Simulated population: Age/ weight/height/ creatinine clearance (CrCL) Monte Carlo simulations at steady state with Dose_{guidelines}: 5 mg/kg once a day for GCV and 5 mg/kg once a day for GCV and 7*BSA*CrCL for VGCV, max 900mg) Calculation of steady state AUC_{0-24h,ref} in simulations using trapezoidal rule Development of 4 ML algorithms to predict the target (AUC₀₋₂₄ in 40-60mg*h/L) and selection the best algorithm (accuracy) Calculation with the best ML algorithm of the probability of having an AUC_{0-24} in the target (40-60 mg*h/L) for different doses from $0.1*Dose_{guidelines}$ to $10*Dose_{guidelines}$ Select the dose associated with the best probability = $dose_{ML}$ Calculation based on the dose_{ML} selected of the $$AUC_{0-24,ML} = \frac{AUC_{0-24,ref} \times Dose_{ML}}{Dose_{guidelines}}$$ Dose_{POPPK} calculating using formula derived from POPPK models and calculation of the $$AUC_{0-24,POPPK} = \frac{AUC_{0-24,ref} \times Dose_{POPPK}}{Dose_{guidelines}}$$ Comparison of drug target attainment proportion in the <u>test set of simulated patients</u> and in <u>real patients</u> for $AUC_{0-24,ML}$ and $AUC_{0-24,POPPK}$