

Simulated population: Age/ weight/height/ creatinine clearance (CrCL)

Monte Carlo simulations at steady state with Dose_{guidelines}:
5 mg/kg once a day for GCV and

5 mg/kg once a day for GCV and 7*BSA*CrCL for VGCV, max 900mg)

Calculation of steady state AUC_{0-24h,ref} in simulations using trapezoidal rule

Development of 4 ML algorithms to predict the target (AUC₀₋₂₄ in 40-60mg*h/L) and selection the best algorithm (accuracy)

Calculation with the best ML algorithm of the probability of having an AUC_{0-24} in the target (40-60 mg*h/L) for different doses from $0.1*Dose_{guidelines}$ to $10*Dose_{guidelines}$

Select the dose associated with the best probability = $dose_{ML}$

Calculation based on the dose_{ML} selected of the

$$AUC_{0-24,ML} = \frac{AUC_{0-24,ref} \times Dose_{ML}}{Dose_{guidelines}}$$

Dose_{POPPK} calculating using formula derived from POPPK models and calculation of

the
$$AUC_{0-24,POPPK} = \frac{AUC_{0-24,ref} \times Dose_{POPPK}}{Dose_{guidelines}}$$

Comparison of drug target attainment proportion in the <u>test set of simulated patients</u> and in <u>real patients</u> for $AUC_{0-24,ML}$ and $AUC_{0-24,POPPK}$