=3079 

Simulated 

patients 

from 

Facchin et al 

N=3596 

Simulated 

patients 

from 

Nguyen et al 

Model 

N=3134 

Real-world 

patients 

N=34 

Weight (Kg) 33.0 

[19.5;51.8] 

35.3 

[21.2;52.1] 

33.2 

[19.0;51.8] 

30.5 

[18.5;51.1] 

22.4 

[9.9;37.1] 

Creatinine 

(micromole/L) 

49.8 

[34.4;69.9] 

49.1 

[33.8;68.8] 

50.3 

[34.6;70.0] 

49.9 

[34.8;70.0] 

95.88 [60.03; 
126.90] 

CrCL (mL/ 

min) 

141 

[97.7;209] 

149 

[103;215] 

140 

[96.2;208] 

136 

[93.9;203]   

59.7 

[44.9;101.4] 

Age (years) 9.0[5.00;14.0] 10.0 

[6.00;14.0] 

9.00 

[5.00;14.0] 

9.0 

[5.00;14.0] 

7.9 

[0.5;11.5] 

Height (cm) 139 [116;161] 142 

[120;162]    

139 

[115;161] 

136 

[114;160] 

117.8 

[78.1;144.3] 

Dose(mg) 876 [569;900] 900 

[651;900] 

900 

[582;900] 

900 

[567;900] 

213[151;360] 

Dose (mg/kg) 21.1 

[16.5;30.0] 

21.1 

[16.5;29.8] 

20.8 

[16.4;29.5] 

21.5 

[16.6;30.7] 

19.2[10.8;20.2] 

Male Sex 4909 (50.0%) 1570 

(51.0%) 

1771 

(49.2%) 

1568 

(50.0%) 

19 (55.9%) 

Type of 

transplant 

Transplant 

stem cells  

4939 (50.4%) 1569 

(51.0%) 

1797 

(50.0%) 

1573 

(50.2%) 

23 (67.6%) 

Solid organ 4870 (49.6%) 1510 

(49.0%) 

1799 

(50.0%) 

1561 

(49.8%) 

11 (32.4%) 

AUC 0-

24,ref(mg*h/L) 

55.7 

[38.9;73.9] 

46.1 

[31.7;64.8] 

52.0 

[38.9;64.0] 

73.6 

[54.2;88.7] 

24.3 

[18.3;33.4] 

 

 

Continuous variables are presented as median [IQR]. CrCL : creatinine Clearance (using modified Schwartz 

formula). AUC0-24,ref  : Area under the curve obtained using the trapezoidal rules ;  
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Table 3: Performances (%) of the ML algorithms in the train dataset GCV and VGCV to predict AUC0-24 in the 

target 

 

  Train (obtained using resampling) Test 

 Random 

Forrest  

Xgboost Neural 

network 

Stack of 

Xgboost+ 

Random 

Forrest+ 

Neural 

Network 

Stack of 

Xgboost+ 

Random 

Forrest+ 

Neural 

Network 

Ganciclovir 

 

Accuracy  74.8 74.2 69.9 91.9 90.0 

ROC-AUC 86.6 83.3 80.9 97.2 95.1 

Sensitivity 71.7 72.7 66.5 96.0 95.7 

NPV 44.8 43.7 39.6 83.7 81.3 

Specificity 86.5 93.1 82.3 76.5 68.9 

PPV 95.2 91.9 92.5 93.9 91.9 

Valganciclovir 

 

Accuracy  66.2 63.8 61.6 70.4 70.3 

ROC-AUC 64.5 61.9 62.3 68.8 67.2 

Sensitivity 81.2 66.7 67.6 69.7 66.1 

NPV 41.2 38.1 44.3 46.2 45.3 

Specificity 34.6 61.3 55.6 58.7 53.9 

PPV 73.1 73.5 68.3 74.5 69.1 

 
Abbreviations: NPV, negative predictive value; PPV, positive predictive value  

  



21 
 

Figure legends 

Figure 1: Graphical summary of the methodology of the study 

Figure 2: Distribution of the simulated GCV AUC0-24 (a) and VGCV AUC0-24 (b) for the development of the 

machine learning algorithms (AUC is area under the curve in mg*h/L) 

Figure 3: Variable importance plot for the ML algorithm in the train set to predict AUC0-24 in the target 

Figure 4: Paired boxplots comparing the 2 doses proposals (guidelines, ML Doses) and split into 3 groups: 

AUC0-24 calculated with dosesguidelines in the target (40-60 mg*h/L), below the target (<40mg*h/L) and above 

the target (> 60 mg*h/L) in the simulation set and in real-world patients for GCV (a) and VGCV (b) 

Figure 5: Target attainment rate for dosesguidelines, dosesPOPPK and doseML in the test set for GCV (a) and VGCV 

(b) 

Figure 6:  Target attainment rate for dosesguidelines, dosesPOPPK and doseML in real-world patients for GCV (a) and 

VGCV (b) 

 

 

 

 

 
 
 


